Skew spectra of oriented bipartite graphs

A. Anuradha R. Balakrishnan

Department of Mathematics Bharathidasan University Tiruchirappalli 620024, India

radha.anu.am@gmail.com

mathbala@sify.com

Xiaolin Chen Xueliang Li Huishu Lian

Center for Combinatorics and LPMC-TJKLC Nankai University Tianjin 300071, P. R. China

chxlnk@163.com

lxl@nankai.edu.cn

lhs6803@126.com

Wasin So

Department of Mathematics San Jose State University San Jose, California 95192–0103, U.S.A.

wasin.so@sjsu.edu

Submitted: April 30, 2013; Accepted: Oct 28, 2013; Published: Nov 15, 2013 Mathematics Subject Classifications: 05C20, 05C50, 05C75

Abstract

A graph G is said to have a parity-linked orientation ϕ if every even cycle C_{2k} in G^{ϕ} is evenly (resp. oddly) oriented whenever k is even (resp. odd). In this paper, this concept is used to provide an affirmative answer to the following conjecture of D. Cui and Y. Hou [D. Cui, Y. Hou, On the skew spectra of Cartesian products of graphs, The Electronic J. Combin. 20(2):#P19, 2013]: Let G = G(X,Y) be a bipartite graph. Call the $X \to Y$ orientation of G, the canonical orientation. Let ϕ be any orientation of G and let $Sp_S(G^{\phi})$ and Sp(G) denote respectively the skew spectrum of G^{ϕ} and the spectrum of G. Then $Sp_S(G^{\phi}) = \mathbf{i}Sp(G)$ if and only if ϕ is switching-equivalent to the canonical orientation of G. Using this result, we determine the switch for a special family of oriented hypercubes Q_d^{ϕ} , $d \geq 1$. Moreover, we give an orientation of the Cartesian product of a bipartite graph and a graph, and then determine the skew spectrum of the resulting oriented product graph, which generalizes a result of Cui and Hou. Further this can be used to construct new families of oriented graphs with maximum skew energy.

Keywords: oriented bipartite graphs; skew energy; skew spectrum; canonical orientation; parity-linked orientation; switching-equivalence

1 Introduction

Let G = (V, E) be a finite simple undirected graph of order n with $V = \{v_1, v_2, \dots, v_n\}$ as its vertex set and E as its edge set. An orientation ϕ of E results in the oriented graph $G^{\phi} = (V, \Gamma)$, where Γ is the arc set of G^{ϕ} . The adjacency matrix of G is the $n \times n$ matrix $A=(a_{ij})$, where $a_{ij}=1$ if $(v_i,v_j)\in E$ and $a_{ij}=0$ otherwise. As the matrix A is real and symmetric, all its eigenvalues are real. The spectrum of G, denoted by Sp(G), is the spectrum of A. The energy $\mathcal{E}(G)$ of a graph G of order n, introduced by Ivan Gutman [8] in 1978, is defined as the sum of the absolute values of its eigenvalues. The skew adjacency matrix of the oriented graph G^{ϕ} is the $n \times n$ matrix $S(G^{\phi}) = (s_{ij})$, where $s_{ij} = 1 = -s_{ji}$ whenever $(v_i, v_j) \in \Gamma(G^{\phi})$ and $s_{ij} = 0$ otherwise. As the matrix $S(G^{\phi})$ is real and skew symmetric, its eigenvalues are all pure imaginary. The skew spectrum of G^{ϕ} is the spectrum of $S(G^{\phi})$. The concept of graph energy was recently generalized to oriented graphs as skew energy by Adiga, Balakrishnan and Wasin So in [1]. The skew energy $\mathcal{E}_S(G^{\phi})$ of an oriented graph G^{ϕ} is defined as the sum of the absolute values of all the eigenvalues of $S(G^{\phi})$. For the properties of the energy and spectrum of a graph, the reader may refer to [3, 9, 12], and for skew energy and skew spectrum of an oriented graph, to [1, 4, 10, 11, 13]. We follow [3] for standard graph theoretic notation.

By a cycle in G^{ϕ} , we refer to not necessarily a directed cycle. An oriented even cycle is classified into two types based on its structure. An even cycle C of G^{ϕ} is said to be evenly or oddly oriented according as the number of arcs of C in each direction is even or odd [10].

Let \mathcal{G} denote the family of graphs without even cycles. In [4], Cavers et al. have proved the following result.

Theorem 1 (Cavers et al. [4]). The skew spectrum of G^{ϕ} remains invariant under any orientation ϕ of G if and only if G contains no even cycles, that is, $G \in \mathcal{G}$.

2 Oriented bipartite graphs G^{ϕ} with $Sp_S(G^{\phi}) = \mathbf{i}Sp(G)$

Let G = G(X, Y) be a bipartite graph with bipartition (X, Y). The canonical orientation of G is that orientation which orients all the edges from one partite set to the other. It is immaterial if it is from X to Y or from Y to X. Shader and So [13] have shown that for the canonical orientation σ of G(X, Y),

$$Sp_S(G^{\sigma}) = \mathbf{i}Sp(G).$$
 (1)

From this point onward, σ stands for the canonical orientation with respect to a bipartite graph G with a fixed bipartition (X,Y).

Let G^{ϕ} be an oriented graph of order n. An even cycle C_{2k} of length 2k in G^{ϕ} is said have a parity-linked orientation if it is evenly oriented whenever k is even and oddly oriented whenever k is odd. If every even cycle in G^{ϕ} has a parity-linked orientation, then the orientation ϕ is defined to be a parity-linked orientation of G. (The parity-linked orientation is termed as uniform orientation in [6].)

In [6], Cui and Hou have given a characterization of oriented graphs G^{ϕ} that satisfy Equation (1) by using the parity-linked orientation of graphs.

Theorem 2 ([6]). Suppose G^{ϕ} is an oriented bipartite graph with G as its underlying graph. Then $Sp_S(G^{\phi}) = \mathbf{i}Sp(G)$ if and only if the orientation ϕ of G is parity-linked.

Let U be any proper subset of V(G) of an oriented graph G^{ϕ_1} and let $\overline{U} = V(G) \setminus U$ be its complement. Reversing the orientations of all the arcs between U and \overline{U} results in another oriented graph G^{ϕ_2} . This process is called the *switch* of G^{ϕ_1} with respect to U. The oriented graph got by two successive switches with respect to U_1 and U_2 is just the oriented graph obtained from G by the switch with respect to the set $U_1\Delta U_2$, the symmetric difference of U_1 and U_2 .

Suppose ϕ_1 and ϕ_2 are two orientations of a graph G. Then G^{ϕ_1} and G^{ϕ_2} are said to be *switching-equivalent* if G^{ϕ_2} can be obtained from G^{ϕ_1} by a switch. It is clear that switching-equivalence among the set \mathscr{O} of all orientations of a graph G is indeed an equivalence relation on \mathscr{O} . The following result is proved in [1].

Theorem 3 ([1]). Let ϕ_1 and ϕ_2 be two orientations of a graph G. If G^{ϕ_1} and G^{ϕ_2} are switching-equivalent, then $Sp_S(G^{\phi_1}) = Sp_S(G^{\phi_2})$.

We mention that the converse of Theorem 3 is not true for non-bipartite graphs.

Example 4. Consider the two orientations ϕ_1 and ϕ_2 of the cycle graph C_5 as given in Figure 1.

Figure 1: Two orientations of the cycle graph C_5

Since $C_5 \in \mathcal{G}$, the family of graphs without even cycles, by Theorem 1,

$$Sp_S(C_5^{\phi_1}) = Sp_S(C_5^{\phi_2}).$$

The oriented cycle $C_5^{\phi_1}$ has 5 arcs in one direction (clockwise) while $C_5^{\phi_2}$ has 4 arcs in the same direction for the given labeling. Any switch in $C_5^{\phi_1}$ will cause an even number of changes in the number of arcs in both the directions. Hence the 5 arcs in the clockwise direction can only become either 3 arcs or 1 arc in the clockwise direction after any switch but never 4 arcs in the clockwise direction. Therefore ϕ_1 and ϕ_2 are not switching-equivalent in C_5 .

In [6], Cui and Hou conjectured that for an oriented bipartite graph G^{ϕ} , $Sp_S(G^{\phi}) = \mathbf{i}Sp(G)$ if and only if G^{ϕ} is switching-equivalent to G^{σ} , where σ is the canonical orientation of G. In this paper, we settle the above conjecture in the affirmative and present it as the following theorem.

Theorem 5 (Conjectured in [6]). Suppose ϕ is an orientation of a bipartite graph G = G(X,Y). Then $Sp_S(G^{\phi}) = \mathbf{i}Sp(G)$ if and only if G^{ϕ} is switching-equivalent to G^{σ} , where σ is the canonical orientation of G.

Proof. Without loss of generality, we may assume that G is a connected graph. Sufficiency. If G^{ϕ} and G^{σ} are switching-equivalent, then by Theorem 3, $Sp_S(G^{\phi}) = Sp_S(G^{\sigma}) = \mathbf{i}Sp(G)$ (where the second equality follows from (1)). Necessity. We prove by induction on the number of edges m of the bipartite graph G.

The result is trivial for m = 1.

Assume that the result is true for all bipartite graphs with at most $m-1 (m \ge 2)$ arcs. Let G be a bipartite graph with m edges and (X,Y) be the bipartition of the vertex set of G. Suppose that ϕ is an orientation of G such that $Sp_S(G^{\phi}) = \mathbf{i}Sp(G)$. We have to prove that ϕ is switching-equivalent to σ . Let e be any edge of G. By Theorem 2, ϕ is a parity-linked orientation of G^{ϕ} and hence of $(G-e)^{\phi}$. Consequently, $(G-e)^{\phi_e}$ has a parity-linked orientation, where ϕ_e is the restriction of ϕ to the graph G-e. So again by Theorem 2,

$$Sp_S((G-e)^{\phi_e}) = \mathbf{i}Sp(G-e).$$

Consequently, by induction hypothesis, $(G-e)^{\phi_e}$ is switching-equivalent to $(G-e)^{\sigma_e}$, where σ_e is the restriction of σ to the graph G-e.

Let α be the switch that takes $(G - e)^{\phi_e}$ to $(G - e)^{\sigma_e}$ effected by the subset U of V(G - e) = V(G). We claim that α takes ϕ to σ in G. If not, then the resulting oriented graph $G^{\phi'}$ will be of the following type: All the arcs of G - e will be oriented from one partite set (say, X) to the other (namely, Y) while the arc e will be oriented in the reverse direction, that is, from Y to X (See Figure 2).

Figure 2: The oriented bipartite graph $G^{\phi'}$ in Theorem 5

Consider first the case when e is a cut edge of G. The subgraph G - e will then consist of two components with vertex sets, say, S_1 and S_2 . Now switch with respect to S_1 . This will change the orientation of the only arc e and the resulting orientation is σ . Consequently, ϕ is switching-equivalent to σ .

Note that the above argument also takes care of the case when G is a tree since each edge of G will then be a cut edge. Hence we now assume that G contains an even cycle C_{2k} containing the arc e and complete the proof. But then any such C_{2k} has k-1 arcs in one direction and k+1 arcs in the opposite direction (see Figure 3) thereby not admitting a parity-linked orientation. Hence this case can not arise. Consequently, ϕ is switching-equivalent to σ in G.

Figure 3: Cycle C_{2k} for k = 3, 4 in $G^{\phi'}$

Theorem 2 provides a nice characterization for an oriented bipartite graph G^{ϕ} to have the property that $Sp_S(G^{\phi}) = \mathbf{i}Sp(G)$. But it requires to check if every cycle in G^{ϕ} possesses a parity-linked orientation. A natural question is the following: Is it possible to reduce the number of checks to determine whether an oriented graph G^{ϕ} has a parity-linked orientation? Our next result provides an answer in this direction.

Theorem 6. Let G be a bipartite graph and ϕ be an orientation of G. If ϕ induces a parity-linked orientation on every chordless (even) cycle of G, then $Sp_S(G^{\phi}) = \mathbf{i}Sp(G)$.

Proof. By virtue of Theorem 2, it suffices to show that if ϕ induces a parity-linked orientation on every chordless (even) cycle of G, then ϕ induces a parity-linked orientation on every cycle of G. If the result were not true, then there exists a cycle $C_{2\ell}$ in G^{ϕ} of least length 2ℓ such that ϕ does not induce a parity-linked orientation on $C_{2\ell}$. This of course means that $C_{2\ell}$ is evenly (resp. oddly) oriented if l is odd (resp. even). By hypothesis, $C_{2\ell}$ contains a chord x_1y_1 . Suppose that $C_{2\ell} = x_1x_2 \dots x_{\ell_1}y_1y_2 \dots y_{2\ell-\ell_1}x_1$ in clockwise direction. Consider the two cycles $C_1 = x_1x_2 \dots x_{\ell_1}y_1x_1$ and $C_2 = x_1y_1y_2 \dots y_{2\ell-\ell_1}x_1$ with respective lengths $\ell_1 + 1$ and $\ell_2 - \ell_1 + 1$ in clockwise direction. Note that ℓ_1 and ℓ_2 are also even (ℓ_2 being bipartite). Suppose that ℓ_2 and ℓ_3 contain respectively ℓ_1 and ℓ_2 arcs in the clockwise direction. By the choice of ℓ_2 , ℓ_1 and ℓ_2 possess the parity-linked orientation. Hence

$$\frac{\ell_1 + 1}{2} \equiv r_1 \pmod{2}$$
 and $\frac{2\ell - \ell_1 + 1}{2} \equiv r_2 \pmod{2}$.

It follows that $\ell + 1 \equiv (r_1 + r_2) \pmod{2}$. Observe that if the arc corresponding to $x_1 y_1$ is clockwise in C_1 , then it must be anticlockwise in C_2 and vice versa. This of course means that $C_{2\ell}$ also admits the parity-linked orientation. This contradiction proves the result.

Combining Theorem 2 and Theorem 6, we obtain immediately the following corollary.

Corollary 7. Let G be a bipartite graph and ϕ , an orientation of G. Then $Sp_S(G^{\phi}) = \mathbf{i}Sp(G)$ if and only if ϕ induces a parity-linked orientation on all the chordless cycles of G.

Remark 8. Let \mathscr{C} denote the set of all cycles of a bipartite graph G. A subset \mathscr{S} of \mathscr{C} is called a generating set of \mathscr{C} if for any cycle C of \mathscr{C} either $C \in \mathscr{S}$ or there is a sequence of cycles C_1, C_2, \ldots, C_k in \mathscr{S} such that $C = ((C_1 \Delta C_2) \Delta C_3) \ldots C_k$ and for $2 \leq p \leq k-1$, $((C_1 \Delta C_2) \Delta C_3) \ldots \Delta C_p$ are all cycles of G. With this notation, one can prove that for any oriented bipartite graph G^{ϕ} , $Sp_S(G^{\phi}) = \mathbf{i}Sp(G)$ if and only if ϕ induces a parity-linked orientation for every cycle in a generating set \mathscr{S} of \mathscr{C} in G. Actually, the set of all chordless cycles of a graph G is a generating set of the set of all cycles of G.

3 Switching-equivalence in oriented hypercubes

We present below an illustration for Theorem 5. In [2], Anuradha and Balakrishnan have constructed an oriented hypercube Q_d^{ϕ} for which $Sp_S(Q_d^{\phi}) = \mathbf{i}Sp(Q_d), \ d \geqslant 1$.

By Theorem 5, ϕ must be switching-equivalent to the canonical orientation σ of Q_d . We now determine a switching set U_d in Q_d^{ϕ} that takes ϕ to σ .

We first recall the algorithm given in [2] by means of which Q_d^{ϕ} , $d \ge 1$, is constructed.

Algorithm 9. The hypercube Q_d , $d \ge 2$, can be constructed by taking two copies of Q_{d-1} and making the corresponding vertices in the two copies adjacent. Let $V(Q_d) = \{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_d) : \varepsilon_i = 0 \text{ or } 1\}$ be the vertex set of Q_d .

- 1. For $Q_1 = K_2$, $V(Q_1) = \{(0), (1)\}$. Set $(1, 0) \in \Gamma(Q_1^{\phi})$.
- 2. Assume that for i = 1, 2, ..., k (< d), the oriented hypercube Q_k^{ϕ} has been constructed. For i = k + 1, the oriented hypercube Q_{k+1}^{ϕ} is formed as follows:
 - (a). Take two copies $C_0^{(k)}$ and $C_1^{(k)}$ of Q_k^{ϕ} . Reverse the orientation of all the arcs in $C_1^{(k)}$.
 - (b). For j = 0, 1, relabel the vertices of $C_j^{(k)}$ by adding j as the first coordinate, that is, if $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k) \in Q_k$, then the vertex $(0, \varepsilon_1, \varepsilon_2, \dots, \varepsilon_k) \in C_0^{(k)}$ and the vertex $(1, \varepsilon_1, \varepsilon_2, \dots, \varepsilon_k) \in C_1^{(k)}$.
 - (c). Let (X_0, Y_0) be the bipartition of $V(Q_k)$ in $C_0^{(k)}$ such that the vertex labeled $(0, 0, \ldots, 0)$ is in X_0 . Set the corresponding bipartition in $C_1^{(k)}$ as (X_1, Y_1) . (Note that the vertex labeled $(1, 0, 0, \ldots, 0) \in X_1$.) Consequently $X = X_0 \cup Y_1$ and $Y = X_1 \cup Y_0$ form the bipartition of $V(Q_{k+1})$.

(d). Add an edge between the vertices of $C_0^{(k)}$ and $C_1^{(k)}$ that differ in exactly the first coordinate. For each such edge, assign the orientation from X_0 to X_1 and from Y_1 to Y_0 (see Figure 4). This yields the oriented hypercube Q_{k+1}^{ϕ} . (See Figure 5.)

3. If k+1=d, stop; else take $k \leftarrow k+1$, return to Step 2.

Figure 4: Example for Step 2(d) in Algorithm 9

Figure 5: Orientation ϕ of hypercube Q_i , i = 1, 2, 3, defined in Algorithm 9

Let (X,Y) be the bipartition of $V(Q_d^{\phi})$ for $d\geqslant 1$ such that the vertex $(0,0,\ldots,0)$ is

7

in X. It is then easy to observe from the construction of Q_d^{ϕ} that the indegree, $\deg^+(u)$, of each vertex $u \in X$ is 1 while the outdegree $\deg^-(v)$ of each vertex $v \in Y$ is 1 in Q_d^{ϕ} .

For each $d \ge 1$, we now define a set $U_d \subset V(Q_d^{\phi})$ recursively as follows: For the oriented hypercube Q_1^{ϕ} , set $U_1 = \{(0)\}$. For $k \ge 1$ (k < d), assume that the set U_k has been determined. Form the set U_{k+1} of the oriented hypercube Q_{k+1}^{ϕ} by taking, for each vertex $v = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k) \in U_k$ of the hypercube Q_k^{ϕ} , the vertices $v_0 = (0, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k)$ and $v_1 = (1, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k)$. Note that in the oriented hypercube Q_{k+1}^{ϕ} , if U_k^0 and U_k^1 are the two sets corresponding to U_k in the two copies $C_0^{(k)}$ and $C_1^{(k)}$ of Q_k^{ϕ} then $U_{k+1} = U_k^0 \cup U_k^1$ and $|U_{k+1}| = 2^k$.

We now show that for each $d \ge 1$, a switch with respect to the set U_d in the oriented hypercube Q_d^{ϕ} results in the canonical orientation σ of Q_d .

Theorem 10. Suppose Q_d^{ϕ} is the oriented hypercube obtained by Algorithm 9. Let $U_d \subset V(Q_d^{\phi})$ be determined as above. Then a switch with respect to the set U_d , for $d = 1, 2, \ldots$, yields the canonical orientation σ of Q_d .

Proof. Proof by induction on d. It is obvious for d = 1, 2. (For $d = 1, 2, U_1 = \{(0)\}$ and $U_2 = \{(0,0),(1,0)\}$.)

Suppose that a switch with respect to the set U_k (k < d), yields the canonical orientation in the oriented hypercube Q_k^{ϕ} . Consider the set U_{k+1} of the oriented hypercube Q_{k+1}^{ϕ} . Clearly Q_{k+1}^{ϕ} consists of two copies $C_0^{(k)}$ and $C_1^{(k)}$ of Q_k^{ϕ} . For i = 0, 1, let U_k^i be the switch in the corresponding copy $C_i^{(k)}$. It is then easy to observe that

$$U_{k+1} = U_k^0 \cup U_k^1.$$

This shows that the copies $C_0^{(k)}$ and $C_1^{(k)}$ in Q_{k+1}^{ϕ} exhibit canonical orientation after the switch with respect to U_{k+1} . Further any arc between the two copies agrees with the canonical orientation (see Step 2(d) of Algorithm 9). Hence the switch with respect to U_{k+1} results in Q_{k+1}^{σ} . Applying induction, the result follows.

4 The skew spectrum of $H \square G$ with H bipartite

In [1], Adiga et al. have shown that the skew energy of any oriented graph G^{ϕ} of order n, for which the underlying undirected graph G is k-regular, is bounded above by $n\sqrt{k}$ and posed the following problem:

Problem 11. Which k-regular graphs G on n vertices have orientations ϕ with $\mathcal{E}_S(G^{\phi}) = n\sqrt{k}$, or equivalently, $S(G^{\phi})^T S(G^{\phi}) = kI_n$?

In this section, we give an orientation of the Cartesian product $H \square G$, where H is bipartite, by extending the orientation of $P_m \square G$ in [6], and we calculate its skew spectrum. As an application of this orientation, we construct new families of oriented graphs with maximum skew energy, which generalizes the construction in [6].

Let H and G be graphs with p and n vertices, respectively. Recall that the Cartesian product $H \square G$ of H and G is the graph with vertex set $V(H) \times V(G)$ and the vertices (u_1, v_1) and (u_2, v_2) are adjacent in $H \square G$ if and only if $u_1 = u_2$ and $v_1 v_2$ is an edge of G, or if $v_1 = v_2$ and $u_1 u_2$ is an edge of H. Assume that τ is any orientation of H and ϕ is any orientation of G. There is a natural way to define the oriented Cartesian product $H^{\tau} \square G^{\phi}$ of H^{τ} and G^{ϕ} whose underlying undirected graph is $H \square G$: There is an arc from (u_1, v_1) to (u_2, v_2) if and only if $u_1 = u_2$ and (v_1, v_2) is an arc of G^{ϕ} , or if $v_1 = v_2$ and $u_1 u_2$ is an arc of H^{τ} . The skew spectrum of $H^{\tau} \square G^{\phi}$ has been determined in [6]. Some interesting results on the skew spectrum of the product $H^{\tau} \square G^{\phi}$, where H^{τ} is an oriented hypercube are obtained in [2].

When H is a bipartite graph with bipartition X and Y, we modify the above definition of $H^{\tau} \square G^{\phi}$ to obtain a new product graph $(H^{\tau} \square G^{\phi})^{o}$ with the following condition: If $u \in Y$ and $(v_1, v_2) \in \Gamma(G^{\phi})$, then we make $(u, v_2)(u, v_1)$ an arc of $H^{\tau} \square G^{\phi}$ (instead of $(u, v_1)(u, v_2)$); the other arcs of $H^{\tau} \square G^{\phi}$ remain unchanged.

Theorem 12. Let H^{τ} be an oriented bipartite graph of order p and let the skew eigenvalues of H^{τ} be the nonzero complex numbers $\pm \mathbf{i}\mu_1, \pm \mathbf{i}\mu_2, \ldots, \pm \mathbf{i}\mu_r$ and p-2r 0's. Let G^{ϕ} be an oriented graph of order n and let the skew eigenvalues of G^{ϕ} be the nonzero complex numbers $\pm \mathbf{i}\lambda_1, \pm \mathbf{i}\lambda_2, \ldots, \pm \mathbf{i}\lambda_t$ and n-2t 0's. Then the skew eigenvalues of the oriented graph $(H^{\tau} \Box G^{\phi})^o$ are $\pm \mathbf{i}\sqrt{\mu_j^2 + \lambda_k^2}, j = 1, \ldots, r, k = 1, \ldots, t$, each with multiplicity 2; $\pm \mathbf{i}\mu_j, j = 1, \ldots, r$, each with multiplicity n-2t; $\pm \mathbf{i}\lambda_j, k = 1, \ldots, t$, each with multiplicity p-2r and 0 with multiplicity (p-2r)(n-2t).

Proof. Let H = H(X,Y) with $|X| = p_1$ and $|Y| = p_2$. With suitable labeling of the vertices of $H \square G$, the skew adjacency matrix $S = S((H^{\tau} \square G^{\phi})^{o})$ can be chosen as follows:

$$S = I'_{p_1 + p_2} \otimes S(G^{\phi}) + S(H^{\tau}) \otimes I_n,$$

where $I'_{p_1+p_2} = I'_p = (a_{ij})$, $a_{ii} = 1$ if $1 \le i \le p_1$, $a_{ii} = -1$ if $p_1 + 1 \le i \le p$ and $a_{ij} = 0$ otherwise; $S(H^{\tau})$ is the partitioned matrix $\begin{pmatrix} 0 & B \\ -B^T & 0 \end{pmatrix}$, where B is a $p_1 \times p_2$ matrix. Further, \otimes stands for the Kronecker product of two matrices [3].

We first determine the singular values of S. Note that the matrices S, $S(H^{\tau})$ and $S(G^{\phi})$ are all skew symmetric. By calculation, we have

$$SS^{T} = [I'_{p} \otimes S(G^{\phi}) + S(H^{\tau}) \otimes I_{n}][I'_{p} \otimes (-S(G^{\phi})) + (-S(H^{\tau})) \otimes I_{n}]$$

$$= -[(I_{p} \otimes S^{2}(G^{\phi}) + S^{2}(H^{\tau}) \otimes I_{n}) + (I'_{p} \otimes S(G^{\phi}))(S(H^{\tau}) \otimes I_{n})$$

$$+ (S(H^{\tau}) \otimes I_{n})(I'_{p} \otimes S(G^{\phi}))].$$

Define $\omega_i = 1$ for $i = 1, 2, ..., p_1$ and $\omega_i = -1$ for $i = p_1 + 1, p_1 + 2, ..., p$. Denote $P^{(1)} = (I'_{p_1+p_2} \otimes S(G^{\phi}))(S(H^{\tau}) \otimes I_n)$ and $P^{(2)} = (S(H^{\tau}) \otimes I_n)(I'_{p_1+p_2} \otimes S(G^{\phi}))$. Note that $P^{(1)}$ and $P^{(2)}$ are both partitioned matrices each of order $p_1 \times p_2$ in which each entry is an $n \times n$ submatrix. The $(i, j)^{\text{th}}$ block in the matrix $P^{(1)} + P^{(2)}$ is given by

$$P_{ij}^{(1)} + P_{ij}^{(2)} = S(H^{\tau})_{ij} S(G^{\phi})(\omega_i + \omega_j).$$

For any $1 \leqslant i, j \leqslant p$, if $S(H^{\tau})_{ij} = 0$, then $P_{ij}^{(1)} + P_{ij}^{(2)} = 0$. Otherwise the vertices corresponding to i and j in H^{τ} are in different parts of the bipartition. That is, $1 \leqslant i \leqslant p_1$, $p_1 + 1 \leqslant j \leqslant p$ or $1 \leqslant j \leqslant p_1$, $p_1 + 1 \leqslant i \leqslant p$. Then $\omega_i + \omega_j = 0$. Thus it follows that $P^{(1)} + P^{(2)} = 0$. Hence

$$SS^{T} = -(I_{p_1+p_2} \otimes S^2(G^{\phi}) + S^2(H^{\tau}) \otimes I_n).$$

Therefore (cf. [3]), the eigenvalues of SS^T are $\mu(H^{\tau})^2 + \lambda(G^{\phi})^2$, where $\mathbf{i}\mu(H^{\tau}) \in Sp_S(H^{\tau})$ and $\mathbf{i}\lambda(G^{\phi}) \in Sp_S(G^{\phi})$ and hence the eigenvalues of S are of the form $\pm \mathbf{i}\sqrt{\mu(H^{\tau})^2 + \lambda(G^{\phi})^2}$. Thus the skew spectrum of $(H^{\tau}\Box G^{\phi})^o$ is as given in the statement of the theorem. The proof is thus complete.

As an application of Theorem 12, we now construct a new family of oriented graphs with maximum skew energy.

Theorem 13. Let H^{τ} be an oriented ℓ -regular bipartite graph on p vertices with maximum skew energy $\mathcal{E}_S(H^{\tau}) = p\sqrt{\ell}$ and G^{ϕ} be an oriented k-regular bipartite graph on n vertices with maximum skew energy $\mathcal{E}_S(G^{\phi}) = n\sqrt{k}$. Then the oriented graph $(H^{\tau} \Box G^{\phi})^o$ of $H \Box G$ has the maximum skew energy $\mathcal{E}_S((H^{\tau} \Box G^{\phi})^o) = np\sqrt{\ell + k}$.

Proof. Since H^{τ} and G^{ϕ} have maximum skew energy, $S(H^{\tau})S(H^{\tau})^{T} = \ell I_{p}$ and $S(G^{\phi})$ $S(G^{\phi})^{T} = k I_{n}$. Then the skew eigenvalues of H^{τ} are all $\pm \mathbf{i}\sqrt{\ell}$ and the skew eigenvalues of G^{ϕ} are all $\pm \mathbf{i}\sqrt{k}$. By Theorem 12, all the skew eigenvalues of $(H^{\tau}\Box G^{\phi})^{o}$ are of the form $\pm \mathbf{i}\sqrt{\ell+k}$ and hence its skew energy is $np\sqrt{\ell+k}$, the maximum possible skew energy that an $(\ell+k)$ -regular graph on np vertices can have.

An immediate corollary of Theorem 13 is the following result of Cui and hou [6].

Corollary 14. Let G^{ϕ} be an oriented k-regular graph on n vertices with maximum skew energy $\mathcal{E}_S(G^{\phi}) = n\sqrt{k}$. Then the oriented graph $(P_2 \square G^{\phi})^o$ of $P_2 \square G$ has maximum skew energy $\mathcal{E}_S((P_2 \square G^{\phi})^o) = 2n\sqrt{k+1}$.

Adiga et al. [1] showed that a 1-regular connected graph that has an orientation with maximum skew energy is K_2 ; while a 2-regular connected graph has an orientation with maximum skew energy if and only if it is an oddly oriented cycle C_4 . Tian [14] proved that there exists a k-regular graph with $n = 2^k$ vertices having an orientation ψ with maximum skew energy. Cui and Hou [6] constructed a k-regular graph of order $n = 2^{k-1}$ having an orientation φ with maximum skew energy. The following examples provide new families of oriented graphs with fewer vertices that have maximum skew energy.

Example 15. Let $G_1 = K_{4,4}$. For each $r \ge 2$, set $G_r = K_{4,4} \square G_{r-1}$. As there is an orientation of $K_{4,4}$ with maximum skew energy 16 (see [5]), for each $r \ge 1$, there exists an orientation of G_r that yields the maximum skew energy $2^{3r}\sqrt{4r}$. This provides a family of 4r-regular graphs of order $n = 2^{3r}$ each having an orientation with skew energy $2^{3r}\sqrt{4r}$, $r \ge 1$.

Example 16. Let $G_1 = K_4$. For each $r \ge 2$, set $G_r = K_{4,4} \square G_{r-1}$. Since there exist orientations for K_4 with maximum skew energy $4\sqrt{3}$ (see [1, 7]), the skew energy of G_r , $r \ge 1$, is $2^{3r-1}\sqrt{4r-1}$ and it is maximum. This provides a family of 4r-1-regular graphs of order 2^{3r-1} each having an orientation with maximum skew energy $2^{3r-1}\sqrt{4r-1}$, $r \ge 1$.

Example 17. A new family of 4r-2-regular oriented graphs of order 2^{3r-1} with maximum skew energy $2^{3r-1}\sqrt{4r-2}$, $r \ge 1$ is obtained when we set $G_1 = C_4$ in place of K_4 in Example 16.

Example 18. A new family of 4r-3-regular oriented graphs of order 2^{3r-2} with maximum skew energy $2^{3r-2}\sqrt{4r-3}$, $r \ge 1$ is obtained when we set $G_1 = P_2$ in place of K_4 in Example 16.

Acknowledgement

For the first two authors, this research was supported by the Department of Science and Technology, Government of India grant DST:SR/S4/MS:492, dated April 16, 2009. For the third, fourth and fifth authors, this research was supported by NSFC and the "973" program.

References

- [1] C. Adiga, R. Balakrishnan, and Wasin So. The skew energy of a digraph. *Linear Algebra Appl.*, 432:1825–1835, 2010
- [2] A. Anuradha, and R. Balakrishnan. Skew spectrum of the Cartesian product of an oriented graph with an oriented hypercube. In *Combinatorial Matrix Theory and Generalized Inverses of Matrices*, Eds. R. B. Bapat, S. J. Kirkland, K. M. Prasad, S. Puntanen, pages 1–12. Springer, 2013.
- [3] R. Balakrishnan, and K. Ranganathan. A Textbook of Graph Theory. Second Edition, Springer, New York (2012).
- [4] M. Cavers, S. M. Cioabă, S. Fallat, D. A. Gregory, W. H. Haemers, S. J. Kirkland, J. J. McDonald, and M. Tsatsomeros. Skew-adjacency matrices of graphs. *Linear Algebra Appl.*, 436:4512–4529, 2012.
- [5] X. Chen, X. Li, and H. Lian. 4-Regular oriented graphs with optimum skew energy. Linear Algebra Appl., 439(10):2948–2960, 2013.
- [6] D. Cui, and Y. Hou. On the skew spectra of Cartesian products of graphs. *The Electronic J. Combin.*, 20(2):#P19, 2013.
- [7] S. Gong, and G. Xu. 3-Regular digraphs with optimum skew energy. *Linear Algebra Appl.*, 436:465–471, 2012.
- [8] I. Gutman. The energy of a graph. Ber. Math. Statist. sekt. Forschungsz. Graz., 103:1–22, 1978.

- [9] I. Gutman, X. Li, and J. Zhang. Graph Energy. In *Analysis of Complex Network: From Biology to Linguistics*, Eds. M. Dehmer, and F. Emmert-Streib, pages 145–174. Wiley-VCH Verlag, Weinheim, 2009.
- [10] Y. Hou, and T. Lei. Characteristic polynomials of skew-adjacency matrices of oriented graphs. *The Electronic J. Combin.*, 18:#156, 2011.
- [11] X. Li, and H. Lian. A survey on the skew energy of oriented graphs. Available at arXiv:1304.5707
- [12] X. Li, Y. Shi, and I. Gutman. Graph Energy. Springer, New York, 2012.
- [13] B. Shader, and Wasin So. Skew spectra of oriented graphs. *The Electronic J. Combin.*, 16:1–6, 2009.
- [14] G-X. Tian. On the skew energy of orientations of hypercubes. *Linear Algebra Appl.*, 435:2140–2149, 2011.