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Abstract
A graph G is said to have a parity-linked orientation φ if every even cycle C2k in

Gφ is evenly (resp. oddly) oriented whenever k is even (resp. odd). In this paper,
this concept is used to provide an affirmative answer to the following conjecture of
D. Cui and Y. Hou [D. Cui, Y. Hou, On the skew spectra of Cartesian products
of graphs, The Electronic J. Combin. 20(2):#P19, 2013]: Let G = G(X,Y ) be
a bipartite graph. Call the X → Y orientation of G, the canonical orientation.
Let φ be any orientation of G and let SpS(G

φ) and Sp(G) denote respectively the
skew spectrum of Gφ and the spectrum of G. Then SpS(G

φ) = iSp(G) if and only
if φ is switching-equivalent to the canonical orientation of G. Using this result,
we determine the switch for a special family of oriented hypercubes Q

φ
d , d > 1.

Moreover, we give an orientation of the Cartesian product of a bipartite graph and
a graph, and then determine the skew spectrum of the resulting oriented product
graph, which generalizes a result of Cui and Hou. Further this can be used to
construct new families of oriented graphs with maximum skew energy.

Keywords: oriented bipartite graphs; skew energy; skew spectrum; canonical ori-
entation; parity-linked orientation; switching-equivalence
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1 Introduction

Let G = (V,E) be a finite simple undirected graph of order n with V = {v1, v2, . . . , vn}
as its vertex set and E as its edge set. An orientation φ of E results in the oriented graph
Gφ = (V,Γ), where Γ is the arc set of Gφ. The adjacency matrix of G is the n× n matrix
A = (aij), where aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise. As the matrix A is real
and symmetric, all its eigenvalues are real. The spectrum of G, denoted by Sp(G), is the
spectrum of A. The energy E(G) of a graph G of order n, introduced by Ivan Gutman
[8] in 1978, is defined as the sum of the absolute values of its eigenvalues. The skew
adjacency matrix of the oriented graph Gφ is the n × n matrix S(Gφ) = (sij), where
sij = 1 = −sji whenever (vi, vj) ∈ Γ(Gφ) and sij = 0 otherwise. As the matrix S(Gφ)
is real and skew symmetric, its eigenvalues are all pure imaginary. The skew spectrum
of Gφ is the spectrum of S(Gφ). The concept of graph energy was recently generalized to
oriented graphs as skew energy by Adiga, Balakrishnan and Wasin So in [1]. The skew
energy ES(Gφ) of an oriented graph Gφ is defined as the sum of the absolute values of
all the eigenvalues of S(Gφ). For the properties of the energy and spectrum of a graph,
the reader may refer to [3, 9, 12], and for skew energy and skew spectrum of an oriented
graph, to [1, 4, 10, 11, 13]. We follow [3] for standard graph theoretic notation.

By a cycle in Gφ, we refer to not necessarily a directed cycle. An oriented even cycle
is classified into two types based on its structure. An even cycle C of Gφ is said to be
evenly or oddly oriented according as the number of arcs of C in each direction is even or
odd [10].

Let G denote the family of graphs without even cycles. In [4], Cavers et al. have
proved the following result.

Theorem 1 (Cavers et al. [4]). The skew spectrum of Gφ remains invariant under any
orientation φ of G if and only if G contains no even cycles, that is, G ∈ G .

2 Oriented bipartite graphs Gφ with SpS(G
φ) = iSp(G)

Let G = G(X, Y ) be a bipartite graph with bipartition (X, Y ). The canonical orientation
of G is that orientation which orients all the edges from one partite set to the other. It is
immaterial if it is from X to Y or from Y to X. Shader and So [13] have shown that for
the canonical orientation σ of G(X, Y ),

SpS(G
σ) = iSp(G). (1)

From this point onward, σ stands for the canonical orientation with respect to a
bipartite graph G with a fixed bipartition (X, Y ).

Let Gφ be an oriented graph of order n. An even cycle C2k of length 2k in Gφ is
said have a parity-linked orientation if it is evenly oriented whenever k is even and oddly
oriented whenever k is odd. If every even cycle in Gφ has a parity-linked orientation,
then the orientation φ is defined to be a parity-linked orientation of G. (The parity-linked
orientation is termed as uniform orientation in [6].)
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In [6], Cui and Hou have given a characterization of oriented graphs Gφ that satisfy
Equation (1) by using the parity-linked orientation of graphs.

Theorem 2 ([6]). Suppose Gφ is an oriented bipartite graph with G as its underlying
graph. Then SpS(G

φ) = iSp(G) if and only if the orientation φ of G is parity-linked.

Let U be any proper subset of V (G) of an oriented graph Gφ1 and let U = V (G) \ U
be its complement. Reversing the orientations of all the arcs between U and U results
in another oriented graph Gφ2 . This process is called the switch of Gφ1 with respect to
U. The oriented graph got by two successive switches with respect to U1 and U2 is just
the oriented graph obtained from G by the switch with respect to the set U1∆U2, the
symmetric difference of U1 and U2.

Suppose φ1 and φ2 are two orientations of a graph G. Then Gφ1 and Gφ2 are said
to be switching-equivalent if Gφ2 can be obtained from Gφ1 by a switch. It is clear that
switching-equivalence among the set O of all orientations of a graph G is indeed an
equivalence relation on O. The following result is proved in [1].

Theorem 3 ([1]). Let φ1 and φ2 be two orientations of a graph G. If Gφ1 and Gφ2 are
switching-equivalent, then SpS(G

φ1) = SpS(G
φ2).

We mention that the converse of Theorem 3 is not true for non-bipartite graphs.

Example 4. Consider the two orientations φ1 and φ2 of the cycle graph C5 as given in
Figure 1.
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Figure 1: Two orientations of the cycle graph C5

Since C5 ∈ G , the family of graphs without even cycles, by Theorem 1,

SpS(C
φ1

5 ) = SpS(C
φ2

5 ).

The oriented cycle Cφ1

5 has 5 arcs in one direction (clockwise) while Cφ2

5 has 4 arcs in the
same direction for the given labeling. Any switch in C

φ1

5 will cause an even number of
changes in the number of arcs in both the directions. Hence the 5 arcs in the clockwise
direction can only become either 3 arcs or 1 arc in the clockwise direction after any
switch but never 4 arcs in the clockwise direction. Therefore φ1 and φ2 are not switching-
equivalent in C5.
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In [6], Cui and Hou conjectured that for an oriented bipartite graph Gφ, SpS(G
φ) =

iSp(G) if and only if Gφ is switching-equivalent to Gσ, where σ is the canonical orientation
of G. In this paper, we settle the above conjecture in the affirmative and present it as the
following theorem.

Theorem 5 (Conjectured in [6]). Suppose φ is an orientation of a bipartite graph G =
G(X, Y ). Then SpS(G

φ) = iSp(G) if and only if Gφ is switching-equivalent to Gσ, where
σ is the canonical orientation of G.

Proof. Without loss of generality, we may assume that G is a connected graph.
Sufficiency. If Gφ and Gσ are switching-equivalent, then by Theorem 3, SpS(G

φ) =
SpS(G

σ) = iSp(G) (where the second equality follows from (1)).
Necessity. We prove by induction on the number of edges m of the bipartite graph G.

The result is trivial for m = 1.
Assume that the result is true for all bipartite graphs with at most m − 1(m > 2)

arcs. Let G be a bipartite graph with m edges and (X, Y ) be the bipartition of the vertex
set of G. Suppose that φ is an orientation of G such that SpS(G

φ) = iSp(G). We have
to prove that φ is switching-equivalent to σ. Let e be any edge of G. By Theorem 2, φ is
a parity-linked orientation of Gφ and hence of (G − e)φ. Consequently, (G − e)φe has a
parity-linked orientation, where φe is the restriction of φ to the graph G− e. So again by
Theorem 2,

SpS((G− e)φe) = iSp(G− e).
Consequently, by induction hypothesis, (G− e)φe is switching-equivalent to (G− e)σe ,

where σe is the restriction of σ to the graph G− e.
Let α be the switch that takes (G − e)φe to (G − e)σe effected by the subset U of

V (G− e) = V (G). We claim that α takes φ to σ in G. If not, then the resulting oriented
graph Gφ′

will be of the following type: All the arcs of G − e will be oriented from one
partite set (say, X) to the other (namely, Y ) while the arc e will be oriented in the reverse
direction, that is, from Y to X (See Figure 2).

b b

X Y

e

Gφ′

Figure 2: The oriented bipartite graph Gφ′

in Theorem 5

Consider first the case when e is a cut edge of G. The subgraph G − e will then
consist of two components with vertex sets, say, S1 and S2. Now switch with respect to
S1. This will change the orientation of the only arc e and the resulting orientation is σ.
Consequently, φ is switching-equivalent to σ.
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Note that the above argument also takes care of the case when G is a tree since each
edge of G will then be a cut edge. Hence we now assume that G contains an even cycle
C2k containing the arc e and complete the proof. But then any such C2k has k − 1
arcs in one direction and k + 1 arcs in the opposite direction (see Figure 3) thereby not
admitting a parity-linked orientation. Hence this case can not arise. Consequently, φ is
switching-equivalent to σ in G.

b

b

b

b

b

b
e

X Y

(a) An evenly
oriented C6 in
Gφ′

b

b

b

b

b

b

b

b

e

X Y

(b) An oddly ori-
ented C8 in Gφ′

Figure 3: Cycle C2k for k = 3, 4 in Gφ′

Theorem 2 provides a nice characterization for an oriented bipartite graph Gφ to have
the property that SpS(G

φ) = iSp(G). But it requires to check if every cycle in Gφ possesses
a parity-linked orientation. A natural question is the following: Is it possible to reduce
the number of checks to determine whether an oriented graph Gφ has a parity-linked
orientation? Our next result provides an answer in this direction.

Theorem 6. Let G be a bipartite graph and φ be an orientation of G. If φ induces a
parity-linked orientation on every chordless (even) cycle of G, then SpS(G

φ) = iSp(G).

Proof. By virtue of Theorem 2, it suffices to show that if φ induces a parity-linked orien-
tation on every chordless (even) cycle of G, then φ induces a parity-linked orientation on
every cycle of G. If the result were not true, then there exists a cycle C2ℓ in G

φ of least
length 2ℓ such that φ does not induce a parity-linked orientation on C2ℓ. This of course
means that C2ℓ is evenly (resp. oddly) oriented if l is odd (resp. even). By hypothesis,
C2ℓ contains a chord x1y1. Suppose that C2ℓ = x1x2 . . . xℓ1y1y2 . . . y2ℓ−ℓ1x1 in clockwise
direction. Consider the two cycles C1 = x1x2 . . . xℓ1y1x1 and C2 = x1y1y2 . . . y2ℓ−ℓ1x1 with
respective lengths ℓ1 + 1 and 2ℓ − ℓ1 + 1 in clockwise direction. Note that C1 and C2

are also even (G being bipartite). Suppose that C1 and C2 contain respectively r1 and r2
arcs in the clockwise direction. By the choice of C2ℓ, C1 and C2 possess the parity-linked
orientation. Hence

ℓ1 + 1

2
≡ r1(mod 2) and

2ℓ− ℓ1 + 1

2
≡ r2(mod 2).
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It follows that ℓ + 1 ≡ (r1 + r2)(mod 2). Observe that if the arc corresponding to x1y1
is clockwise in C1, then it must be anticlockwise in C2 and vice versa. This of course
means that C2ℓ also admits the parity-linked orientation. This contradiction proves the
result.

Combining Theorem 2 and Theorem 6, we obtain immediately the following corollary.

Corollary 7. Let G be a bipartite graph and φ, an orientation of G. Then SpS(G
φ) =

iSp(G) if and only if φ induces a parity-linked orientation on all the chordless cycles of
G.

Remark 8. Let C denote the set of all cycles of a bipartite graph G. A subset S of C is
called a generating set of C if for any cycle C of C either C ∈ S or there is a sequence
of cycles C1, C2, . . . , Ck in S such that C = ((C1∆C2)∆C3) . . . Ck and for 2 6 p 6 k− 1,
((C1∆C2)∆C3) . . .∆Cp are all cycles of G. With this notation, one can prove that for
any oriented bipartite graph Gφ, SpS(G

φ) = iSp(G) if and only if φ induces a parity-
linked orientation for every cycle in a generating set S of C in G. Actually, the set of all
chordless cycles of a graph G is a generating set of the set of all cycles of G.

3 Switching-equivalence in oriented hypercubes

We present below an illustration for Theorem 5. In [2], Anuradha and Balakrishnan have
constructed an oriented hypercube Qφ

d for which SpS(Q
φ
d) = iSp(Qd), d > 1.

By Theorem 5, φ must be switching-equivalent to the canonical orientation σ of Qd.

We now determine a switching set Ud in Qφ
d that takes φ to σ.

We first recall the algorithm given in [2] by means of which Qφ
d , d > 1, is constructed.

Algorithm 9. The hypercube Qd, d > 2, can be constructed by taking two copies of
Qd−1 and making the corresponding vertices in the two copies adjacent. Let V (Qd) =
{(ε1, ε2, . . . , εd) : εi = 0 or 1} be the vertex set of Qd.

1. For Q1 = K2, V (Q1) = {(0), (1)}. Set (1, 0) ∈ Γ(Qφ
1).

2. Assume that for i = 1, 2, . . . , k(< d), the oriented hypercube Qφ
k has been constructed.

For i = k + 1, the oriented hypercube Qφ
k+1 is formed as follows:

(a). Take two copies C
(k)
0 and C

(k)
1 of Qφ

k . Reverse the orientation of all the arcs in

C
(k)
1 .

(b). For j = 0, 1, relabel the vertices of C
(k)
j by adding j as the first coordinate, that

is, if (ε1, ε2, . . . , εk) ∈ Qk, then the vertex (0, ε1, ε2, . . . , εk) ∈ C(k)
0 and the vertex

(1, ε1, ε2, . . . , εk) ∈ C(k)
1 .

(c). Let (X0, Y0) be the bipartition of V (Qk) in C
(k)
0 such that the vertex labeled

(0, 0, . . . , 0) is in X0. Set the corresponding bipartition in C
(k)
1 as (X1, Y1). (Note

that the vertex labeled (1, 0, 0, . . . , 0) ∈ X1.) Consequently X = X0 ∪ Y1 and
Y = X1 ∪ Y0 form the bipartition of V (Qk+1).
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(d). Add an edge between the vertices of C
(k)
0 and C

(k)
1 that differ in exactly the first

coordinate. For each such edge, assign the orientation from X0 to X1 and from
Y1 to Y0 (see Figure 4). This yields the oriented hypercube Qφ

k+1. (See Figure 5.)

3. If k + 1 = d, stop; else take k ← k + 1, return to Step 2. �

X1

Y1Y0

X0

Q
φ
3

Q
φ
2

Q
φ
2

b b

b b b b

bb(0, 0, 0) (0, 1, 1) (1, 1, 1)

(1, 0, 1)(1, 1, 0)(0, 0, 1)(0, 1, 0)

(1, 0, 0)

Figure 4: Example for Step 2(d) in Algorithm 9

(0, 0, 0)

b

b

b b b

bb
(0, 1)

(0, 0)

(1, 1)

(1, 0)

(1)

(0)

b

b

b

b

b

b

b

(0, 1, 1) (1, 1, 1)

(1, 0, 1)

(1, 1, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

Q
φ
3

Q
φ
2

Q
φ
1

Figure 5: Orientation φ of hypercube Qi, i = 1, 2, 3, defined in Algorithm 9

Let (X, Y ) be the bipartition of V (Qφ
d) for d > 1 such that the vertex (0, 0, . . . , 0) is
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in X. It is then easy to observe from the construction of Qφ
d that the indegree, deg+(u),

of each vertex u ∈ X is 1 while the outdegree deg−(v) of each vertex v ∈ Y is 1 in Qφ
d .

For each d > 1, we now define a set Ud ⊂ V (Qφ
d) recursively as follows: For the

oriented hypercube Qφ
1 , set U1 = {(0)}. For k > 1 (k < d), assume that the set Uk has

been determined. Form the set Uk+1 of the oriented hypercube Qφ
k+1 by taking, for each

vertex v = (ε1, ε2, . . . , εk) ∈ Uk of the hypercube Qφ
k , the vertices v0 = (0, ε1, ε2, . . . , εk)

and v1 = (1, ε1, ε2, . . . , εk). Note that in the oriented hypercube Qφ
k+1, if U

0
k and U1

k are the

two sets corresponding to Uk in the two copies C
(k)
0 and C

(k)
1 of Qφ

k then Uk+1 = U0
k ∪ U1

k

and |Uk+1| = 2k.
We now show that for each d > 1, a switch with respect to the set Ud in the oriented

hypercube Qφ
d results in the canonical orientation σ of Qd.

Theorem 10. Suppose Qφ
d is the oriented hypercube obtained by Algorithm 9. Let Ud ⊂

V (Qφ
d) be determined as above. Then a switch with respect to the set Ud, for d = 1, 2, . . . ,

yields the canonical orientation σ of Qd.

Proof. Proof by induction on d. It is obvious for d = 1, 2. (For d = 1, 2, U1 = {(0)} and
U2 = {(0, 0), (1, 0)}.)

Suppose that a switch with respect to the set Uk (k < d), yields the canonical ori-
entation in the oriented hypercube Qφ

k . Consider the set Uk+1 of the oriented hypercube

Q
φ
k+1. Clearly Q

φ
k+1 consists of two copies C

(k)
0 and C

(k)
1 of Qφ

k . For i = 0, 1, let U i
k be the

switch in the corresponding copy C
(k)
i . It is then easy to observe that

Uk+1 = U0
k ∪ U1

k .

This shows that the copies C
(k)
0 and C

(k)
1 in Qφ

k+1 exhibit canonical orientation after the
switch with respect to Uk+1. Further any arc between the two copies agrees with the
canonical orientation (see Step 2(d) of Algorithm 9). Hence the switch with respect to
Uk+1 results in Qσ

k+1. Applying induction, the result follows.

4 The skew spectrum of H�G with H bipartite

In [1], Adiga et al. have shown that the skew energy of any oriented graph Gφ of order n,
for which the underlying undirected graph G is k-regular, is bounded above by n

√
k and

posed the following problem:

Problem 11. Which k-regular graphs G on n vertices have orientations φ with ES(Gφ) =
n
√
k, or equivalently, S(Gφ)TS(Gφ) = kIn?

In this section, we give an orientation of the Cartesian product H�G, where H is
bipartite, by extending the orientation of Pm�G in [6], and we calculate its skew spectrum.
As an application of this orientation, we construct new families of oriented graphs with
maximum skew energy, which generalizes the construction in [6].
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Let H and G be graphs with p and n vertices, respectively. Recall that the Cartesian
product H�G of H and G is the graph with vertex set V (H) × V (G) and the vertices
(u1, v1) and (u2, v2) are adjacent in H�G if and only if u1 = u2 and v1v2 is an edge of G,
or if v1 = v2 and u1u2 is an edge of H. Assume that τ is any orientation of H and φ is any
orientation of G. There is a natural way to define the oriented Cartesian product Hτ�Gφ

of Hτ and Gφ whose underlying undirected graph is H�G : There is an arc from (u1, v1)
to (u2, v2) if and only if u1 = u2 and (v1, v2) is an arc of Gφ, or if v1 = v2 and u1u2 is an
arc of Hτ . The skew spectrum of Hτ�Gφ has been determined in [6]. Some interesting
results on the skew spectrum of the product Hτ�Gφ, where Hτ is an oriented hypercube
are obtained in [2].

When H is a bipartite graph with bipartition X and Y, we modify the above definition
of Hτ�Gφ to obtain a new product graph (Hτ�Gφ)o with the following condition: If
u ∈ Y and (v1, v2) ∈ Γ(Gφ), then we make (u, v2)(u, v1) an arc of Hτ�Gφ (instead of
(u, v1)(u, v2)); the other arcs of Hτ�Gφ remain unchanged.

Theorem 12. Let Hτ be an oriented bipartite graph of order p and let the skew eigenvalues
of Hτ be the nonzero complex numbers ±iµ1,±iµ2, . . . ,±iµr and p − 2r 0’s. Let Gφ be
an oriented graph of order n and let the skew eigenvalues of Gφ be the nonzero complex
numbers ±iλ1,±iλ2, . . . ,±iλt and n − 2t 0’s. Then the skew eigenvalues of the oriented

graph (Hτ�Gφ)o are ±i
√

µ2
j + λ2k, j = 1, . . . , r, k = 1, . . . , t, each with multiplicity 2;

±iµj, j = 1, . . . , r, each with multiplicity n− 2t; ±iλj, k = 1, . . . , t, each with multiplicity
p− 2r and 0 with multiplicity (p− 2r)(n− 2t).

Proof. Let H = H(X, Y ) with |X| = p1 and |Y | = p2. With suitable labeling of the
vertices of H�G, the skew adjacency matrix S = S((Hτ�Gφ)o) can be chosen as follows:

S = I ′p1+p2
⊗ S(Gφ) + S(Hτ )⊗ In,

where I ′p1+p2
= I ′p = (aij), aii = 1 if 1 6 i 6 p1, aii = −1 if p1 + 1 6 i 6 p and aij = 0

otherwise; S(Hτ ) is the partitioned matrix

(

0 B

−BT 0

)

, where B is a p1 × p2 matrix.

Further, ⊗ stands for the Kronecker product of two matrices [3].
We first determine the singular values of S. Note that the matrices S, S(Hτ ) and

S(Gφ) are all skew symmetric. By calculation, we have

SST =[I ′p ⊗ S(Gφ) + S(Hτ )⊗ In][I ′p ⊗ (−S(Gφ)) + (−S(Hτ ))⊗ In]
=− [(Ip ⊗ S2(Gφ) + S2(Hτ )⊗ In) + (I ′p ⊗ S(Gφ))(S(Hτ )⊗ In)
+ (S(Hτ )⊗ In)(I ′p ⊗ S(Gφ))].

Define ωi = 1 for i = 1, 2, . . . , p1 and ωi = −1 for i = p1 + 1, p1 + 2, . . . , p. Denote
P (1) = (I ′p1+p2

⊗S(Gφ))(S(Hτ )⊗ In) and P (2) = (S(Hτ )⊗ In)(I ′p1+p2
⊗S(Gφ)). Note that

P (1) and P (2) are both partitioned matrices each of order p1 × p2 in which each entry is
an n× n submatrix. The (i, j)th block in the matrix P (1) + P (2) is given by

P
(1)
ij + P

(2)
ij = S(Hτ )ijS(G

φ)(ωi + ωj).
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For any 1 6 i, j 6 p, if S(Hτ )ij = 0, then P
(1)
ij + P

(2)
ij = 0. Otherwise the vertices

corresponding to i and j in Hτ are in different parts of the bipartition. That is, 1 6 i 6 p1,

p1 + 1 6 j 6 p or 1 6 j 6 p1, p1 + 1 6 i 6 p. Then ωi + ωj = 0. Thus it follows that
P (1) + P (2) = 0. Hence

SST = −(Ip1+p2 ⊗ S2(Gφ) + S2(Hτ )⊗ In).

Therefore (cf. [3]), the eigenvalues of SST are µ(Hτ )2 + λ(Gφ)2, where iµ(Hτ ) ∈
SpS(H

τ ) and iλ(Gφ) ∈ SpS(Gφ) and hence the eigenvalues of S are of the form
±i

√

µ(Hτ )2 + λ(Gφ)2. Thus the skew spectrum of (Hτ�Gφ)o is as given in the statement
of the theorem. The proof is thus complete.

As an application of Theorem 12, we now construct a new family of oriented graphs
with maximum skew energy.

Theorem 13. Let Hτ be an oriented ℓ-regular bipartite graph on p vertices with maximum
skew energy ES(Hτ ) = p

√
ℓ and Gφ be an oriented k-regular bipartite graph on n vertices

with maximum skew energy ES(Gφ) = n
√
k. Then the oriented graph (Hτ�Gφ)o of H�G

has the maximum skew energy ES((Hτ�Gφ)o) = np
√
ℓ+ k.

Proof. Since Hτ and Gφ have maximum skew energy, S(Hτ )S(Hτ )T = ℓIp and S(Gφ)

S(Gφ)T = kIn. Then the skew eigenvalues of Hτ are all ±i
√
ℓ and the skew eigenvalues of

Gφ are all ±i
√
k. By Theorem 12, all the skew eigenvalues of (Hτ�Gφ)o are of the form

±i
√
ℓ+ k and hence its skew energy is np

√
ℓ+ k, the maximum possible skew energy that

an (ℓ+ k)-regular graph on np vertices can have.

An immediate corollary of Theorem 13 is the following result of Cui and hou [6].

Corollary 14. Let Gφ be an oriented k-regular graph on n vertices with maximum skew
energy ES(Gφ) = n

√
k. Then the oriented graph (P2�G

φ)o of P2�G has maximum skew
energy ES((P2�G

φ)o) = 2n
√
k + 1.

Adiga et al. [1] showed that a 1-regular connected graph that has an orientation with
maximum skew energy is K2; while a 2-regular connected graph has an orientation with
maximum skew energy if and only if it is an oddly oriented cycle C4. Tian [14] proved
that there exists a k-regular graph with n = 2k vertices having an orientation ψ with
maximum skew energy. Cui and Hou [6] constructed a k-regular graph of order n = 2k−1

having an orientation ϕ with maximum skew energy. The following examples provide new
families of oriented graphs with fewer vertices that have maximum skew energy.

Example 15. Let G1 = K4,4. For each r > 2, set Gr = K4,4�Gr−1. As there is an
orientation of K4,4 with maximum skew energy 16 (see [5]), for each r > 1, there exists
an orientation of Gr that yields the maximum skew energy 23r

√
4r. This provides a family

of 4r-regular graphs of order n = 23r each having an orientation with skew energy 23r
√
4r,

r > 1.
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Example 16. Let G1 = K4. For each r > 2, set Gr = K4,4�Gr−1. Since there exist
orientations for K4 with maximum skew energy 4

√
3 (see [1, 7]), the skew energy of Gr,

r > 1, is 23r−1
√
4r − 1 and it is maximum. This provides a family of 4r−1-regular graphs

of order 23r−1 each having an orientation with maximum skew energy 23r−1
√
4r − 1, r > 1.

Example 17. A new family of 4r−2-regular oriented graphs of order 23r−1 with maximum
skew energy 23r−1

√
4r − 2, r > 1 is obtained when we set G1 = C4 in place of K4 in

Example 16.

Example 18. A new family of 4r−3-regular oriented graphs of order 23r−2 with maximum
skew energy 23r−2

√
4r − 3, r > 1 is obtained when we set G1 = P2 in place of K4 in

Example 16.
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