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Abstract

Using computer algorithms we establish that the Ramsey number R(3,K10− e)
is equal to 37, which solves the smallest open case for Ramsey numbers of this type.
We also obtain new upper bounds for the cases of R(3,Kk − e) for 11 6 k 6 16,
and show by construction a new lower bound 55 6 R(3,K13 − e).

The new upper bounds on R(3,Kk − e) are obtained by using the values and
lower bounds on e(3,Kl − e, n) for l 6 k, where e(3,Kk − e, n) is the minimum
number of edges in any triangle-free graph on n vertices without Kk − e in the
complement. We complete the computation of the exact values of e(3,Kk − e, n)
for all n with k 6 10 and for n 6 34 with k = 11, and establish many new lower
bounds on e(3,Kk − e, n) for higher values of k.

Using the maximum triangle-free graph generation method, we determine two
other previously unknown Ramsey numbers, namely R(3,K10 −K3 − e) = 31 and
R(3,K10 − P3 − e) = 31. For graphs G on 10 vertices, besides G = K10, this
leaves 6 open cases of the form R(3, G). The hardest among them appears to be
G = K10 − 2K2, for which we establish the bounds 31 6 R(3,K10 − 2K2) 6 33.
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1 Notation and Preliminaries

Notation, definitions and tools of this work are analogous to those in our recent study
of the classical two-color Ramsey numbers R(3, k) [10], where R(3, k) is defined as the
smallest m such that no m-vertex triangle-free graph with independence number less than
k exists. Using coloring terminology, such graphs can be seen as 2-colorings of the edges
of Km, which have no triangles in the first color and no monochromatic Kk in the second
color. In this paper we study mainly the case when Kk − e, the complete graph of order
k with one missing edge, is avoided in the second color.

Let Jk denote the graphKk−e, and hence the Ramsey numberR(K3, Jk) is the smallest
m such that every triangle-free graph on m vertices contains Jk in the complement. Sim-
ilarly as in [10], a graph F will be called a (G,H;n, e)-graph, if |V (F )| = n, |E(F )| = e,
F does not contain G, and F (i.e. the complement of F ) does not contain H. By
R(G,H;n, e) we denote the set of all (G,H;n, e)-graphs. We will often omit the pa-
rameter e, or both e and n, or give some range to either of these parameters, when
referring to special (G,H;n, e)-graphs or sets R(G,H;n, e). If G or H is the complete
graph Kk, we will often write k instead of G. For example, a (3, Jk;n)-graph F is a
(K3, Kk − e;n, e)-graph for e = |E(F )|.

In the remainder of this paper we will study only triangle-free graphs, and mainly
Kk or Jk will be avoided in the complement. Note that for any G ∈ R(3, Jk) we have
∆(G) < k, since all neighborhoods of vertices in G are independent sets. e(3, Jk, n)
(= e(K3, Jk, n)) is defined as the smallest number of edges in any (3, Jk;n)-graph. The
sum of the degrees of all neighbors of a vertex v in G will be denoted by ZG(v). Similarly
as in [17, 18, 23], one can easily generalize the tools used in analysis of the classical case
R(3, k) [10, 11, 12, 20, 21], as described in the sequel.

Let G be a (3, Jk;n, e)-graph. For any vertex v ∈ V (G), we will denote by Gv the
graph induced in G by the set V (G) \ (NG(v) ∪ {v}). Note that if d = degG(v), then Gv

is a (3, Jk−1;n− d− 1, e− ZG(v))-graph. This also implies that

γ(v) = γ(v, k,G) = e− ZG(v)− e(3, Jk−1, n− d− 1) > 0, (1)

where γ(v) is the so called deficiency of vertex v (as in [11]). Finally, the deficiency of the
graph G is defined as

γ(G) =
∑

v∈V (G)

γ(v, k,G) > 0. (2)

The condition that γ(G) > 0 is often sufficient to derive good lower bounds on e(3, Jk, n),
though a stronger condition that all summands γ(v, k,G) of (2) are non-negative some-
times implies better bounds. It is easy to compute γ(G) just from the degree sequence of
G [11, 12, 17]. If ni is the number of vertices of degree i in a (3, Jk;n, e)-graph G, then
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γ(G) = ne−
∑
i

ni

(
i2 + e(3, Jk−1, n− i− 1)

)
> 0, (3)

where n =
∑k−1

i=0 ni and 2e =
∑k−1

i=0 ini.

We obtain a number of improvements on lower bounds for e(3, Jk, n) and upper bounds
for R(3, Jk), summarized at the end of the next section. The main computational re-
sult of this paper solves the smallest open case for the Ramsey numbers of the type
R(3, Jk), namely we establish that R(3, J10) = 37 by improving the previous upper bound
R(3, J10) 6 38 [17] by one.

Section 3 describes how the algorithms of this work differed from those used by us
in the classical case [10], and how we determined two other previously unknown Ramsey
numbers, namely R(3, K10−K3−e) = 31 and R(3, K10−P3−e) = 31, using the maximum
triangle-free graph generation method. Section 4 presents progress on e(3, Jk, n) and
R(3, Jk) for k 6 11, and Section 5 for k > 12.

2 Summary of Prior and New Results

In 1995, Kim [13] obtained a breakthrough result using probabilistic methods by estab-
lishing the exact asymptotics for the classical case, namely R(3, k) = Θ(n2/ log n). The
asymptotic behaviour of R(3, Jk) is clearly the same, since Kk−1 ⊂ Jk ⊂ Kk. The mono-
tonicity of e(3, G, n) and Ramsey numbers R(3, G) implies that for all n and k we have

e(3, k, n) = e(K3, Kk, n) 6 e(K3, Jk, n) 6 e(K3, Kk−1, n), (4)

R(3, k − 1) = R(K3, Kk−1) 6 R(K3, Jk) 6 R(K3, Kk). (5)

For the small cases of R(3, Jk) much of the progress was obtained by deriving and
using good lower bounds on e(3, Jk, n). Explicit formulas for e(3, Jk+2, n) are known for
all n 6 13k/4− 1, and for n = 13k/4 when k = 0 mod 4, as follows:

Theorem 1 ([23, 20]) For all n, k > 1, for which e(3, Jk+2, n) is finite, we have

e(3, Jk+2, n) =


0 if n 6 k + 1,
n− k if k + 2 6 n 6 2k and k > 1,
3n− 5k if 2k < n 6 5k/2 and k > 3,
5n− 10k if 5k/2 < n 6 3k and k > 6,
6n− 13k if 3k < n 6 13k/4− 1 and k > 6.

(6)

Furthermore, e(3, Jk+2, n) = 6n − 13k for k = 4t and n = 13t, and the inequality
e(3, Jk+2, n) > 6n − 13k holds for all n and k > 6. All critical graphs have been charac-
terized whenever the equality in the theorem holds for n 6 3k.
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Our main focus in this direction is to obtain new exact values and bounds on e(3, Jk+2, n)
for n > 13k/4. This in turn will permit us to prove the new upper bounds on R(3, Jk),
for 10 6 k 6 16.

The general method we use is first to compute, if feasible, the exact value of e(3, Jk, n),
or to derive a lower bound using a combination of equalities (3) and (6), and computa-
tions. Better lower bounds on e(3, Jk−1,m),m < n, often lead to better lower bounds on
e(3, Jk, n). If we show that e(3, Jk, n) =∞, then we obtain an upper bound R(3, Jk) 6 n.

Full enumeration of the sets R(3, Jk) for k 6 6 was completed in [18], all such graphs
for k = 7 were uploaded by Fidytek at a website [8], and they were confirmed in this work.
Radziszowski computed the values of e(3, J7, n) and e(3, J8, n) in [18]. Some of the values
and bounds for k = 9 and k = 10, beyond those given by Theorem 1, were obtained by
McKay, Piwakowski and Radziszowski in [17]. In this paper we complete this census for
all cases of n with k 6 10, and give new lower bounds for some higher parameters.

A (3, Jk;n)-graph is called critical for a Ramsey number R(3, Jk) if n = R(3, Jk)− 1.
In [17], McKay et al. determined that there are at least 6 critical triangle Ramsey graphs
for J9. Using the maximum triangle-free method (see Section 3), we find one more such
graph and thus determine that there are exactly 7 critical graphs for R(3, J9). They
can be downloaded from the House of Graphs [1] by searching for the keywords “critical
ramsey graph for R(3,K9-e)”.

There is an obvious similarity between Theorem 1 and the results for e(3, k, n) ob-
tained in [22] as summarized in Theorem 2 in [10], though also note that there are some
differences. In particular, various cases are now restricted to k > c. The graphs showing
that these restrictions are necessary are listed in [23].

Our new results on R(3, Jk) are marked in bold in Table 1, which presents the values
and best known bounds on the Ramsey numbers R(3, Jk) and R(3, Kk) for k 6 16. The
new upper bounds for J10 and J11 improve on the bounds given in [17] by 1 and 2,
respectively. Other upper bounds in bold are recorded for the first time.

k R(3, Jk) R(3, Kk) k R(3, Jk) R(3, Kk)
3 5 6 10 37 40–42
4 7 9 11 42–45 47–50
5 11 14 12 47–53 52–59
6 17 18 13 55–62 59–68
7 21 23 14 59–71 66–77
8 25 28 15 69–80 73–87
9 31 36 16 73–91 82–98

Table 1: Ramsey numbers R(3, Jk) and R(3,Kk), for k 6 16, Jk = Kk − e.

The results R(3, 11) > 47 [6] and R(3, 16) > 82 [7] were recently obtained by Exoo.
Our recent work [10], after 25 years of no progress, improved the upper bound on R(3, 10)
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from 43 [21] to 42, similarly as all other upper bounds for R(3, k) in the last column of
Table 1. The references for all other bounds and values, and the previous bounds, are
listed in [19, 10].

In a related cumulative work, Brinkmann, Goedgebeur and Schlage-Puchta [3] com-
pleted the computation of all Ramsey numbers of the form R(3, G) for graphs G on up
to 10 vertices, except 10 cases. The exceptions included K10, J10, and 8 other graphs
close to K10. The complements of these 10 graphs are depicted in Figure 1. In fact,
the authors of [3] showed in their article that the Ramsey number for all of these re-
maining cases is at least 31. In addition to J10, two of these cases are solved in this
work, namely R(3, K10 − K3 − e) = R(3, K10 − P3 − e) = 31. Hence for graphs G on
10 vertices, besides G = K10, this leaves 6 other open cases of the form R(3, G). The
hardest among them appears to be G = K10 − 2K2, for which we establish the bounds
31 6 R(3, K10 − 2K2) 6 33.

b c

b c

Figure 1: The complements G of the 10 remaining graphs of order 10 which have R(3, G) > 31,
for which Brinkmann et al. [3] were unable to determine the Ramsey number. Graphs
which must have the same Ramsey number are grouped by b and c (see [3, 9]).

We note that in three cases of Table 1, namely for k = 12, 14 and 16, the best known
lower bounds for R(3, Jk) are the same as for R(3, Kk−1), and thus likely they can be
improved. Our new bounds on R(3, Jk) are summarized in the following theorem.

Theorem 2 (a) R(3, J10) = 37, (b) R(3, J11) 6 45, R(3, J12) 6 53, R(3, J13) 6 62,
R(3, J14) 6 71, R(3, J15) 6 80, R(3, J16) 6 91, and (c) R(3, J13) > 55.

Proof. The lower bound R(3, J10) > 37 was established in [17]. The remaining sections
describe our computational methods, and intermediate values and bounds on e(3, Jk, n).
These imply the upper bound for (a) in Section 4, and the bounds for (b) in Section 5.
Result (c) follows from a circular (3, J13; 54)-graph which we constructed. It has arc
distances {2, 3, 9, 16, 20, 24}. Note that all of these distances have a nontrivial gcd with
54, and thus this graph cannot be transformed to an isomorphic circulant by a modular
multiplier, so that 1 appears as one of the distances. 2
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Problem (Erdős-Sós, 1980 [4, 5]) Let ∆k = R(3, k)−R(3, k − 1). Is it true that

∆k
k→∞ ? ∆k/k

k→ 0 ?

Only easy bounds 3 6 ∆k 6 k are known. The results of this paper don’t give any
general improvement on the bounds for ∆k, however we note that better understanding
of the behavior of R(3, Jk) relative to R(3, Kk) may lead to such improvements since

∆k =
(
R(3, Kk)−R(3, Jk)

)
+
(
R(3, Jk)−R(3, Kk−1)

)
. (7)

The new results on R(3, G) for some of the open cases listed in Figure 1 are as follows.

Theorem 3 (a) 31 6 R(3, K10 − 2K2) 6 33,
(b) R(3, K10 −K3 − e) = R(3, K10 − P3 − e) = 31.

Proof. The lower bound of 31 for each of the three cases was established in [3].
The upper bound of 33 for (a) was obtained using essentially the same method as the

one used in the main case of this paper for J10 (see Section 3 for more details). This
improves over the trivial bound of 37 implied by Theorem 2(a). Table 14 in Appendix 1
contains information about data used to derive the new bound: the values of e(3, K9 −
2K2;n) and the counts of corresponding graphs. Using only degree sequence analysis and
the values of e(3, K9 − 2K2;n) one obtains the bound R(3, K10 − 2K2) 6 35. Further
computations using the neighbour gluing algorithm were required to obtain the upper
bound 33.

The computations applying the maximum triangle-free method from [3] were enhanced
as described in Section 3, and gave the upper bounds needed for (b). 2

Interestingly, contrary to our initial intuition, the case of K10 − 2K2 appears to be
significantly more difficult than J10. The computational effort which was required to prove
R(3, K10−2K2) 6 33 was similar to the computational effort to prove R(3, J10) 6 37, but
it looks like it is computationally infeasible to improve the upper bound for R(3, K10−2K2)
any further by our current algorithms. Our numerous attempts to improve the lower
bound failed, and consequently we conjecture that R(3, K10 − 2K2) = 31. If true, this
would imply that for each of the 6 remaining open cases of G on 10 vertices (except K10),
we have R(3, G) = 31.

Finally, we would like to note that we performed exhaustive searches for circulant
graphs on up to 61 vertices in an attempt to improve lower bounds for R(3, k), R(3, Jk),
and for R(3, G) for the remaining graphs of order 10. If any of these lower bounds can
still be improved, it must be by using graphs which are not circulant.

3 Algorithms

Similarly as in [10], we use two independent techniques to determine triangle Ramsey num-
bers: the maximum triangle-free method and the neighborhood gluing extension method.
These methods are outlined in the following subsections.
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Maximum Triangle-Free Method

Generating maximal triangle-free graphs

A maximal triangle-free graph (in short, an mtf graph) is a triangle-free graph such that
the insertion of any new edge forms a triangle. It is easy to see that there exists a
(3, Jk;n)-graph if and only if there is an mtf (3, Jk;n)-graph. Brinkmann, Goedgebeur
and Schlage-Puchta [3] developed an algorithm to exhaustively generate mtf graphs and
mtf Ramsey graphs efficiently. They implemented their algorithm in a program called
triangleramsey [2]. We refer the reader to [3, 9] for more details about the algorithm.
Using this program they determined the triangle Ramsey number R(3, G) of nearly all
graphs G of order 10. The complements of the 10 graphs for which they were unable to
determine the Ramsey number are shown in Figure 1 in Section 2.

It is computationally infeasible to use triangleramsey do determine all mtf (3, J10)-
graphs. However, we executed triangleramsey on a large computer cluster and were able
to determine all mtf Ramsey graphs for K10−P3−e up to 31 vertices (where Pk is the path
with k vertices). This is one of the remaining graphs whose Ramsey number could not be
determined by Brinkmann et al. The new computations took approximately 20 CPU years
and the result is that there are 4 mtf Ramsey graphs with 30 vertices for K10−P3−e and
no mtf Ramsey graphs with 31 vertices. Thus, this proves that R(3, K10 − P3 − e) = 31.
By monotonicity of Ramsey numbers we have R(3, K10 −K3 − e) 6 R(3, K10 − P3 − e),
and thus the lower bound of 31 for both cases [3, 9] implies that R(3, K10 − K3 − e) =
R(3, K10 − P3 − e) = 31.

We also performed sample runs with triangleramsey for the other remaining graphs,
but it looks like it will be computationally infeasible to complete this task by this method.
E.g., we estimate that approximately 144 CPU years would be required to determine
R(3, K10 − P4) by running triangleramsey, and sample tests for R(3, K10 −K4) indicate
that this case will take much longer than 200 CPU years.

Generating complete sets of triangle Ramsey graphs

In order to determine e(3, Jk, n) also non-maximal triangle-free Ramsey graphs are re-
quired. Given all mtf (3, Jk;n)-graphs, we can obtain all (3, Jk;n)-graphs by recursively
removing edges in all possible ways and testing if the obtained graphs are still (3, Jk;n)-
graphs. We used nauty [15, 16] to make sure no isomorphic copies are output. We
generated, amongst others, the full sets R(3, J9; 28),R(3, J9; 29) and R(3, J9; 30) (see Ap-
pendix 1 for detailed results) using this method.

This mtf method is too slow for generating all (3, J10;n)-graphs for n which were
needed in this work. Nevertheless, we used this method to verify the correctness of our
other programs for smaller parameters. The results agreed in all cases in which more than
one method was used (see Appendix 2 for more details).
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Neighborhood Gluing Extension Method

The main method we used to improve upper bounds for R(3, Jk) is the neighborhood
gluing extension method. In this method our extension algorithm takes a (3, Jk;m)-graph
H as input and produces all (3, Jk+1;n, e)-graphs G, often with some specific restrictions
on n and e, such that for some vertex v ∈ V (G) graph H is isomorphic to Gv. The
program also gets an expansion degree d = n − m − 1 as input. Thus it connects, or
glues, the d neighbors of a vertex v to H in all possible ways. Note that each neighbor of
v is glued to an independent set, otherwise the extended graph would contain triangles.
Similarly as in [10], various optimizations and bounding criteria are used to speed up the
algorithm.

For example, suppose that we are aiming to construct (3, Jk+1)-graphs. Note that the
complement of a graph G contains Jk if and only if G contains a spanning subgraph of Jk
as an induced subgraph. If two neighbors u1 and u2 of v have already been connected to
independent sets S1 and S2 in H and H[V (H) \ (S1 ∪ S2)] contains a spanning subgraph
of Jk−1 as induced subgraph, we can abort the recursion, since this cannot yield any
(3, Jk+1)-graphs.

There is, however, also one optimization which is specific to Jk. Namely, we do not
have to connect the neighbors of v to independent sets S for which H[V (H)\S] induces an
independent set of order k − 1, since otherwise this graph would contain Jk+1 as induced
subgraph (an independent set of order k − 1 together with the disjoint edge {u, v}).

For more details about the general gluing algorithm, we refer the reader to [10, 9].
Most values and new bounds for e(3, Jk, n), which are listed in Section 4, were obtained

by the gluing extension method. In Appendix 2 we describe how we tested the correctness
of our implementation.

The strategy we used to determine if the parameters of the input graphs to which
our extender program was applied are sufficient, i.e. that it is guaranteed that all
(3, Jk+1;n, e)-graphs are generated, is the same as in [10] and is outlined in the next
subsection.

Degree Sequence Feasibility

This method is based on the same principles as in the classical case [10, 21, 14]. Suppose
we know the values or lower bounds on e(3, Jk,m) for some fixed k and we wish to know
all feasible degree sequences of (3, Jk+1;n, e)-graphs. We construct the system of integer
constraints consisting of n =

∑k
i=0 ni, 2e =

∑k
i=0 ini, and the inequality (3). If it has no

solutions then we can conclude that no such graphs exist. Otherwise, we obtain solutions
for ni’s which include all potential degree sequences.
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4 Progress on Computing Small e(3, Jk, n)

vertices k
n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 2
4 4 2
5 ∞ 4 2
6 6 3 2
7 ∞ 6 3 2
8 8 4 3 2
9 12 7 4 3 2
10 15 10 5 4 3 2
11 ∞ 14 8 5 4 3 2
12 18 11 6 5 4 3 2
13 24 15 9 6 5 4 3 2
14 30 19 12 7 6 5 4 3 2
15 35 24 15 10 7 6 5 4 3 2
16 40 30 20 13 8 7 6 5 4 3 2
17 ∞ 37 25 16 11 8 7 6 5 4 3
18 43 30 20 14 9 8 7 6 5 4
19 54 37 25 17 12 9 8 7 6 5
20 60 44 30 20 15 10 9 8 7 6
21 ∞ 51 35 25 18 13 10 9 8 7
22 59 42 30 21 16 11 10 9 8
23 70 49 35 25 19 14 11 10 9
24 80 56 40 30 22 17 12 11 10
25 ∞ 65 46 35 25 20 15 12 11
26 73 52 40 30 23 18 13 12
27 81 61 45 35 26 21 16 13
28 95 68 51 40 30 24 19 14
29 106 77 58 45 35 27 22 17
30 117 86 66 50 40 30 25 20
31 ∞ 95 73 56 45 35 28 23

Table 2: Exact values of e(3, Jk, n), for 3 6 k 6 16, 3 6 n 6 31.

Most of the values of e(3, Jk, n) collected in Table 2 are implied by Theorem 1, others were
obtained in [18, 17, 23], and those in bold are the result of this work. The bottom-left
blank part covers cases where the graphs with corresponding parameters do not exist,
while all entries in the top-right blank area indicate 0 edges. By Theorem 1 and [22], for
fixed k, e(3, Jk, n) is equal to e(3, Kk−1, n) for most small n, and from the data presented
in the following it looks like that this equality persists further as n grows. Only sporadic
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counterexamples to such behavior for n not much larger than 13k/4 are known: seven
such cases are listed in [23] for k 6 7, and another one can be noted in Table 4 for
k = 11, n = 32. In other words, the second inequality of (4) seems to be much closer to
equality than the first, and the opposite seems to hold in (5). If true, we can expect that
the first part of ∆k in (7) is significantly larger than the second part.

Exact values of e(3, J9, n)

The values of e(3, J9,6 21) are determined by Theorem 1. The values of e(3, J9, n) for
22 6 n 6 30 were obtained by computations, mostly by the gluing extender algorithm
which is outlined in Section 3, and they are presented in Table 2. These values improve
over previously reported lower bounds [23, 17]. We note that e(3, J9, n) = e(3, K8, n) for
all 9 6 n 6 26.

Exact values of e(3, J10, n)

The values of e(3, J10,6 26) are determined by Theorem 1. The values for 27 6 n 6 37
were obtained by the gluing extender algorithm of Section 3, and they are presented in
Table 3. These values improve over previously reported lower bounds [23, 17]. We note
that e(3, J10, n) = e(3, K9, n) for all 10 6 n 6 35 (see [10]).

n e(3, J10, n) previous bound/comments
26 52 Theorem 1
27 61 58
28 68 65
29 77 72
30 86 81
31 95 90
32 104 99
33 118 110
34 129 121
35 140 133
36 156 146, maximum 162
37 ∞ hence R(3, J10) 6 37, Theorem 2(a)

Table 3: Values of e(3, J10, n), for n > 26.

Values and lower bounds on e(3, J11, n)

Table 4 presents what we know about e(3, J11, n) beyond Theorem 1, which determines
the values of e(3, J11,6 28). The values and bounds for 29 6 n 6 41 were obtained by
the gluing extender algorithm outlined in Section 3. The lower bounds on e(3, J11,> 42)
are based on solving integer constraints (2) and (3), using the exact values of e(3, J10, n)
listed in Table 3. We note that e(3, J11, n) = e(3, K10, n) for all 11 6 n 6 34, except
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for n = 32 (see [10]). Four seemingly exceptional (3, J11; 32, 80)-graphs can be obtained
from the House of Graphs [1] by searching for the keywords “exceptional minimal ramsey
graph”. One of them is the Wells graph, also called the Armanios-Wells graph. It is a
double cover of the complement of the Clebsch graph. One of the other special graphs is
formed by two disjoint copies of the Clebsch graph itself. This works, since the Clebsch
graph is the unique (3, J6; 16, 40)-graph [18] (denoted G4 in the latter paper).

n e(3, J11, n) > comments
28 51 exact, Theorem 1
29 58 exact
30 66 exact
31 73 exact
32 80 exact, e(3, 10, 32) = 81
33 90 exact
34 99 exact
35 107 extender
36 117 extender
37 128 extender
38 139 extender
39 151 extender
40 161 extender
41 172 extender
42 185 e(3, 10, 42) =∞
43 201
44 217 maximum 220
45 ∞ hence R(3, J11) 6 45, Theorem 2(b)

Table 4: Values and lower bounds on e(3, J11, n), for n > 28.

5 Progress on e(3, Jk, n) and R(3, Jk) for Higher k

The results in Tables 3 and 4 required computations of our gluing extender algorithm.
We did not perform any such computations in an attempt to improve the lower bounds
on e(3, Jk, n) for k > 12, because such computations would be hardly feasible. The
results presented in this section depend only on the degree sequence analysis described in
Section 3, using constraints (2), (3) and the results for k 6 11 from the previous section.

Lower bounds on e(3, J12, n)
Beyond the range of equality in Theorem 1 (for n > 32), the lower bounds we obtained
for e(3, J12, n) are the same as for e(3, K11, n), for all 33 6 n 6 49, except for n = 38 (see
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[10]), and they are presented in Table 5. They were obtained by using constraints (2) and
(3) as described in Section 3. In one case, for n = 39, we can improve the lower bound
by one as in the following lemma.

Lemma 4 e(3, J12, 39) > 117.

Proof. Suppose that G is a (3, J12; 39, e)-graph with e 6 116. Using (2) and (3) with the
bounds of Table 4 gives no solutions for e < 116 and two feasible degree sequences ni for
e = 116: n4 = 1, n6 = 38 and n5 = 2, n6 = 37. If deg(v) = 4 then ZG(v) = 24, and if
deg(v) = 5 then ZG(v) > 29. In both cases this contradicts inequality (1), and thus we
have e(3, J12, 39) > 117. 2

n e(3, J12, n) > comments
31 56 exact, Theorem 1
32 62 Theorem 1
33 68 Theorem 1
34 75
35 83
36 92
37 100
38 108 e(3, 11, 32) > 109
39 117 improvement by Lemma 4
40 128
41 138
42 149
43 159
44 170
45 182
46 195
47 209
48 222 unique solution n7 = 36, n8 = 12
49 237
50 252 e(3, 11, 50) =∞
51 266
52 280 maximum 286
53 ∞ hence R(3, J12) 6 53, Theorem 2(b)

Table 5: Lower bounds on e(3, J12, n), for n > 31.
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Lower bounds on e(3, J13, n)
Beyond the range of equality in Theorem 1 (for n > 35), the lower bounds we obtained
for e(3, J13, n) are the same as for e(3, K12, n), for all 35 6 n 6 58, except for n = 45, 46
(see [10]), and they are presented in Table 6. They were obtained by using constraints
(2) and (3) as described in Section 3.

n e(3, J13, n) > comments
34 61 exact, Theorem 1
35 67 Theorem 1
36 73 Theorem 1
37 79 Theorem 1
38 86
39 93
40 100 unique solution n5 = 40
41 109 unique solution n5 = 28, n6 = 13
42 119
43 128
44 138
45 147 e(3, 12, 45) > 148
46 157 e(3, 12, 46) > 158
47 167
48 179
49 191
50 203
51 216
52 229
53 241
54 255
55 269
56 283 unique solution n10 = 50, n11 = 6
57 299
58 316
59 333 e(3, 12, 59) =∞
60 350 maximum 360
61 366 must be regular n12 = 61
62 ∞ hence R(3, J13) 6 62, Theorem 2(b)

Table 6: Lower bounds on e(3, J13, n), for n > 34.
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Lower bounds on e(3, J14, n)
Beyond the range of equality in Theorem 1 (for n > 40), the lower bounds we obtained
for e(3, J14, n) are the same as for e(3, K13, n), for all 41 6 n 6 67, except for n = 54, 55
(see [10]), and they are presented in Table 7. They were obtained by using constraints
(2) and (3) as described in Section 3.

n e(3, J14, n) > comments
39 78 exact, Theorem 1
40 84 Theorem 1
41 91
42 97
43 104
44 112
45 120
46 128
47 136
48 146
49 157
50 167
51 177
52 189
53 200
54 210 e(3, 13, 54) > 212
55 222 e(3, 13, 55) > 223
56 234
57 247
58 260
59 275
60 289
61 303
62 319
63 334
64 350
65 365
66 381
67 398
68 416 e(3, 13, 68) =∞
69 434
70 451 maximum 455
71 ∞ hence R(3, J14) 6 71, Theorem 2(b)

Table 7: Lower bounds on e(3, J14, n), for n > 39.
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Lower bounds on e(3, J15, n)
The lower bounds we obtained for e(3, J15, n) are the same as for e(3, K14, n) for all
71 6 n 6 76 (see [10]), and they are presented in Table 8. They were obtained by using
constraints (2) and (3) as described in Section 3.

n e(3, J15, n) > comments
71 398
72 415
73 432
74 449 451 needed for R(3, J16) 6 90
75 468
76 486 473 sufficient for R(3, J16) 6 91
77 505 e(3, 14, 77) =∞
78 524
79 543 maximum 553
80 ∞ hence R(3, J15) 6 80, Theorem 2(b)

Table 8: Lower bounds on e(3, J15, n), for n > 71.

A 15-regular (3, J16; 90, 675)-graph G is feasible when for every vertex v its Gv is a
(3, J15; 74, 450)-graph. Constraints (2) and (3) have no feasible solution for (3, J16; 91)-
graphs, and thus R(3, J16) 6 91.
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Appendix 1: Graph Counts

Tables 9–13 below contain all known exact counts of (3, Jk;n, e)-graphs for specified n,
for k = 7, 8, 9, 10 and 11, respectively. All graph counts were obtained by the algorithms
described in Section 3. Empty entries indicate 0. In all cases, the maximum number of
edges is bounded by ∆(G)n/2 6 (k − 1)n/2. All (3, Jk;n, e(3, Jk, n))-graphs, k 6 10,
which were constructed by our programs can be obtained from the House of Graphs [1]
by searching for the keywords “minimal ramsey graph * Kk-e”.

All (3, J7)-graphs were previously determined by Fidytek [8]. We include the counts of
(3, J7)-graphs in Table 9 for completeness and more uniform presentation, since Fidytek
provided statistics for J7-free graphs whose complement does not contain a K3, while we
list triangle-free graphs whose complement does not contain a J7. The latter is similar to
the tables with data about (3, Jk)-graphs for k 6 6 in [18].

Table 14 contains all known exact counts of (3, K9 − 2K2;n, e)-graphs. These graph
counts were also obtained by the algorithms described in Section 3. All edge minimal
(3, K9−2K2;n, e(3, K9−2K2, n))-graphs which were constructed by our programs can be
obtained from the House of Graphs [1] by searching for the keywords “minimal ramsey
graph * K9-2K2”.
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edges number of vertices n
e 8 9 10 11 12 13 14 15 16 17 18 19 20
3 1
4 6 1
5 14 2 1
6 31 14 1
7 51 41 5
8 69 108 27 1
9 76 195 102 3
10 66 291 327 29
11 41 329 771 131 1
12 22 302 1355 643 8
13 9 204 1778 2158 47
14 3 117 1808 5239 398
15 2 53 1439 8961 2434 1
16 1 25 918 11450 9872 16
17 9 492 11072 26586 241
18 4 231 8505 49752 2665
19 1 99 5260 67226 16313 1
20 1 44 2794 68351 60891 13
21 19 1294 54124 145452 300
22 7 578 34707 238525 3997
23 3 233 18757 280341 28889
24 2 101 8976 247162 117123 2
25 1 41 3942 169011 291706 14
26 18 1669 93503 477533 305
27 6 693 43149 543408 4521
28 3 289 17392 451296 32828
29 1 115 6217 286635 121140
30 1 52 2073 146341 256923 3
31 21 626 63112 338238 22
32 10 190 24207 296128 361
33 4 50 8505 181637 3251
34 2 14 2841 83169 14968
35 1 3 884 30257 35296
36 1 1 275 9648 45855
37 75 2865 34944 1
38 22 883 16583 54
39 5 273 5269 349
40 2 94 1334 1070
41 32 350 1501
42 11 134 1174
43 4 50 522 2
44 1 25 147 8
45 1 8 26 38
46 4 6 61
47 1 1 58
48 1 1 36
49 1 17
50 4
51 1

52-53
54 1

55-59
60 1

|R(3, J7;n)| 392 1697 9430 58522 348038 1323836 2447170 1358974 158459 4853 225 1 1

Table 9: Number of (3, J7;n, e)-graphs, for n > 8.
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edges number of vertices n
e 15 16 17 18 19 20 21 22 23 24
15 1
16 2
17 18
18 188
19 ?
20 ? 2
21 ? 17
22 ? 358
23 ? 10659
24 ? ?
25 ? ? 2
26 ? ? 44
27 ? ? 2576
28 ? ? 117474
29 ? ? ?
30 ? ? ? 2
31 ? ? ? 22
32 ? ? ? 1175
33 ? ? ? 79025

34-36 ? ? ? ?
37 ? ? ? ? 20
38 ? ? ? ? 2031
39 ? ? ? ? 130297
40 ? ? ? ? 3939009

41-43 ? ? ? ? ?
44 ? ? ? ? ? 169
45 ? ? ? ? ? 8231
46 ? ? ? ? ? 310400
47 ? ? ? ? ? 5839714

48-50 ? ? ? ? ? ?
51 ? ? ? ? ? ? 7
52 ? ? ? ? ? ? 375
53 ? ? ? ? ? 14141
54 ? ? ? ? ? 255635
55 ? ? ? ? ? 2262269

56-58 ? ? ? ? ? ?
59 ? ? ? ? ? 2
60 ? ? ? ? 13
61 ? ? ? ? 162
62 ? ? ? ? 1630
63 ? ? ? ? 9101
64 ? ? ? 26611
65 ? ? ? 42700
66 ? ? ? 41455
67 ? ? 26459
68 ? ? 11716
69 ? ? 3657
70 ? ? 957 1
71 ? 208 2
72 ? 42 8
73 ? 10 6
74 2 4
75 1
76 1
77 13

78-79
80 1

81-83 0
84 8

|R(3, J8;n)| ? ? ? ? ? ? ? 164725 36 9

Table 10: Number of (3, J8;n, e)-graphs, for n > 15.
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edges number of vertices n
e 20 21 22 23 24 25 26 27 28 29 30
30 5
31 64
32 2073

33-34 ?
35 ? 1
36 ? 20
37 ? 951
38 ? 39657

39-41 ? ?
42 ? ? 21
43 ? ? 1592
44 ? ? 86833
45 ? ? 3963053

46-48 ? ? ?
49 ? ? ? 103
50 ? ? ? 9102
51 ? ? ? 514099

52-55 ? ? ? ?
56 ? ? ? ? 54
57 ? ? ? ? 3639
58 ? ? ? ? 173608

59-64 ? ? ? ? ?
65 ? ? ? ? ? 547
66 ? ? ? ? ? 48964
67 ? ? ? ? ? 2538589

68-72 ? ? ? ? ? ?
73 ? ? ? ? ? ? 62
74 ? ? ? ? ? ? 1857
75 ? ? ? ? ? ? 36799
76 ? ? ? ? ? ? 755052

77-80 ? ? ? ? ? ? ?
81 ? ? ? ? ? ? 4
82 ? ? ? ? ? ? 24
83 ? ? ? ? ? ? 197
84 ? ? ? ? ? ? 1126
85 ? ? ? ? ? 6206
86 ? ? ? ? ? 42468
87 ? ? ? ? ? 384398
88 ? ? ? ? ? 2843005

89-94 ? ? ? ? ?
95 ? ? ? ? 1
96 ? ? ? ? 14
97 ? ? ? 107
98 ? ? ? 1062
99 ? ? ? 5182
100 ? ? ? 16588
101 ? ? 34077
102 ? ? 50241
103 ? ? 51686
104 ? ? 39702
105 ? 21621
106 ? 9379 1
107 ? 2864 0
108 ? 843 0
109 158 2
110 49 6
111 7 9
112 91 6

113-115 0
116 1
117 1
118 1
119 1
120 4

|R(3, J9;n)| ? ? ? ? ? ? ? ? 233672 25 7

Table 11: Number of (3, J9;n, e)-graphs, for n > 20.
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edges number of vertices n
e 24 25 26 27 28 29 30 31 32 33 34 35 36
40 2
41 32
42 2089

43-45 ?
46 ? 1
47 ? 39
48 ? 4113

49-51 ? ?
52 ? ? 1
53 ? ? 1
54 ? ? 444
55 ? ? 58550

56-60 ? ? ?
61 ? ? ? 700
62 ? ? ? 95185
63 ? ? ? 6531339

64-67 ? ? ? ?
68 ? ? ? ? 126
69 ? ? ? ? 17223
70 ? ? ? ? 1204171

71-76 ? ? ? ? ?
77 ? ? ? ? ? 1342
78 ? ? ? ? ? 156982

79-85 ? ? ? ? ? ?
86 ? ? ? ? ? ? 1800
87 ? ? ? ? ? ? 147407

88-94 ? ? ? ? ? ? ?
95 ? ? ? ? ? ? ? 560
96 ? ? ? ? ? ? ? 35154

97-103 ? ? ? ? ? ? ? ?
104 ? ? ? ? ? ? ? ? 39
105 ? ? ? ? ? ? ? ? 952

106-117 ? ? ? ? ? ? ? ? ?
118 ? ? ? ? ? ? > 5
119 ? ? ? ? ? ? > 86
120 ? ? ? ? ? ? > 1411

121-128 ? ? ? ? ? ? ?
129 ? ? ? ? ? > 1
130 ? ? ? ? ? > 4
131 ? ? ? ? > 7

132-139 ? ? ? ? ?
140 ? ? ? 1
141 ? ? ? 0

142-146 ? ? ? ?
147 ? ? > 10
148 ? ? > 28
149 ? > 39
150 ? > 27
151 ? > 19
152 ? > 11
153 ? > 8

154-155 ?
156 ? 5
157 ? > 6
158 > 10
159 > 6
160 > 5
161 > 2
162 > 6

Table 12: Number of (3, J10;n, e)-graphs, for n > 24.
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edges number of vertices n
e 29 30 31 32 33 34
58 5
59 1364

60-65 ?
66 ? 5084

67-72 ? ?
73 ? ? 2657

74-79 ? ? ?
80 ? ? ? 4
81 ? ? ? 6601

82-89 ? ? ? ?
90 ? ? ? ? 57099

91-98 ? ? ? ? ?
99 ? ? ? ? ? > 1

> 100 ? ? ? ? ? ?

Table 13: Number of (3, J11;n, e)-graphs, for 29 6 n 6 34.
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edges number of vertices n
e 21 22 23 24 25 26
45 1
46 2
47 61
48 3743
49 408410

50-53 ?
54 ? 2
55 ? 299
56 ? 20314
57 ? 985296
58 ? 23618486

59-60 ? ?
63 ? ? 9
64 ? ? 528
65 ? ? 24860
66 ? ? 566836
67 ? ? 5830123

68-72 ? ? ?
72 ? ? ? 104
73 ? ? ? 1068
74 ? ? ? 7913
75 ? ? ? 31134
76 ? ? ? 84634
77 ? ? ? 160815
78 ? ? ? 215365
79 ? ? ? 207752
80 ? ? ? 172746 18
81 ? ? ? 142474 97
82 ? ? ? 121641 333
83 ? ? ? 107869 516
84 ? ? ? 108001 416
85 ? ? 110938 158
86 ? ? 101090 30
87 ? ? 72665 5
88 ? ? 40935 1
89 ? 17722 0
90 ? 6262 0 3
91 ? 1779 0 2
92 ? 522 5 1
93 129 16 0
94 46 35 0
95 8 34 0
96 5 19 0
97 6 0
98 2 0
99 1 0
100 1 0

101-103 0
104 2

|R(3,K9 − 2K2;n)| ? ? ? 1713617 1693 8

Table 14: Number of (3,K9 − 2K2;n, e)-graphs, for n > 21.
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Appendix 2: Testing correctness

Since most results obtained in this paper rely on computations, it is very important that
the correctness of our programs has been thoroughly verified. Below we describe how we
tested the correctness of our programs.

Correctness

• For every (3, Jk)-graph which was output by our programs, we verified that it does
not contain a spanning subgraph of Jk as induced subgraph by using an independent
program.

• Every Ramsey graph for Kk is also a Ramsey graph for Jk+1. Therefore, we verified
that the complete lists of (3, Jk+1;n, e)-graphs which were generated by our programs
include all known (3, k;n, e)-graphs which we had found in [10].

• For every (3, Jk;n, e(3, Jk, n))-graph which was generated by our programs, we ver-
ified that dropping any edge results in a graph which contains a spanning subgraph
of Jk as induced subgraph.

• For various (3, Jk;n,6 e)-graphs we added up to f edges in all possible ways to
obtain (3, Jk;n,6 e + f)-graphs. For the cases where we already had the complete
set of (3, Jk;n,6 e+f)-graphs, we verified that no new (3, Jk;n,6 e+f)-graphs were
obtained. We used this, amongst other cases, to verify that no new (3, J10; 26,6 55),
(3, J10; 28,6 70), (3, J10; 30,6 87) or (3, J11; 32,6 81)-graphs were obtained.

• For various (3, Jk;n,6 e+ f)-graphs we dropped one edge in all possible ways and
verified that no new (3, Jk;n,6 e + f − 1)-graphs were obtained. We used this
technique, amongst other cases, to verify that no new (3, J10; 26,6 54), (3, J10; 28,6
69), (3, J10; 30, 86) or (3, J11; 32, 80)-graphs were obtained.

• For various sets of (3, Jk+1;n,6 e)-graphs we took each member G and constructed
from it all Gv’s. We then verified that this did not yield any new (3, Jk;n−deg(v)−
1,6 e − Z(v))-graphs for the cases where we have all such graphs. We performed
this test, amongst other cases, on the sets of (3, J9; 28,6 70)- and (3, J10; 32,6 81)-
graphs.

Various sets of graphs can be obtained by both the maximum triangle-free and neigh-
borhood gluing extension method. Therefore, as a test for the correctness of our imple-
mentations, we applied both methods for the generation of several sets of graphs. We
also compared our results with known results. In each case, the results were in complete
agreement. More details are given below:

• The sets of (3, J8; 19,6 38), (3, J8; 20,6 46), (3, J8; 21,6 54) and (3, J9; 27,6 86)-
graphs were obtained by both the maximum triangle-free method and the neighbor-
hood gluing extension method. The results were in complete agreement.
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• The counts of all (3, J7)-graphs are confirmed by [8].

• The counts of all (3, J8; 19, 37), (3, J8; 20, 44), (3, J8; 21,6 52), (3, J8; 22,6 60),
(3, J8; 23,6 71) and (3, J8; 24,6 81)-graphs are confirmed by [18].

• The counts of (3, J8; 22,6 65), (3, J8; 23) and (3, J8; 24)-graphs are confirmed by [17].

Since our results are in complete agreement with previous results and since all of our
consistency tests passed, we believe that this is strong evidence for the correctness of our
implementations and results.

Computation Time

We implemented the extension algorithms described in Section 3 in C. Most compu-
tations were performed on a cluster with Intel Xeon L5520 CPU’s at 2.27 GHz, on which
a computational effort of one CPU year can be usually completed in about 8 elapsed
hours. The overall computational effort which was required to improve the upper bounds
of R(3, Jk) is estimated to be about 40 CPU years. This includes the time used by a
variety of programs. The most CPU-intensive task was the computation to determine all
(3, J9;> 28)-graphs with the maximum triangle-free method. This took approximately
13 CPU years. Also the computations to determine new lower bounds on e(3, J11, n) took
relatively long. For example, it took nearly 5 CPU years using the neighborhood gluing
method to prove that e(3, J11, 39) > 151.

The CPU time needed to complete the computations of Section 5 was negligible.

the electronic journal of combinatorics 20(4) (2013), #P19 25


