Repeated columns and an old chestnut

R.P. Anstee*
Mathematics Department
The University of British Columbia
Vancouver, B.C. Canada V6T 1Z2
anstee@math.ubc.ca

Linyuan Lu^{\dagger}
Mathematics Department
The University of South Carolina
Columbia, SC, USA
lu@math.sc.edu

Submitted: May 3, 2013; Accepted: Oct 7, 2013; Published: Oct 14, 2013 Mathematics Subject Classifications: 05D05

Abstract

Let $t \geqslant 1$ be a given integer. Let \mathcal{F} be a family of subsets of $[m]=\{1,2, \ldots, m\}$. Assume that for every pair of disjoint sets $S, T \subset[m]$ with $|S|=|T|=k$, there do not exist $2 t$ sets in \mathcal{F} where t subsets of \mathcal{F} contain S and are disjoint from T and t subsets of \mathcal{F} contain T and are disjoint from S. We show that $|\mathcal{F}|$ is $O\left(m^{k}\right)$.

Our main new ingredient is allowing, during the inductive proof, multisets of subsets of $[m]$ where the multiplicity of a given set is bounded by $t-1$. We use a strong stability result of Anstee and Keevash. This is further evidence for a conjecture of Anstee and Sali. These problems can be stated in the language of matrices. Let $t \cdot M$ denote t copies of the matrix M concatenated together. We have established the conjecture for those configurations $t \cdot F$ for any $k \times 2$ $(0,1)$-matrix F.

Keywords: extremal set theory, extremal hypergraphs, (0,1)-matrices, multiset, forbidden configurations, trace, subhypergraph.

1 Introduction

We will be considering a problem in extremal hypergraphs that can be phrased as how many edges a hypergraph on m vertices can have when there is a forbidden subhypergraph. There are a variety of ways to define this problem (we could, but do not, restrict to (simple) k-uniform hypergraphs). We can encode a hypergraph on m vertices as an m-rowed (0,1)-matrix where the i th column is the incidence vector of the i th hyperedge.

[^0]A hypergraph is simple if there are no repeated edges. We define a matrix to be simple if it is a $(0,1)$-matrix with no repeated columns. We will use the language of matrices in this paper.

Let M be an m-rowed (0,1)-matrix. Some notation about repeated columns is needed. For an $m \times 1(0,1)$-column α, we define $\mu(\alpha, M)$ as the multiplicity of column α in a matrix M. We consider matrices of bounded column multiplicity. We define a matrix A to be t-simple if it is a (0,1)-matrix and every column α of A has $\mu(\alpha, A) \leqslant t$. Simple matrices are 1-simple. For a given matrix M, let $\operatorname{supp}(M)$ denote the maximal simple m-rowed submatrix of M, so that if $\mu(\alpha, M) \geqslant 1$ then $\mu(\alpha, \operatorname{supp}(M))=1$. The matrices below are a 3 -simple matrix M and its support $\operatorname{supp}(M)$.

$$
M=\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1
\end{array}\right], \quad \operatorname{supp}(M)=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

For two $(0,1)$-matrices F and A, we say that F is a configuration in A, and write $F \prec A$ if there is a row and column permutation of F which is a submatrix of A. Let \mathcal{F} denote a finite set of $(0,1)$-matrices. Let $\operatorname{Avoid}(m, \mathcal{F}, t)$ denote all m-rowed t-simple matrices A for which $F \nprec A$ for all $F \in \mathcal{F}$. We are most interested in cases with $|\mathcal{F}|=1[5]$. We do not require any $F \in \mathcal{F}$ to be simple which is quite different from usual forbidden subhypergraph problems. Let $\|A\|$ denote the number of columns of A. Our extremal function of interest is

$$
\operatorname{forb}(m, \mathcal{F})=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, \mathcal{F}, 1)\}
$$

We find it helpful to also define

$$
\operatorname{forb}(m, \mathcal{F}, t)=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, \mathcal{F}, t)\}
$$

If $A \in \operatorname{Avoid}(m, \mathcal{F}, t)$ then $\operatorname{supp}(A) \in \operatorname{Avoid}(m, \mathcal{F}, 1)$ and $\|A\| \leqslant t \cdot\|\operatorname{supp}(A)\|$. We obtain

$$
\begin{equation*}
\operatorname{forb}(m, \mathcal{F}) \leqslant \operatorname{forb}(m, \mathcal{F}, t) \leqslant t \cdot \operatorname{forb}(m, \mathcal{F}) \tag{1}
\end{equation*}
$$

so that the asymptotic growth of $\operatorname{forb}(m, \mathcal{F})$ is the same as that of forb (m, \mathcal{F}, t) for fixed t.

We have an important conjecture about forb (m, F). We use the notation $[M \mid N]$ to denote the matrix obtained from concatenating the two matrices M and N. We use the notation $k \cdot M$ to denote the matrix $[M|M| \cdots \mid M]$ consisting of k copies of M concatenated together. Let I_{k} denote the $k \times k$ identity matrix and let I_{k}^{c} denote the (0,1)-complement of I_{k}. Let T_{k} denote the $k \times k$ triangular (0,1)-matrix with the (i, j) entry being 1 if and only if $i \leqslant j$. For an $m_{1} \times n_{1}$ matrix X and an $m_{2} \times n_{2}$ matrix Y, we define the 2 -fold product $X \times Y$ as the $\left(m_{1}+m_{2}\right) \times n_{1} n_{2}$ matrix where each column consisting of a column of X placed on a column of Y and this is done in all possible ways. This extends to p-fold products.

Definition 1. Let $X(F)$ be the smallest p so that $F \prec A_{1} \times A_{2} \times \cdots \times A_{p}$ for every choice of A_{i} as either $I_{m / p}, I_{m / p}^{c}$ or $T_{m / p}$ for sufficiently large m.

Alternatively, assuming $F \nprec I$ or $F \nprec I^{c}$ or $F \nprec T$, then $X(F)-1$ is the largest choice of p so that $F \nprec A_{1} \times A_{2} \times \cdots \times A_{p}$ for some choices of A_{i} as either $I_{m / p}, I_{m / p}^{c}$ or $T_{m / p}$. We note that if $A_{1} \times A_{2} \times \cdots \times A_{p} \in \operatorname{Avoid}(m, F)$, then forb (m, F) is $\Omega\left(m^{p}\right)$.

Details are in [5]. We are assuming m is large and divisible by p, in particular that $m \geqslant(k+1)(k \ell+1)$ so that $m / p \geqslant k \ell+1$. Divisibility by p does not affect the asymptotic growth, thus forb (m, F) is $\Omega\left(m^{X(F)-1}\right)$ using an appropriate $(X(F)-1)$-fold product.

Conjecture 2. [4] Let F be given. Then forb $(m, F)=\Theta\left(m^{X(F)-1}\right)$.
The conjecture was known to be true for all 3-rowed F [4] and all $k \times 2 F$ [3]. Section 3 shows how Theorem 3 establishes the conjecture for matrices $t \cdot F$ when F is a $k \times 2$ matrix. It is of interest to generalize Conjecture 2 to $\operatorname{forb}(m, \mathcal{F})$ where $|\mathcal{F}|>1$ but we know example of \mathcal{F} where the modified form of the conjecture fails (see [5]).

We define $F_{e, f, g, h}$ as the $(e+f+g+h) \times 2$ matrix consisting of e rows [11], f rows [10], g rows [01] and h rows [00]. Let $\mathbf{1}_{e} \mathbf{0}_{f}$ denote the $(e+f) \times 1$ vector of $e 1$'s on top of $f 0$'s so that $F_{e, f, g, h}=\left[\mathbf{1}_{e+f} \mathbf{0}_{g+h} \mid \mathbf{1}_{e} \mathbf{0}_{f} \mathbf{1}_{g} \mathbf{0}_{h}\right]$. We let $\mathbf{1}_{e}$ denote the $e \times 1$ vector of e 1 's and $\mathbf{0}_{f}$ denote the $f \times 1$ vector of $f 0$'s. Our main result is the following which had foiled many previous attempts.

Theorem 3. Let $t \geqslant 2$ be given. Then forb $\left(m, t \cdot F_{0, k, k, 0}\right)$ is $\Theta\left(m^{k}\right)$.
The forbidden configuration $t \cdot F_{0, k, k, 0}$ in the language of sets, consists of two disjoint k-sets S, T, and a family of t sets containing S but disjoint from T, and the other family of another t sets containing T but disjoint from S. This theorem echoes our statement in the abstract.

The result for $t=2$ and $k=2$ was proven in [1] and many details worked out for $t=2$ and $k>2$ by the first author and Peter Keevash. The extension for $t>2, k=2$ had been open since then [5]. The proof for $t>2, k=2$ is in Section 2. The proof for $t>2, k>2$ is in Section 3. Matrices $F_{6}(t), F_{7}(t)$ were given in [5] as 4-rowed forbidden configurations (with some columns of multiplicity t) for which Conjecture 2 predicts forb $\left(m, F_{6}(t)\right)$ and forb $\left(m, F_{7}(t)\right)$ are $O\left(m^{2}\right)$. Note that $t \cdot F_{0,2,2,0} \prec F_{6}(t)$ and $t \cdot F_{0,2,2,0} \prec F_{7}(t)$ and so Theorem 3 is a step towards these bounds which would establish Conjecture 2 for all 4 -rowed F. Our proof use a new induction given in Section 2 that considers t-simple matrices as well as a strong stability result Lemma 10. We offer some additional applications in Section 4.

2 New Induction

We consider a new form of the standard induction for forbidden configurations [5]. Let F be a matrix with maximum column multiplicity t. Thus $F \prec t \cdot \operatorname{supp}(F)$. Let
$A \in \operatorname{Avoid}(m, F, t-1)$. Assume $\|A\|=\operatorname{forb}(m, \mathcal{F}, t-1)$. Given a row r we permute rows and columns of A to obtain

$$
A=\text { row } r \rightarrow\left[\begin{array}{ccc}
00 \cdots & 11 \cdots 1 \tag{2}\\
G & H
\end{array}\right]
$$

Now $\mu(\alpha, G) \leqslant t-1$ and $\mu(\alpha, H) \leqslant t-1$. For those α for which $\mu(\alpha,[G H]) \geqslant t$, let C be formed with $\mu(\alpha, C)=\min \{\mu(\alpha, G), \mu(\alpha, H)\}$. We rewrite our decomposition of A as follows:

$$
A=\text { row } r \rightarrow\left[\begin{array}{cccc}
00 & \cdots & 11 & \cdots \tag{3}
\end{array}\right]
$$

Then we deduce that $[B C D]$ and C are both $(t-1)$-simple. The former follows from $\mu(\alpha,[B C D])=\mu(\alpha, G)+\mu(\alpha, H)-\min \{\mu(\alpha, G), \mu(\alpha, H)\} \leqslant t-1$. We have that $F \nprec[B C D]$ for $F \in \mathcal{F}$. Also for any $F^{\prime} \prec C$ then $[01] \times F^{\prime} \prec A$ so we define

$$
\begin{equation*}
\mathcal{G}=\left\{F^{\prime}: \text { for } F \in \mathcal{F}, F \prec[01] \times F^{\prime} \text { and } F \nprec[01] \times F^{\prime \prime} \text { for all } F^{\prime \prime} \prec F^{\prime}, F^{\prime \prime} \neq F^{\prime}\right\} . \tag{4}
\end{equation*}
$$

Basically, \mathcal{G} is the family after removing redundancy from all configurations F^{\prime} that are obtained by removing one row from any F in \mathcal{F}.

Also since each column α of C has $\mu(\alpha,[G H]) \geqslant t$, we deduce that $\operatorname{supp}(F) \nprec C$ for each $F \in \mathcal{F}$. Our induction on m becomes:

$$
\begin{align*}
& \operatorname{forb}(m, \mathcal{F}, t-1)=\|A\|=\|[B C D]\|+\|C\| \\
& \qquad \leqslant \operatorname{forb}(m-1, \mathcal{F}, t-1)+(t-1) \cdot \text { forb }(m-1, \mathcal{G} \cup\{\operatorname{supp}(F): F \in \mathcal{F}\}) \tag{5}
\end{align*}
$$

Lemma 4. Let H be a given simple matrix satisfying forb (m, H) is $O\left(m^{\ell}\right)$. Then forb $(m, t \cdot H)$ is $O\left(m^{\ell+1}\right)$.

Proof. We use the induction (5) where $F=t \cdot H$ and $H=\operatorname{supp}(F)$. Induction on m yields the desired bound.

Proof of Theorem 3 for $k=2$: We will use induction on m to show forb $(m, t$. $\left.F_{0,2,2,0}, t\right)$ is $O\left(m^{2}\right)$. The maximum multiplicity of a column in $t \cdot F_{0,2,2,0}$ is t and $F_{0,2,2,0}=$ $\operatorname{supp}\left(t \cdot F_{0,2,2,0}\right)$. Also $t \cdot F_{0,2,2,0} \prec[01] \times\left(t \cdot F_{0,2,1,0}\right)$. Let $A \in \operatorname{Avoid}\left(m, t \cdot F_{0,2,2,0}, t-1\right)$ with $\|A\|=\operatorname{forb}\left(m, t \cdot F_{0,2,2,0}, t-1\right)$. Apply (5). We have

$$
\begin{aligned}
& \operatorname{forb}\left(m, t \cdot F_{0,2,2,0}, t-1\right)=\|A\|=\|[B C D]\|+\|C\| \\
& \qquad \leqslant \operatorname{forb}\left(m-1, t \cdot F_{0,2,2,0}, t-1\right)+(t-1) \cdot \operatorname{forb}\left(m-1,\left\{F_{0,2,2,0}, t \cdot F_{0,2,1,0}\right\}\right)
\end{aligned}
$$

We apply Lemma 5 with induction on m to deduce that forb $\left(m, t \cdot F_{0,2,2,0}, t-1\right)$ is $O\left(m^{2}\right)$. Then by (1), forb $\left(m, t \cdot F_{0,2,2,0}\right)$ is also $O\left(m^{2}\right)$.

Theorem 3 was proven for $t=k=2$ in [1] using induction in the spirit of (5) $((t-1)$-simple matrices are simple) and Lemma 5 for $t=2$.

Lemma 5. We have that forb $\left(m,\left\{F_{0,2,2,0}, t \cdot F_{0,2,1,0}\right\}\right)$ is $O(m)$.
Proof. Let $A \in \operatorname{Avoid}\left(m,\left\{F_{0,2,2,0}, t \cdot F_{0,2,1,0}\right\}\right)$. Avoiding $F_{0,2,2,0}$ creates structure: Let X_{i} denote the columns of A of column sum i. Let $J_{a \times b}$ denote the $a \times b$ matrix of 1's and let $0_{a \times b}$ denote the $a \times b$ matrix of 0 's. Now $F_{0,2,2,0} \nprec X_{i}$ and so for $\left\|X_{i}\right\| \geqslant 3$, we may deduce that there is a partition of the rows $\left[m\right.$] into $A_{i} \cup B_{i} \cup C_{i}$. Let $x_{i}=\left|X_{i}\right|$. After suitable row and column permutations, we have X_{i} as follows:

We will say i is of type $j(j=1$ or $j=2)$ if the columns of sum i are of type j. These are the sunflowers (for type 1) and inverse sunflowers (type 2) of $[7]$ where for type 1 the petals are A_{i} with center B_{i}.

Let $T(1)=\left\{i: i\right.$ is of type 1 and $\left.\left\|X_{i}\right\| \geqslant t+2\right\}$. We wish to show for that $B_{i} \subset B_{j}$ for $i, j \in T(1)$ and $i<j$. Assume $p \in B_{i} \backslash B_{j}$. Given that $\left|B_{i}\right|<\left|B_{j}\right|$, there are two rows $r, s \in B_{j} \backslash B_{i}$. Then we find a copy of $t \cdot F_{0,2,1,0}$ in rows p, r, s of $\left[X_{i} X_{j}\right]$ (we would not choose the possible column of X_{i} that has a 1 in row r and the column of X_{i} that has a 1 in row s), a contradiction showing no such p exists and hence $B_{i} \subset B_{j}$.

We form a matrix Y_{1} from those X_{i} with $i \in T(1)$. We have $\left\|Y_{1}\right\|=\sum_{i \in T(1)}\left\|X_{i}\right\|=$ $\sum_{i \in T(1)}\left|A_{i}\right|$. Assume $\sum_{i \in T(1)}\left|A_{i}\right|>(t+1) m$. Then there is some row p and $(t+2)$ set $\{s(1), s(2), \ldots, s(t+2)\}$ with $p \in A_{i}$ for all $i \in\{s(1), s(2), \ldots, s(t+2)\}$. Assume $s(1)<s(2)<\cdots<s(t+2)$. We have $B_{s(1)} \subset B_{s(2)} \subset \cdots \subset B_{s(t+2)}$. We may choose $r, s \in B_{s(t+2)} \backslash B_{s(t)}$ so that $r, s \in A_{s(i)} \cup C_{s(i)}$ for $i=1,2, \ldots, t$. We find a copy of $t \cdot F_{0,2,1,0}$ in rows p, r, s as follows. We take one column from each $X_{s(j)}$ for $j=1,2, \ldots, t$ and t columns from the $X_{s(t+2)}$. We conclude that $\left\|Y_{1}\right\| \leqslant(t+1) m$. Similarly the matrix Y_{2} formed from those X_{i} such that i is of type 2 and $\left\|X_{i}\right\| \geqslant t+2$ has $\left\|Y_{2}\right\| \leqslant(t+1) m$. Now Y_{1} and Y_{2} represent all columns of A with the exception of columns of sum i with $\left\|X_{i}\right\| \leqslant t+1$ and so we conclude $\|A\| \leqslant\left\|Y_{1}\right\|+\left\|Y_{2}\right\|+(t+1)(m-1)+2$. Thus $\|A\|$ is $O(m)$.

3 More evidence for the Conjecture

This section first explores the Conjecture 2 for $t \cdot F$ when F is $k \times 2$. The section concludes with the proof of Theorem 3 for $k>2$. The following verifies Conjecture 2 for all $k \times 2 F$. Note that any $k \times 2$ matrix F can be written as $F_{a, b, c, d}(b \geqslant c)$ under proper row and column permutations. Since forb (m, F) is invariant under taking $(0,1)$ complement, we can further assume $a \geqslant d$. The case of $t=1$ was solved in [3] by the following theorem.

Theorem 6. [3] Suppose $a \geqslant d$ and $b \geqslant c$. Then forb $\left(m, F_{a, b, c, d}\right)$ is $\Theta\left(m^{a+b-1}\right)$ if either $b>c$ or $a, b \geqslant 1$. Also forb $\left(m, F_{a, 0,0, d}\right)$ is $\Theta\left(m^{a}\right)$ and forb $\left(m, F_{0, b, b, 0}\right)$ is $\Theta\left(m^{b}\right)$.

Note that Conjecture 2 is verified if there is a product construction avoiding F yielding the same asymptotic growth as an upper bound on forb (m, F). The k-fold product $I_{m / k} \times I_{m / k} \times \cdots \times I_{m / k} \in \operatorname{Avoid}\left(m, t \cdot F_{0, k, k, 0}\right)$ has $\Theta\left(m^{k}\right)$ columns. Thus Theorem 3 verifies the conjecture for $t \cdot F_{0, k, k, 0}$. The following results verify the conjecture for $t \cdot F$ for the remaining $k \times 2 F$.

Theorem 7. For $b>c$ or $a, b \geqslant 1$ then forb $\left(m, t \cdot F_{a, b, c, d}\right)$ is $\Theta\left(m^{a+b}\right)$.
Proof. The upper bound follows from forb $\left(m, F_{a, b, c, d}\right)$ being $\Theta\left(m^{a+b-1}\right)$ and then applying Lemma 4. The lower bound follows from $2 \cdot \mathbf{1}_{a+b} \prec t \cdot F_{a, b, c, d}$ so that the $(a+b)$-fold product $I_{m /(a+b)} \times I_{m /(a+b)} \times \cdots \times I_{m /(a+b)} \in \operatorname{Avoid}\left(m, F_{a, b, c, d}\right)$ and hence forb $\left(m, t \cdot F_{a, b, c, d}\right)$ is $\Omega\left(m^{a+b}\right)$.

Theorem 8. Let $a \geqslant d$ be given. Then forb $\left(m, t \cdot F_{a, 0,0, d}\right)$ is $\Theta\left(m^{a}\right)$.
Proof. This follows using Lemma 9 repeatedly and also forb $\left(m, t \cdot F_{a, 0,0,0}\right)$ is $O\left(m^{a}\right)$ using Theorem 14. The a-fold product $I_{m / a} \times I_{m / a} \times \cdots \times I_{m / a} \in \operatorname{Avoid}\left(m, t \cdot F_{a, 0,0, d}\right)$.

The following result can be found in the survey on forbidden configurations [5]
Lemma 9. Assume forb (m, F) is $O\left(m^{\ell}\right)$. Then forb $\left(m,\left[\begin{array}{l}1 \\ 0\end{array}\right] \times F\right)$ is $O\left(m^{\ell+1}\right)$.
Here is the summary of results on forb $\left(m, t \cdot F_{a, b, c, d}\right)(a \geqslant d$ and $b \geqslant c)$, which verify Conjecture 2 for all $k \times 2 F$.

t	Configuration	result	reference	Lower bound construction
$t=1$	$F_{a, b, c, d}(b>c$ or $a, b \geqslant 1)$	$\Theta\left(m^{a+b-1}\right)$	$[3]$	$\overbrace{I \times I \times \cdots I \times I}^{a+b-1}$
	$F_{a, 0,0, d}$	$\Theta\left(m^{a}\right)$	$[3]$	$\overbrace{I \times I \times \cdots I \times I}^{a}$
	$F_{0, b, b, 0}$	$\Theta\left(m^{b}\right)$	$[3]$	$\overbrace{I \times I \times \cdots I \times I \times T}^{b-1}$
	$\Theta\left(m^{a+b}\right)$	Lemma 4	$\overbrace{I \times I \times \cdots I \times I}^{a+b}$	
	$t \cdot F_{a, 0,0, d}$	$\Theta\left(m^{a}\right)$	Lemma 4	$\overbrace{I \times I \times \cdots I \times I}^{a}$
	$t \cdot F_{0, b, b, 0}$	$\Theta\left(m^{b}\right)$	Theorem 3	$\overbrace{I \times I \times \cdots I \times I}^{b-1} \times T$

Table 1: All cases of $\operatorname{forb}\left(m, t \cdot F_{a, b, c, d}\right)$ with $a \geqslant d$ and $b \geqslant c$.

We note that the bound for $\operatorname{forb}\left(m, t \cdot F_{a, 0,0, d}\right)$ can be readily established by a pigeonhole argument. We return to Theorem 3 and first obtain some useful lemmas. Let
$X_{i} \in \operatorname{Avoid}\left(m, F_{0, k, k, 0}\right)$ with all column sums i. We define X_{i} to be of type (a, b) if $a, b \geqslant 0$ are integers with $a+b=k-1$ and there is a partition $C_{i} \cup D_{i}=[m]$ with $\left|D_{i}\right|+a-b=i$ such that any column α of X_{i} has exactly a 1's in rows C_{i} and exactly b 0 's in rows D_{i}. We are able to use this structure in view of the following 'strong stability' result:

Lemma 10. [3] Let $Y_{i} \in \operatorname{Avoid}\left(m, F_{0, k, k, 0}\right)$ with all column sums i. Assume $\left\|Y_{i}\right\| \geqslant$ $(6(k-1))^{5 k+2} m^{k-2}$. Then there is an m-rowed submatrix X_{i} of Y_{i} and a pair of integers $a, b \geqslant 0$ with $a+b=k-1$ such that X_{i} is of type (a, b) and where $\left\|Y_{i}\right\|-\left\|X_{i}\right\| \leqslant m^{k-3}$.

Lemma 11. Let $X_{i} \in \operatorname{Avoid}\left(m, F_{0, k, k, 0}\right)$ have all columns of sum i and assume X_{i} is of type (a, b) with $a, b \geqslant 1$ with $a+b=k-1$. Let $C_{i} \cup D_{i}=[m]$ be the associated partition of the rows. We form a bipartite graph $G_{i}=\left(V_{i}, E_{i}\right)$ with $V_{i}=\binom{C_{i}}{a} \cup\binom{D_{i}}{b}$ where we have $(C, D) \in E_{i}$ if there is a column of X_{i} with a 1's in rows C and $D_{i} \backslash D$ and b O's in rows D and $C_{i} \backslash C$. Assume $\left|E_{i}\right| \geqslant 2{k m^{k-2}}^{k}$. Then there is subgraph $G_{i}^{\prime}=\left(V_{i}^{\prime}, E_{i}^{\prime}\right)$ of G_{i} with $\left|E^{\prime}\right| \geqslant \frac{1}{2}\left|E_{i}\right|$ such that for every pair $C \in\binom{C_{i}}{a}$ and $D \in\binom{D_{i}}{b}$ with $(C, D) \in E^{\prime}$ we have

$$
\begin{equation*}
d_{G_{i}^{\prime}}(C) \geqslant(b+1 / 2) m^{b-1}, \quad d_{G_{i}^{\prime}}(D) \geqslant(a+1 / 2) m^{a-1} . \tag{6}
\end{equation*}
$$

Proof. Simply delete vertices $C \in\binom{C_{i}}{a}$ with $d_{G}(C)<(b+1 / 2) m^{b-1}$ and vertices $D \in$ $\binom{D_{i}}{b}$ with $d_{G}(D)<(a+1 / 2) m^{a-1}$ and continue deleting vertices until conditions (6) are satisfied for any remaining vertices of G^{\prime}. This will delete a maximum of $(b+$ $1 / 2) m^{b-1}\binom{\left|C_{i}\right|}{a}+(a+1 / 2) m^{a-1}\binom{\left|D_{i}\right|}{b}<k m^{k-2}$ edges which deletes less than half the edges of G.
Lemma 12. Let k be given. Then forb $\left(m,\left\{F_{0, k, k, 0}, t \cdot F_{0, k, k-1,0}\right\}\right)$ is $O\left(m^{k-1}\right)$.
Proof. Let $A \in \operatorname{Avoid}\left(m,\left\{F_{0, k, k, 0}, t \cdot F_{0, k, k-1,0}\right\}\right)$. Let Y_{i} denote the columns of A of column sum i. For all i for which $\left|Y_{i}\right|<(6(k-1))^{5 k+2} m^{k-2}$, delete the columns of Y_{i} from A. This may delete $(6(k-1))^{5 k+2} m^{k-1}$ columns. For i with $\left|Y_{i}\right| \geqslant(6(k-1))^{5 k+2} m^{k-2}$, apply Lemma 10 and obtain X_{i} with $\left|X_{i}\right| \geqslant(6(k-1))^{5 k+2} m^{k-2}-m^{k-3}$.

We consider a choice a, b with $a+b=k-1$. Let $T(a, b)=\left\{i: X_{i}\right.$ is of type $\left.(a, b)\right\}$. We will show that $\sum_{i \in T(a, b)}\left|X_{i}\right| \leqslant(t k) m^{k-1}$.
Case 1. $a, b \geqslant 1$.
Create G_{i} as described in Lemma 11 to obtain G_{i}^{\prime} for each $i \in T(a, b)$. Now if $\sum_{i \in T(a, b)}\left|E_{i}^{\prime}\right|>(t+1) m^{a+b}$, then there will be some edge $(C, D) \in E_{i}^{\prime}$ for at least $t+2$ choices $i \in T(a, b)$. Let those choices be $s(1), s(2), \ldots, s(t+2)$ where $s(1)<s(2)<$ $\cdots<s(t+2)$. We wish to show that $X_{s(i)}$ has $t \cdot F_{0, k-1,0,0}$ on rows $C \cup D$.

$$
\begin{aligned}
& \text { rows } C\left\{\begin{array}{lll}
1 & \overbrace{11 \cdots 1}^{t} & \overbrace{00 \cdots 0}^{t} \\
1 & 11 \cdots 1 \\
1 & 11 \cdots 1 \\
00 \cdots 0 \\
00 \cdots 0
\end{array}\right. \\
& \text { rows } D\left\{\begin{array}{lll}
11 \cdots 1 \\
0 & 11 \cdots 1 \\
0 & 11 \cdots 0
\end{array}\right.
\end{aligned}
$$

For a given set $D \in\binom{D_{s(i)}}{b}$, we compute $\left|\left\{H \in\binom{D_{s(i)}}{b}: H \cap D \neq \emptyset\right\}\right| \leqslant \sum_{j=1}^{b}\binom{b}{j}\binom{D_{s(i)}}{b-j}<$ $b m^{b-1}$.

Now if $d_{G^{\prime}}(C) \geqslant(b+1 / 2) m^{b-1}$ and $(C, D) \in E_{s(i)}^{\prime}$ then there are at least t edges $(C, H) \in E_{s(i)}^{\prime}$ with $H \cap D=\emptyset$. We are using $(b+1 / 2) m^{b-1}>b m^{b-1}+t+2$ which is true for m large enough and so asymptotics are unaffected. Thus we have t columns of $X_{s(1)}$ with $\mathbf{1}_{k-1}$ on rows $C \cup D$ and, because these columns have a 1's on rows $C \subseteq C_{s(1)}$, these columns are 0's on the remaining rows of $C_{s(1)} \backslash C$.

Similarly, because $d_{G_{i}^{\prime}}(D) \geqslant(a+1 / 2) m^{a-1}$ there will be $t+2$ edges $(K, D) \in E_{s(i)}$ with $K \cap C=\emptyset$ and so there are t columns of $X_{s(t+2)}$ with $\mathbf{0}_{k-1}$ on rows $C \cup D$ and, because these columns have 0's on rows D, these columns are 1's on rows of $D_{s(t+2)} \backslash D$.

We choose k rows in $Z=D_{s(t+2)} \backslash D_{s(1)}$ so that $Z \subseteq C_{s(1)}$. We deduce that in the chosen t columns of $X_{s(1)}$ we have $\mathbf{0}_{k}$ in rows Z since $Z \subseteq C_{s(1)} \backslash C$ and the columns have $\mathbf{1}_{k-1}$ in rows $C \cup D$. In the chosen t columns of $X_{s(t+2)}$ we have $\mathbf{1}_{k}$ in rows Z since $Z \subset D_{s(t+2)} \backslash D$ and the columns have $\mathbf{0}_{k-1}$ in rows $C \cup D$. This yields $t \cdot F_{0, k, k-1,0}$, a contradiction. Thus $\sum_{i \in T \text { ype }(a, b)}\left|E_{i}^{\prime}\right| \leqslant(t+1) m^{k-1}$. This concludes Case 1.
Case 2. $a=k-1, b=0$ or $a=0, b=k-1$.
We proceed similarly. We need only consider $a=k-1, b=0$ since the case $a=0, b=$ $k-1$ is just the (0,1)-complement. For $i \in T(k-1,0), X_{i}$ has partition $C_{i} \cup D_{i}=[m]$ and columns of X_{i} have 1's on exactly $k-1$ rows of C_{i} and all 1's on rows D_{i}. Assume $\sum_{i \in T(k-1,0)}\left|X_{i}\right| \geqslant(t k) m^{k-1}$. Then there are $t k$ choices $s(1), s(2), \ldots, s(t k) \in T(k-1,0)$ where $s(1)<s(2)<\cdots<s(t k)$ such that, for some $C \in\binom{C_{s}(i)}{k-1}$, each $X_{s(i)}$ has a column with 1's in rows $C \cup D_{s(i)}$ and 0's in rows $C_{s(i)} \backslash C$. We wish to find $t \cdot F_{0, k-1,0,0}$ in A in rows C as follows using one column from each of $X_{s(i)}$ for $i=1,2, \ldots, t$ and t columns from $X_{s(t k)}$.

$$
\operatorname{rows} C\left\{\begin{array}{cccccc}
1 & 1 & & 1 & 1 & \overbrace{00 \cdots 0}^{t} \\
1 & 1 & \cdots & 1 & 1 & 00 \cdots 0 \\
1 & 1 & & 1 & 1 & 00 \cdots 0 \\
X_{s(1)} & X_{s(2)} & & X_{s(t)} & X_{s(t k)} & X_{s(t k)}
\end{array}\right.
$$

Given our choice $C \in\binom{\left.C_{s(t k)}\right)}{k-1}$, we compute that $\left|\left\{K \in\binom{C_{s(k t)}}{k-1}: K \cap C \neq \emptyset\right\}\right|<k m^{k-2}$. Thus with $\left|X_{s(k t)}\right| \geqslant k m^{k-2}$, there will be t choices $K_{1}, K_{2}, \ldots, K_{t}$ disjoint from C and hence one column of $X_{s(k t)}$ for each $i=1,2, \ldots, t$ with $\mathbf{1}_{k-1}$ on rows of $K_{i} \subseteq C_{s(k t)} \backslash C$ and 0's on $C_{s(k t)} \backslash K_{i}$ and hence $\mathbf{0}_{k-1}$ on rows C.

We will show below that we can choose $D \subset D_{s(k t)} \backslash \cup_{i=1}^{t} D_{s(i)}$ with $|D|=k$. Then we can find $t \cdot F_{0, k, k-1,0}$ as follows. We have one column in $X_{s(i)}$ for each $i=1,2, \ldots, t$ which is $\mathbf{1}_{k-1}$ on rows C and $\mathbf{0}_{k}$ on rows D (since $D \subset C_{s(i)} \backslash C$ for each $i=1,2, \ldots, t$). The t columns of $X_{s(t k)}$ we have selected have $\mathbf{0}_{k-1}$ on rows C and 1's on $D_{s(k t)}$ where $D \subseteq D_{s(k t)}$ and hence $\mathbf{1}_{k}$ on rows D. These $2 t$ columns yield $t \cdot F_{0, k, k-1,0}$ in $\left[X_{s(1)}\left|X_{s(2)} \cdots\right| X_{s(t)} \mid X_{s(k t)}\right]$.

To show that D can be chosen we first show that $D_{s(i)} \backslash D_{s(j)} \leqslant k-2$ for $s(i)<s(j)$. Assume the contrary, $D_{s(i)} \backslash D_{s(j)} \geqslant k-1$ for $s(i)<s(j)$. We choose $C^{\prime} \subseteq D_{s(i)} \backslash D_{s(j)}$ with $\left|C^{\prime}\right|=k-1$. Given $s(j)>s(i)$, then $D_{s(j)} \backslash D_{s(i)} \geqslant k$ and so we may choose $D^{\prime} \subseteq D_{s(j)} \backslash D_{s(i)}$ with $\left|D^{\prime}\right|=k$. Now $C^{\prime} \subset C_{s(j)}$ and $D^{\prime} \subset C_{s(i)}$. The number of possible columns of $X_{s(j)}$ with at least one 1 on the rows C^{\prime} is at most m^{k-2} and with $\left|X_{s(j)}\right| \geqslant m^{k-1}+t$, we find t columns of $X_{s(j)}$ with 0's on rows C^{\prime} and necessarily with 1's on rows D^{\prime}. The number of possible columns of $X_{s(i)}$ with at least one 1 on the rows of D^{\prime} is $\left|D^{\prime}\right| m^{k-2}<m^{k-1}$. Given $\left|X_{s(i)}\right| \geqslant m^{k-1}+t$, we find t columns of $X_{s(i)}$ with 0 's on rows D^{\prime} and necessarily with 1 's on rows C^{\prime}. This yields $t \cdot F_{0, k, k-1,0}$ in $\left[X_{s(i)} \mid X_{s(j)}\right]$, a contradiction. Thus $D_{s(i)} \backslash D_{s(j)} \leqslant k-2$ for $s(i)<s(j)$. We may now conclude that $\left|D_{s(k t} \backslash \cup_{i=1}^{t} D_{s(i)}\right| \geqslant k$ and so a choice for D exists. We conclude $\sum_{i \in T(k-1,0)}\left|X_{i}\right| \leqslant(t k) m^{k-1}$. This concludes Case 2.

There are $k+1$ choices for type (a, b) and so

$$
\sum_{i=0}^{m}\left|X_{i}\right| \leqslant \sum_{j=0}^{k}\left(\sum_{i \in T(j, k-1-j)}\left|X_{i}\right|\right) \leqslant(k+1)(2 t k) m^{k-1}
$$

and so $\|A\| \leqslant(2 t k(k+1)) m^{k-1}+(6(k-1))^{5 k+2} m^{k-2}$ which is $O\left(m^{k-1}\right)$.

Proof of Theorem 3 for $k \geqslant 3$: We use (5) so that forb $\left(m, t \cdot F_{0, k, k, 0}, t-1\right) \leqslant \operatorname{forb}\left(m-1, t \cdot F_{0, k, k, 0}, t-1\right)+(t-1) \operatorname{forb}\left(m,\left\{F_{0, k, k, 0}, t \cdot F_{0, k, k-1,0}\right\}\right)$.

Induction on m and Lemma 12 yields the bound.

4 Some applications of the Induction

Let K_{k} denote the $k \times 2^{k}$ of all possible (0,1)-columns on k rows. The following is the fundamental result about forbidden configurations.

Theorem 13. [Sauer [10], Perles and Shelah [11], Vapnik and Chervonenkis [12]] We have that

$$
\operatorname{forb}\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0} .
$$

Thus forb $\left(m, K_{k}\right)$ is $\Theta\left(m^{k-1}\right)$.
We can apply this result as follows.
Theorem 14. [8] Let F be a given $k \times \ell(0,1)$-matrix. Then forb (m, F) is $O\left(m^{k}\right)$.
Proof. Let t be the maximum multiplicity of a column in F (of course $t \leqslant \ell$). Then $F \prec t \cdot K_{k}$ and so $\operatorname{supp}(F) \prec K_{k}$. Now Lemma 4 combined with Theorem 13 yields the result.

Interestingly this yields the exact result for forb $\left(m, 2 \cdot K_{k}\right)$ [9]. A more precise result of Anstee and Füredi [2] for forb $\left(m, t \cdot K_{k}\right)$ has the leading term being bounded by $\frac{t+k-1}{k+1}\binom{m}{k}$ for $t \geqslant 2$. The following surprising result was obtained by Balogh and Bollobás.

Theorem 15. [6] Let k be given. There is a constant c_{k} with forb $\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)=c_{k}$.
This yields the following.
Theorem 16. Let $t, k \geqslant 2$ be given. Then forb $\left(m,\left\{t \cdot I_{k}, t \cdot I_{k}^{c}, t \cdot T_{k}\right\}\right)$ is $\Theta(m)$.
Proof. Apply Lemma 4. The matrix $I_{m} \in \operatorname{Avoid}\left(m,\left\{t \cdot I_{k}, t \cdot I_{k}^{c}, t \cdot T_{k}\right\}\right)$ shows that forb $\left(m,\left\{t \cdot I_{k}, t \cdot I_{k}^{c}, t \cdot T_{k}\right\}\right)$ is $\Theta(m)$.

Lemma 4 is interesting for those H for which forb (m, H) is $O\left(m^{\ell}\right)$ and the number of rows in H is bigger than ℓ (see [5] for examples). It is not expected that this will resolve any boundary cases, namely those F for which forb $(m,[F \mid \alpha])$ is bigger than forb (m, F) by a linear factor (or more) for all choices α which are either not present in F or occur at most once in F. The previously mentioned $F_{6}(t)$ and $F_{7}(t)$ have quite complicated structure and the induction (5) does not appear to work directly.

References

[1] R.P. Anstee, Some Problems Concerning Forbidden Configurations, preprint from 1990.
[2] R.P. Anstee and Z. Füredi, Forbidden submatrices, Discrete Math. 62 (1986), 225243.
[3] R.P. Anstee and P. Keevash, Pairwise intersections and forbidden configurations, European J. of Combin. 27 (2006), 1235-1248.
[4] R.P. Anstee, A. Sali, Small Forbidden Configurations IV, Combinatorica 25(2005), 503-518.
[5] R.P. Anstee, A Survey of forbidden configurations results, Elec. J. Combinatorics 20 (2013), DS20, 56pp.
[6] J. Balogh, B. Bollobás, Unavoidable Traces of Set Systems, Combinatorica, 25 (2005), 633-643.
[7] P. Frankl, Z. Füredi and J. Pach, Bounding one-way differences, Graphs and Combinatorics, 3 (1987), 341-347.
[8] Z. Füredi, personal communication, 1983.
[9] H.O.F. Gronau, An extremal set problem, Studia Sci.Math. Hungar. 15(1980), 29-30.
[10] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145-147.
[11] S. Shelah, A combinatorial problem: Stability and order for models and theories in infinitary languages, Pacific J. Mathematics 4 (1972), 247-261.
[12] V.N. Vapnik and A.Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probability and Applications 25 (1971), 264-280.

[^0]: *Research supported in part by NSERC, work done while visiting the second author at USC.
 ${ }^{\dagger}$ This author was supported in part by NSF grant DMS 1000475 and DMS 1300547.

