Repeated columns and an old chestnut

R.P. Anstee*

Mathematics Department The University of British Columbia Vancouver, B.C. Canada V6T 1Z2 Linyuan Lu^{\dagger}

Mathematics Department The University of South Carolina Columbia, SC, USA

anstee@math.ubc.ca

lu@math.sc.edu

Submitted: May 3, 2013; Accepted: Oct 7, 2013; Published: Oct 14, 2013 Mathematics Subject Classifications: 05D05

Abstract

Let $t \ge 1$ be a given integer. Let \mathcal{F} be a family of subsets of $[m] = \{1, 2, \ldots, m\}$. Assume that for every pair of disjoint sets $S, T \subset [m]$ with |S| = |T| = k, there do not exist 2t sets in \mathcal{F} where t subsets of \mathcal{F} contain S and are disjoint from T and t subsets of \mathcal{F} contain T and are disjoint from S. We show that $|\mathcal{F}|$ is $O(m^k)$.

Our main new ingredient is allowing, during the inductive proof, multisets of subsets of [m] where the multiplicity of a given set is bounded by t - 1. We use a strong stability result of Anstee and Keevash. This is further evidence for a conjecture of Anstee and Sali. These problems can be stated in the language of matrices. Let $t \cdot M$ denote t copies of the matrix M concatenated together. We have established the conjecture for those configurations $t \cdot F$ for any $k \times 2$ (0,1)-matrix F.

Keywords: extremal set theory, extremal hypergraphs, (0,1)-matrices, multiset, forbidden configurations, trace, subhypergraph.

1 Introduction

We will be considering a problem in extremal hypergraphs that can be phrased as how many edges a hypergraph on m vertices can have when there is a forbidden subhypergraph. There are a variety of ways to define this problem (we could, but do not, restrict to (simple) k-uniform hypergraphs). We can encode a hypergraph on m vertices as an m-rowed (0,1)-matrix where the *i*th column is the incidence vector of the *i*th hyperedge.

^{*}Research supported in part by NSERC, work done while visiting the second author at USC.

[†]This author was supported in part by NSF grant DMS 1000475 and DMS 1300547.

A hypergraph is *simple* if there are no repeated edges. We define a matrix to be *simple* if it is a (0,1)-matrix with no repeated columns. We will use the language of matrices in this paper.

Let M be an m-rowed (0,1)-matrix. Some notation about repeated columns is needed. For an $m \times 1$ (0,1)-column α , we define $\mu(\alpha, M)$ as the multiplicity of column α in a matrix M. We consider matrices of bounded column multiplicity. We define a matrix A to be *t*-simple if it is a (0,1)-matrix and every column α of A has $\mu(\alpha, A) \leq t$. Simple matrices are 1-simple. For a given matrix M, let $\operatorname{supp}(M)$ denote the maximal simple m-rowed submatrix of M, so that if $\mu(\alpha, M) \geq 1$ then $\mu(\alpha, \operatorname{supp}(M)) = 1$. The matrices below are a 3-simple matrix M and its $\operatorname{support supp}(M)$.

$$M = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}, \qquad \operatorname{supp}(M) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

For two (0, 1)-matrices F and A, we say that F is a *configuration* in A, and write $F \prec A$ if there is a row and column permutation of F which is a submatrix of A. Let \mathcal{F} denote a finite set of (0,1)-matrices. Let $\operatorname{Avoid}(m, \mathcal{F}, t)$ denote all m-rowed t-simple matrices A for which $F \not\prec A$ for all $F \in \mathcal{F}$. We are most interested in cases with $|\mathcal{F}| = 1$ [5]. We do not require any $F \in \mathcal{F}$ to be simple which is quite different from usual forbidden subhypergraph problems. Let ||A|| denote the number of columns of A. Our extremal function of interest is

forb
$$(m, \mathcal{F}) = \max_{A} \{ \|A\| : A \in \operatorname{Avoid}(m, \mathcal{F}, 1) \}$$

We find it helpful to also define

forb
$$(m, \mathcal{F}, t) = \max_{A} \{ \|A\| : A \in \operatorname{Avoid}(m, \mathcal{F}, t) \}.$$

If $A \in Avoid(m, \mathcal{F}, t)$ then $supp(A) \in Avoid(m, \mathcal{F}, 1)$ and $||A|| \leq t \cdot ||supp(A)||$. We obtain

$$forb(m, \mathcal{F}) \leqslant forb(m, \mathcal{F}, t) \leqslant t \cdot forb(m, \mathcal{F}), \tag{1}$$

so that the asymptotic growth of $\operatorname{forb}(m, \mathcal{F})$ is the same as that of $\operatorname{forb}(m, \mathcal{F}, t)$ for fixed t.

We have an important conjecture about $\operatorname{forb}(m, F)$. We use the notation [M | N] to denote the matrix obtained from concatenating the two matrices M and N. We use the notation $k \cdot M$ to denote the matrix $[M|M| \cdots |M]$ consisting of k copies of M concatenated together. Let I_k denote the $k \times k$ identity matrix and let I_k^c denote the (0,1)-complement of I_k . Let T_k denote the $k \times k$ triangular (0,1)-matrix with the (i, j) entry being 1 if and only if $i \leq j$. For an $m_1 \times n_1$ matrix X and an $m_2 \times n_2$ matrix Y, we define the 2-fold product $X \times Y$ as the $(m_1 + m_2) \times n_1 n_2$ matrix where each column consisting of a column of X placed on a column of Y and this is done in all possible ways. This extends to p-fold products.

Definition 1. Let X(F) be the smallest p so that $F \prec A_1 \times A_2 \times \cdots \times A_p$ for every choice of A_i as either $I_{m/p}$, $I_{m/p}^c$ or $T_{m/p}$ for sufficiently large m.

Alternatively, assuming $F \not\prec I$ or $F \not\prec I^c$ or $F \not\prec T$, then X(F) - 1 is the largest choice of p so that $F \not\prec A_1 \times A_2 \times \cdots \times A_p$ for some choices of A_i as either $I_{m/p}$, $I^c_{m/p}$ or $T_{m/p}$. We note that if $A_1 \times A_2 \times \cdots \times A_p \in \text{Avoid}(m, F)$, then forb(m, F) is $\Omega(m^p)$.

Details are in [5]. We are assuming m is large and divisible by p, in particular that $m \ge (k+1)(k\ell+1)$ so that $m/p \ge k\ell+1$. Divisibility by p does not affect the asymptotic growth, thus forb(m, F) is $\Omega(m^{X(F)-1})$ using an appropriate (X(F)-1)-fold product.

Conjecture 2. [4] Let F be given. Then $forb(m, F) = \Theta(m^{X(F)-1})$.

The conjecture was known to be true for all 3-rowed F [4] and all $k \times 2$ F [3]. Section 3 shows how Theorem 3 establishes the conjecture for matrices $t \cdot F$ when F is a $k \times 2$ matrix. It is of interest to generalize Conjecture 2 to forb (m, \mathcal{F}) where $|\mathcal{F}| > 1$ but we know example of \mathcal{F} where the modified form of the conjecture fails (see [5]).

We define $F_{e,f,g,h}$ as the $(e + f + g + h) \times 2$ matrix consisting of e rows [11], f rows [10], g rows [01] and h rows [00]. Let $\mathbf{1}_e \mathbf{0}_f$ denote the $(e + f) \times 1$ vector of e 1's on top of f 0's so that $F_{e,f,g,h} = [\mathbf{1}_{e+f}\mathbf{0}_{g+h} | \mathbf{1}_e\mathbf{0}_f\mathbf{1}_g\mathbf{0}_h]$. We let $\mathbf{1}_e$ denote the $e \times 1$ vector of e 1's and $\mathbf{0}_f$ denote the $f \times 1$ vector of f 0's. Our main result is the following which had foiled many previous attempts.

Theorem 3. Let $t \ge 2$ be given. Then $forb(m, t \cdot F_{0,k,k,0})$ is $\Theta(m^k)$.

The forbidden configuration $t \cdot F_{0,k,k,0}$ in the language of sets, consists of two disjoint k-sets S, T, and a family of t sets containing S but disjoint from T, and the other family of another t sets containing T but disjoint from S. This theorem echoes our statement in the abstract.

The result for t = 2 and k = 2 was proven in [1] and many details worked out for t = 2 and k > 2 by the first author and Peter Keevash. The extension for t > 2, k = 2 had been open since then [5]. The proof for t > 2, k = 2 is in Section 2. The proof for t > 2, k > 2 is in Section 3. Matrices $F_6(t)$, $F_7(t)$ were given in [5] as 4-rowed forbidden configurations (with some columns of multiplicity t) for which Conjecture 2 predicts forb $(m, F_6(t))$ and forb $(m, F_7(t))$ are $O(m^2)$. Note that $t \cdot F_{0,2,2,0} \prec F_6(t)$ and $t \cdot F_{0,2,2,0} \prec F_7(t)$ and so Theorem 3 is a step towards these bounds which would establish Conjecture 2 for all 4-rowed F. Our proof use a new induction given in Section 2 that considers t-simple matrices as well as a strong stability result Lemma 10. We offer some additional applications in Section 4.

2 New Induction

We consider a new form of the standard induction for forbidden configurations [5]. Let F be a matrix with maximum column multiplicity t. Thus $F \prec t \cdot \text{supp}(F)$. Let

 $A \in Avoid(m, F, t - 1)$. Assume $||A|| = forb(m, \mathcal{F}, t - 1)$. Given a row r we permute rows and columns of A to obtain

$$A = \operatorname{row} r \to \begin{bmatrix} 0 \ 0 \ \cdots \ 0 & 1 \ 1 \ \cdots & 1 \\ G & H \end{bmatrix}.$$
(2)

Now $\mu(\alpha, G) \leq t - 1$ and $\mu(\alpha, H) \leq t - 1$. For those α for which $\mu(\alpha, [GH]) \geq t$, let C be formed with $\mu(\alpha, C) = \min\{\mu(\alpha, G), \mu(\alpha, H)\}$. We rewrite our decomposition of A as follows:

$$A = \operatorname{row} r \to \begin{bmatrix} 0 \ 0 \cdots \ 0 & 1 \ 1 \cdots \ 1 \\ B & C & C & D \end{bmatrix}.$$
(3)

Then we deduce that [BCD] and C are both (t-1)-simple. The former follows from $\mu(\alpha, [BCD]) = \mu(\alpha, G) + \mu(\alpha, H) - \min\{\mu(\alpha, G), \mu(\alpha, H)\} \leq t-1$. We have that $F \not\prec [BCD]$ for $F \in \mathcal{F}$. Also for any $F' \prec C$ then $[01] \times F' \prec A$ so we define

$$\mathcal{G} = \{ F' : \text{ for } F \in \mathcal{F}, \ F \prec [0\,1] \times F' \text{ and } F \not\prec [0\,1] \times F'' \text{ for all } F'' \prec F', \ F'' \neq F' \}.$$
(4)

Basically, \mathcal{G} is the family after removing redundancy from all configurations F' that are obtained by removing one row from any F in \mathcal{F} .

Also since each column α of C has $\mu(\alpha, [GH]) \ge t$, we deduce that $\operatorname{supp}(F) \not\prec C$ for each $F \in \mathcal{F}$. Our induction on m becomes:

$$forb(m, \mathcal{F}, t-1) = ||A|| = ||[BCD]|| + ||C||$$

$$\leq forb(m-1, \mathcal{F}, t-1) + (t-1) \cdot forb(m-1, \mathcal{G} \cup \{supp(F) : F \in \mathcal{F}\}).$$
(5)

Lemma 4. Let H be a given simple matrix satisfying forb(m, H) is $O(m^{\ell})$. Then $forb(m, t \cdot H)$ is $O(m^{\ell+1})$.

Proof. We use the induction (5) where $F = t \cdot H$ and $H = \operatorname{supp}(F)$. Induction on m yields the desired bound.

Proof of Theorem 3 for k = 2: We will use induction on m to show forb $(m, t \cdot F_{0,2,2,0}, t)$ is $O(m^2)$. The maximum multiplicity of a column in $t \cdot F_{0,2,2,0}$ is t and $F_{0,2,2,0} =$ supp $(t \cdot F_{0,2,2,0})$. Also $t \cdot F_{0,2,2,0} \prec [0\,1] \times (t \cdot F_{0,2,1,0})$. Let $A \in \text{Avoid}(m, t \cdot F_{0,2,2,0}, t-1)$ with $||A|| = \text{forb}(m, t \cdot F_{0,2,2,0}, t-1)$. Apply (5). We have

 $forb(m, t \cdot F_{0,2,2,0}, t-1) = ||A|| = ||[BCD]|| + ||C||$

$$\leq \operatorname{forb}(m-1, t \cdot F_{0,2,2,0}, t-1) + (t-1) \cdot \operatorname{forb}(m-1, \{F_{0,2,2,0}, t \cdot F_{0,2,1,0}\})$$

We apply Lemma 5 with induction on m to deduce that forb $(m, t \cdot F_{0,2,2,0}, t-1)$ is $O(m^2)$. Then by (1), forb $(m, t \cdot F_{0,2,2,0})$ is also $O(m^2)$.

Theorem 3 was proven for t = k = 2 in [1] using induction in the spirit of (5) ((t-1)-simple matrices are simple) and Lemma 5 for t = 2.

Lemma 5. We have that $forb(m, \{F_{0,2,2,0}, t \cdot F_{0,2,1,0}\})$ is O(m).

Proof. Let $A \in \text{Avoid}(m, \{F_{0,2,2,0}, t \cdot F_{0,2,1,0}\})$. Avoiding $F_{0,2,2,0}$ creates structure: Let X_i denote the columns of A of column sum i. Let $J_{a \times b}$ denote the $a \times b$ matrix of 1's and let $0_{a \times b}$ denote the $a \times b$ matrix of 0's. Now $F_{0,2,2,0} \not\prec X_i$ and so for $||X_i|| \ge 3$, we may deduce that there is a partition of the rows [m] into $A_i \cup B_i \cup C_i$. Let $x_i = |X_i|$. After suitable row and column permutations, we have X_i as follows:

type 1:
$$X_i = \begin{array}{c} A_i \{ \begin{bmatrix} I_{x_i} \\ J_{(i-1) \times x_i} \\ C_i \{ \begin{bmatrix} 0_{(m-x_i-i+1) \times x_i} \\ 0_{(m-x_i-i+1) \times x_i} \end{bmatrix} \text{ or type 2: } X_i = \begin{array}{c} A_i \{ \begin{bmatrix} I_{x_i}^c \\ J_{(i-x_i+1) \times x_i} \\ 0_{(m-i-1) \times x_i} \end{bmatrix} .$$

We will say *i* is of type j (j = 1 or j = 2) if the columns of sum *i* are of type *j*. These are the sunflowers (for type 1) and inverse sunflowers (type 2) of [7] where for type 1 the petals are A_i with center B_i .

Let $T(1) = \{i : i \text{ is of type } 1 \text{ and } ||X_i|| \ge t+2\}$. We wish to show for that $B_i \subset B_j$ for $i, j \in T(1)$ and i < j. Assume $p \in B_i \setminus B_j$. Given that $|B_i| < |B_j|$, there are two rows $r, s \in B_j \setminus B_i$. Then we find a copy of $t \cdot F_{0,2,1,0}$ in rows p, r, s of $[X_i X_j]$ (we would not choose the possible column of X_i that has a 1 in row r and the column of X_i that has a 1 in row s), a contradiction showing no such p exists and hence $B_i \subset B_j$.

We form a matrix Y_1 from those X_i with $i \in T(1)$. We have $||Y_1|| = \sum_{i \in T(1)} ||X_i|| = \sum_{i \in T(1)} |A_i|$. Assume $\sum_{i \in T(1)} |A_i| > (t+1)m$. Then there is some row p and (t+2)-set $\{s(1), s(2), \ldots, s(t+2)\}$ with $p \in A_i$ for all $i \in \{s(1), s(2), \ldots, s(t+2)\}$. Assume $s(1) < s(2) < \cdots < s(t+2)$. We have $B_{s(1)} \subset B_{s(2)} \subset \cdots \subset B_{s(t+2)}$. We may choose $r, s \in B_{s(t+2)} \setminus B_{s(t)}$ so that $r, s \in A_{s(i)} \cup C_{s(i)}$ for $i = 1, 2, \ldots, t$. We find a copy of $t \cdot F_{0,2,1,0}$ in rows p, r, s as follows. We take one column from each $X_{s(j)}$ for $j = 1, 2, \ldots, t$ and t columns from the $X_{s(t+2)}$. We conclude that $||Y_1|| \leq (t+1)m$. Similarly the matrix Y_2 formed from those X_i such that i is of type 2 and $||X_i|| \ge t+2$ has $||Y_2|| \le (t+1)m$. Now Y_1 and Y_2 represent all columns of A with the exception of columns of sum i with $||X_i|| \le t+1$ and so we conclude $||A|| \le ||Y_1|| + ||Y_2|| + (t+1)(m-1) + 2$. Thus ||A|| is O(m).

3 More evidence for the Conjecture

This section first explores the Conjecture 2 for $t \cdot F$ when F is $k \times 2$. The section concludes with the proof of Theorem 3 for k > 2. The following verifies Conjecture 2 for all $k \times 2 F$. Note that any $k \times 2$ matrix F can be written as $F_{a,b,c,d}$ ($b \ge c$) under proper row and column permutations. Since forb(m, F) is invariant under taking (0, 1)complement, we can further assume $a \ge d$. The case of t = 1 was solved in [3] by the following theorem.

Theorem 6. [3] Suppose $a \ge d$ and $b \ge c$. Then $forb(m, F_{a,b,c,d})$ is $\Theta(m^{a+b-1})$ if either b > c or $a, b \ge 1$. Also $forb(m, F_{a,0,0,d})$ is $\Theta(m^a)$ and $forb(m, F_{0,b,b,0})$ is $\Theta(m^b)$.

Note that Conjecture 2 is verified if there is a product construction avoiding F yielding the same asymptotic growth as an upper bound on $\operatorname{forb}(m, F)$. The k-fold product $I_{m/k} \times I_{m/k} \times \cdots \times I_{m/k} \in \operatorname{Avoid}(m, t \cdot F_{0,k,k,0})$ has $\Theta(m^k)$ columns. Thus Theorem 3 verifies the conjecture for $t \cdot F_{0,k,k,0}$. The following results verify the conjecture for $t \cdot F$ for the remaining $k \times 2 F$.

Theorem 7. For b > c or $a, b \ge 1$ then $forb(m, t \cdot F_{a,b,c,d})$ is $\Theta(m^{a+b})$.

Proof. The upper bound follows from $\operatorname{forb}(m, F_{a,b,c,d})$ being $\Theta(m^{a+b-1})$ and then applying Lemma 4. The lower bound follows from $2 \cdot \mathbf{1}_{a+b} \prec t \cdot F_{a,b,c,d}$ so that the (a+b)-fold product $I_{m/(a+b)} \times I_{m/(a+b)} \times \cdots \times I_{m/(a+b)} \in \operatorname{Avoid}(m, F_{a,b,c,d})$ and hence $\operatorname{forb}(m, t \cdot F_{a,b,c,d})$ is $\Omega(m^{a+b})$.

Theorem 8. Let $a \ge d$ be given. Then $forb(m, t \cdot F_{a,0,0,d})$ is $\Theta(m^a)$.

Proof. This follows using Lemma 9 repeatedly and also forb $(m, t \cdot F_{a,0,0,0})$ is $O(m^a)$ using Theorem 14. The *a*-fold product $I_{m/a} \times I_{m/a} \times \cdots \times I_{m/a} \in Avoid(m, t \cdot F_{a,0,0,d})$. \Box

The following result can be found in the survey on forbidden configurations [5]

Lemma 9. Assume for b(m, F) is $O(m^{\ell})$. Then for $b(m, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \times F)$ is $O(m^{\ell+1})$.

Here is the summary of results on forb $(m, t \cdot F_{a,b,c,d})$ $(a \ge d \text{ and } b \ge c)$, which verify Conjecture 2 for all $k \times 2 F$.

t	Configuration	result	reference	Lower bound construction
	$F_{a,b,c,d} (b > c$ or $a, b \ge 1$)	$\Theta(m^{a+b-1})$	[3]	$\overbrace{I \times I \times \cdots I \times I}^{a+b-1}$
t = 1	$F_{a,0,0,d}$	$\Theta(m^a)$	[3]	$\overbrace{I \times I \times \cdots I \times I}^{a}$
	$F_{0,b,b,0}$	$\Theta(m^b)$	[3]	$\overbrace{I \times I \times \cdots I \times I}^{b-1} \times T$
	$\begin{array}{c} t \cdot F_{a,b,c,d} \ (b > c \\ \text{or} \ a, b \ge 1) \end{array}$	$\Theta(m^{a+b})$	Lemma 4	$\overbrace{I \times I \times \cdots I \times I}^{a+b}$
$t \geqslant 2$	$t \cdot F_{a,0,0,d}$	$\Theta(m^a)$	Lemma 4	$\overbrace{I \times I \times \cdots I \times I}^{a}$
	$t \cdot F_{0,b,b,0}$	$\Theta(m^b)$	Theorem 3	$\overbrace{I \times I \times \cdots I \times I}^{b-1} \times T$

Table 1: All cases of forb $(m, t \cdot F_{a,b,c,d})$ with $a \ge d$ and $b \ge c$.

We note that the bound for $forb(m, t \cdot F_{a,0,0,d})$ can be readily established by a pigeonhole argument. We return to Theorem 3 and first obtain some useful lemmas. Let $X_i \in \text{Avoid}(m, F_{0,k,k,0})$ with all column sums *i*. We define X_i to be of type (a, b) if $a, b \ge 0$ are integers with a + b = k - 1 and there is a partition $C_i \cup D_i = [m]$ with $|D_i| + a - b = i$ such that any column α of X_i has exactly *a* 1's in rows C_i and exactly *b* 0's in rows D_i . We are able to use this structure in view of the following 'strong stability' result:

Lemma 10. [3] Let $Y_i \in \text{Avoid}(m, F_{0,k,k,0})$ with all column sums *i*. Assume $||Y_i|| \ge (6(k-1))^{5k+2}m^{k-2}$. Then there is an *m*-rowed submatrix X_i of Y_i and a pair of integers $a, b \ge 0$ with a + b = k - 1 such that X_i is of type (a, b) and where $||Y_i|| - ||X_i|| \le m^{k-3}$.

Lemma 11. Let $X_i \in \text{Avoid}(m, F_{0,k,k,0})$ have all columns of sum *i* and assume X_i is of type (a, b) with $a, b \ge 1$ with a + b = k - 1. Let $C_i \cup D_i = [m]$ be the associated partition of the rows. We form a bipartite graph $G_i = (V_i, E_i)$ with $V_i = \binom{C_i}{a} \cup \binom{D_i}{b}$ where we have $(C, D) \in E_i$ if there is a column of X_i with a 1's in rows C and $D_i \setminus D$ and b 0's in rows D and $C_i \setminus C$. Assume $|E_i| \ge 2km^{k-2}$. Then there is subgraph $G'_i = (V'_i, E'_i)$ of G_i with $|E'| \ge \frac{1}{2}|E_i|$ such that for every pair $C \in \binom{C_i}{a}$ and $D \in \binom{D_i}{b}$ with $(C, D) \in E'$ we have

$$d_{G'_i}(C) \ge (b+1/2)m^{b-1}, \qquad d_{G'_i}(D) \ge (a+1/2)m^{a-1}.$$
 (6)

Proof. Simply delete vertices $C \in \binom{C_i}{a}$ with $d_G(C) < (b+1/2)m^{b-1}$ and vertices $D \in \binom{D_i}{b}$ with $d_G(D) < (a+1/2)m^{a-1}$ and continue deleting vertices until conditions (6) are satisfied for any remaining vertices of G'. This will delete a maximum of $(b+1/2)m^{b-1}\binom{|C_i|}{a} + (a+1/2)m^{a-1}\binom{|D_i|}{b} < km^{k-2}$ edges which deletes less than half the edges of G.

Lemma 12. Let k be given. Then $forb(m, \{F_{0,k,k,0}, t \cdot F_{0,k,k-1,0}\})$ is $O(m^{k-1})$.

Proof. Let $A \in \text{Avoid}(m, \{F_{0,k,k,0}, t \cdot F_{0,k,k-1,0}\})$. Let Y_i denote the columns of A of column sum i. For all i for which $|Y_i| < (6(k-1))^{5k+2}m^{k-2}$, delete the columns of Y_i from A. This may delete $(6(k-1))^{5k+2}m^{k-1}$ columns. For i with $|Y_i| \ge (6(k-1))^{5k+2}m^{k-2}$, apply Lemma 10 and obtain X_i with $|X_i| \ge (6(k-1))^{5k+2}m^{k-2} - m^{k-3}$.

We consider a choice a, b with a + b = k - 1. Let $T(a, b) = \{i : X_i \text{ is of type } (a, b)\}$. We will show that $\sum_{i \in T(a,b)} |X_i| \leq (tk)m^{k-1}$. Case 1. $a, b \geq 1$.

Create G_i as described in Lemma 11 to obtain G'_i for each $i \in T(a, b)$. Now if $\sum_{i \in T(a,b)} |E'_i| > (t+1)m^{a+b}$, then there will be some edge $(C, D) \in E'_i$ for at least t+2 choices $i \in T(a, b)$. Let those choices be $s(1), s(2), \ldots, s(t+2)$ where $s(1) < s(2) < \cdots < s(t+2)$. We wish to show that $X_{s(i)}$ has $t \cdot F_{0,k-1,0,0}$ on rows $C \cup D$.

$$\operatorname{rows} C \begin{cases} 1 & 11\cdots 1 & 00\cdots 0 \\ 0 & 11\cdots 1 & 00\cdots 0 \end{cases}$$

The electronic journal of combinatorics 20(4) (2013), #P2

For a given set $D \in {\binom{D_{s(i)}}{b}}$, we compute $|\{H \in {\binom{D_{s(i)}}{b}} : H \cap D \neq \emptyset\}| \leq \sum_{j=1}^{b} {\binom{b}{j}} {\binom{D_{s(i)} \setminus D}{b-j}} < bm^{b-1}$.

Now if $d_{G'}(C) \ge (b+1/2)m^{b-1}$ and $(C,D) \in E'_{s(i)}$ then there are at least t edges $(C,H) \in E'_{s(i)}$ with $H \cap D = \emptyset$. We are using $(b+1/2)m^{b-1} > bm^{b-1} + t + 2$ which is true for m large enough and so asymptotics are unaffected. Thus we have t columns of $X_{s(1)}$ with $\mathbf{1}_{k-1}$ on rows $C \cup D$ and, because these columns have a 1's on rows $C \subseteq C_{s(1)}$, these columns are 0's on the remaining rows of $C_{s(1)} \setminus C$.

Similarly, because $d_{G'_i}(D) \ge (a+1/2)m^{a-1}$ there will be t+2 edges $(K,D) \in E_{s(i)}$ with $K \cap C = \emptyset$ and so there are t columns of $X_{s(t+2)}$ with $\mathbf{0}_{k-1}$ on rows $C \cup D$ and, because these columns have 0's on rows D, these columns are 1's on rows of $D_{s(t+2)} \setminus D$.

We choose k rows in $Z = D_{s(t+2)} \setminus D_{s(1)}$ so that $Z \subseteq C_{s(1)}$. We deduce that in the chosen t columns of $X_{s(1)}$ we have $\mathbf{0}_k$ in rows Z since $Z \subseteq C_{s(1)} \setminus C$ and the columns have $\mathbf{1}_{k-1}$ in rows $C \cup D$. In the chosen t columns of $X_{s(t+2)}$ we have $\mathbf{1}_k$ in rows Z since $Z \subset D_{s(t+2)} \setminus D$ and the columns have $\mathbf{0}_{k-1}$ in rows $C \cup D$. This yields $t \cdot F_{0,k,k-1,0}$, a contradiction. Thus $\sum_{i \in Type(a,b)} |E'_i| \leq (t+1)m^{k-1}$. This concludes Case 1.

Case 2. a = k - 1, b = 0 or a = 0, b = k - 1.

We proceed similarly. We need only consider a = k-1, b = 0 since the case a = 0, b = k-1 is just the (0,1)-complement. For $i \in T(k-1,0)$, X_i has partition $C_i \cup D_i = [m]$ and columns of X_i have 1's on exactly k-1 rows of C_i and all 1's on rows D_i . Assume $\sum_{i \in T(k-1,0)} |X_i| \ge (tk)m^{k-1}$. Then there are tk choices $s(1), s(2), \ldots, s(tk) \in T(k-1,0)$ where $s(1) < s(2) < \cdots < s(tk)$ such that, for some $C \in \binom{C_s(i)}{k-1}$, each $X_{s(i)}$ has a column with 1's in rows $C \cup D_{s(i)}$ and 0's in rows $C_{s(i)} \setminus C$. We wish to find $t \cdot F_{0,k-1,0,0}$ in A in rows C as follows using one column from each of $X_{s(i)}$ for $i = 1, 2, \ldots, t$ and t columns from $X_{s(tk)}$.

$$\operatorname{rows} C \left\{ \begin{array}{cccccccc} 1 & 1 & 1 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & \cdots & 0 \\ & X_{s(1)} & X_{s(2)} & & X_{s(t)} & X_{s(tk)} & & X_{s(tk)} \end{array} \right.$$

Given our choice $C \in {\binom{C_{s(tk)}}{k-1}}$, we compute that $|\{K \in {\binom{C_{s(kt)}}{k-1}} : K \cap C \neq \emptyset\}| < km^{k-2}$. Thus with $|X_{s(kt)}| \ge km^{k-2}$, there will be t choices K_1, K_2, \ldots, K_t disjoint from C and hence one column of $X_{s(kt)}$ for each $i = 1, 2, \ldots, t$ with $\mathbf{1}_{k-1}$ on rows of $K_i \subseteq C_{s(kt)} \setminus C$ and 0's on $C_{s(kt)} \setminus K_i$ and hence $\mathbf{0}_{k-1}$ on rows C.

We will show below that we can choose $D \subset D_{s(kt)} \setminus \bigcup_{i=1}^{t} D_{s(i)}$ with |D| = k. Then we can find $t \cdot F_{0,k,k-1,0}$ as follows. We have one column in $X_{s(i)}$ for each $i = 1, 2, \ldots, t$ which is $\mathbf{1}_{k-1}$ on rows C and $\mathbf{0}_k$ on rows D (since $D \subset C_{s(i)} \setminus C$ for each $i = 1, 2, \ldots, t$). The t columns of $X_{s(tk)}$ we have selected have $\mathbf{0}_{k-1}$ on rows C and 1's on $D_{s(kt)}$ where $D \subseteq D_{s(kt)}$ and hence $\mathbf{1}_k$ on rows D. These 2t columns yield $t \cdot F_{0,k,k-1,0}$ in $[X_{s(1)} \mid X_{s(2)} \cdots \mid X_{s(t)} \mid X_{s(kt)}]$. To show that D can be chosen we first show that $D_{s(i)} \setminus D_{s(j)} \leq k-2$ for s(i) < s(j). Assume the contrary, $D_{s(i)} \setminus D_{s(j)} \geq k-1$ for s(i) < s(j). We choose $C' \subseteq D_{s(i)} \setminus D_{s(j)}$ with |C'| = k - 1. Given s(j) > s(i), then $D_{s(j)} \setminus D_{s(i)} \geq k$ and so we may choose $D' \subseteq D_{s(j)} \setminus D_{s(i)}$ with |D'| = k. Now $C' \subset C_{s(j)}$ and $D' \subset C_{s(i)}$. The number of possible columns of $X_{s(j)}$ with at least one 1 on the rows C' is at most m^{k-2} and with $|X_{s(j)}| \geq m^{k-1} + t$, we find t columns of $X_{s(j)}$ with 0's on rows C' and necessarily with 1's on rows D'. The number of possible columns of $X_{s(i)}$ with at least one 1 on the rows of D' is $|D'|m^{k-2} < m^{k-1}$. Given $|X_{s(i)}| \geq m^{k-1} + t$, we find t columns of $X_{s(i)}$ with 0's on rows D' and necessarily with 1's on rows C'. This yields $t \cdot F_{0,k,k-1,0}$ in $[X_{s(i)} \mid X_{s(j)}]$, a contradiction. Thus $D_{s(i)} \setminus D_{s(j)} \leq k-2$ for s(i) < s(j). We may now conclude that $|D_{s(kt} \setminus \bigcup_{i=1}^{t} D_{s(i)}| \geq k$ and so a choice for D exists. We conclude $\sum_{i \in T(k-1,0)} |X_i| \leq (tk)m^{k-1}$. This concludes Case 2.

There are k + 1 choices for type (a, b) and so

$$\sum_{i=0}^{m} |X_i| \leq \sum_{j=0}^{k} \left(\sum_{i \in T(j,k-1-j)} |X_i| \right) \leq (k+1)(2tk)m^{k-1}$$

and so $||A|| \leq (2tk(k+1))m^{k-1} + (6(k-1))^{5k+2}m^{k-2}$ which is $O(m^{k-1})$.

Proof of Theorem 3 for $k \ge 3$: We use (5) so that

forb $(m, t \cdot F_{0,k,k,0}, t-1)$ ≤ forb $(m-1, t \cdot F_{0,k,k,0}, t-1) + (t-1)$ forb $(m, \{F_{0,k,k,0}, t \cdot F_{0,k,k-1,0}\})$. Induction on m and Lemma 12 yields the bound.

4 Some applications of the Induction

Let K_k denote the $k \times 2^k$ of all possible (0,1)-columns on k rows. The following is the fundamental result about forbidden configurations.

Theorem 13. [Sauer [10], Perles and Shelah [11], Vapnik and Chervonenkis [12]] We have that

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \dots + \binom{m}{0}$$

Thus $forb(m, K_k)$ is $\Theta(m^{k-1})$.

We can apply this result as follows.

Theorem 14. [8] Let F be a given $k \times \ell$ (0,1)-matrix. Then for b(m, F) is $O(m^k)$.

Proof. Let t be the maximum multiplicity of a column in F (of course $t \leq \ell$). Then $F \prec t \cdot K_k$ and so $\operatorname{supp}(F) \prec K_k$. Now Lemma 4 combined with Theorem 13 yields the result.

Interestingly this yields the exact result for $\operatorname{forb}(m, 2 \cdot K_k)$ [9]. A more precise result of Anstee and Füredi [2] for $\operatorname{forb}(m, t \cdot K_k)$ has the leading term being bounded by $\frac{t+k-1}{k+1} \binom{m}{k}$ for $t \ge 2$. The following surprising result was obtained by Balogh and Bollobás.

Theorem 15. [6] Let k be given. There is a constant c_k with $forb(m, \{I_k, I_k^c, T_k\}) = c_k$.

This yields the following.

Theorem 16. Let $t, k \ge 2$ be given. Then $forb(m, \{t \cdot I_k, t \cdot I_k^c, t \cdot T_k\})$ is $\Theta(m)$.

Proof. Apply Lemma 4. The matrix $I_m \in \text{Avoid}(m, \{t \cdot I_k, t \cdot I_k^c, t \cdot T_k\})$ shows that forb $(m, \{t \cdot I_k, t \cdot I_k^c, t \cdot T_k\})$ is $\Theta(m)$.

Lemma 4 is interesting for those H for which $\operatorname{forb}(m, H)$ is $O(m^{\ell})$ and the number of rows in H is bigger than ℓ (see [5] for examples). It is not expected that this will resolve any boundary cases, namely those F for which $\operatorname{forb}(m, [F | \alpha])$ is bigger than $\operatorname{forb}(m, F)$ by a linear factor (or more) for all choices α which are either not present in F or occur at most once in F. The previously mentioned $F_6(t)$ and $F_7(t)$ have quite complicated structure and the induction (5) does not appear to work directly.

References

- [1] R.P. Anstee, Some Problems Concerning Forbidden Configurations, preprint from 1990.
- [2] R.P. Anstee and Z. Füredi, Forbidden submatrices, *Discrete Math.* 62 (1986), 225–243.
- [3] R.P. Anstee and P. Keevash, Pairwise intersections and forbidden configurations, European J. of Combin. 27 (2006), 1235–1248.
- [4] R.P. Anstee, A. Sali, Small Forbidden Configurations IV, Combinatorica 25(2005), 503-518.
- [5] R.P. Anstee, A Survey of forbidden configurations results, *Elec. J. Combinatorics* 20 (2013), DS20, 56pp.
- [6] J. Balogh, B. Bollobás, Unavoidable Traces of Set Systems, Combinatorica, 25 (2005), 633-643.
- [7] P. Frankl, Z. Füredi and J. Pach, Bounding one-way differences, Graphs and Combinatorics, 3 (1987), 341-347.
- [8] Z. Füredi, personal communication, 1983.
- [9] H.O.F. Gronau, An extremal set problem, Studia Sci. Math. Hungar. 15(1980), 29-30.
- [10] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145–147.

- [11] S. Shelah, A combinatorial problem: Stability and order for models and theories in infinitary languages, *Pacific J. Mathematics* 4 (1972), 247–261.
- [12] V.N. Vapnik and A.Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, *Theory of Probability and Applications* 25 (1971), 264–280.