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Abstract

Let t > 1 be a given integer. Let F be a family of subsets of [m] = {1, 2, . . . ,m}.
Assume that for every pair of disjoint sets S, T ⊂ [m] with |S| = |T | = k, there do
not exist 2t sets in F where t subsets of F contain S and are disjoint from T and
t subsets of F contain T and are disjoint from S. We show that |F| is O(mk).

Our main new ingredient is allowing, during the inductive proof, multisets of
subsets of [m] where the multiplicity of a given set is bounded by t − 1. We
use a strong stability result of Anstee and Keevash. This is further evidence for
a conjecture of Anstee and Sali. These problems can be stated in the language
of matrices. Let t ·M denote t copies of the matrix M concatenated together.
We have established the conjecture for those configurations t · F for any k × 2
(0,1)-matrix F .

Keywords: extremal set theory, extremal hypergraphs, (0,1)-matrices, multiset,
forbidden configurations, trace, subhypergraph.

1 Introduction

We will be considering a problem in extremal hypergraphs that can be phrased as how
many edges a hypergraph on m vertices can have when there is a forbidden subhyper-
graph. There are a variety of ways to define this problem (we could, but do not, restrict
to (simple) k-uniform hypergraphs). We can encode a hypergraph on m vertices as an
m-rowed (0,1)-matrix where the ith column is the incidence vector of the ith hyperedge.
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A hypergraph is simple if there are no repeated edges. We define a matrix to be simple
if it is a (0,1)-matrix with no repeated columns. We will use the language of matrices
in this paper.

Let M be an m-rowed (0,1)-matrix. Some notation about repeated columns is
needed. For an m × 1 (0,1)-column α, we define µ(α,M) as the multiplicity of col-
umn α in a matrix M . We consider matrices of bounded column multiplicity. We define
a matrix A to be t-simple if it is a (0,1)-matrix and every column α of A has µ(α,A) 6 t.
Simple matrices are 1-simple. For a given matrix M , let supp(M) denote the maximal
simple m-rowed submatrix of M , so that if µ(α,M) > 1 then µ(α, supp(M)) = 1. The
matrices below are a 3-simple matrix M and its support supp(M).

M =

[
0 1 0 1 1 0
1 0 1 1 0 1

]
, supp(M) =

[
0 1 1
1 0 1

]
For two (0, 1)-matrices F and A, we say that F is a configuration in A, and write

F ≺ A if there is a row and column permutation of F which is a submatrix of A. Let
F denote a finite set of (0,1)-matrices. Let Avoid(m,F , t) denote all m-rowed t-simple
matrices A for which F 6≺ A for all F ∈ F . We are most interested in cases with
|F| = 1 [5]. We do not require any F ∈ F to be simple which is quite different from
usual forbidden subhypergraph problems. Let ‖A‖ denote the number of columns of A.
Our extremal function of interest is

forb(m,F) = max
A
{‖A‖ : A ∈ Avoid(m,F , 1)}.

We find it helpful to also define

forb(m,F , t) = max
A
{‖A‖ : A ∈ Avoid(m,F , t)}.

If A ∈ Avoid(m,F , t) then supp(A) ∈ Avoid(m,F , 1) and ‖A‖ 6 t · ‖supp(A)‖. We
obtain

forb(m,F) 6 forb(m,F , t) 6 t · forb(m,F), (1)

so that the asymptotic growth of forb(m,F) is the same as that of forb(m,F , t) for
fixed t.

We have an important conjecture about forb(m,F ). We use the notation [M |N ]
to denote the matrix obtained from concatenating the two matrices M and N . We
use the notation k ·M to denote the matrix [M |M | · · · |M ] consisting of k copies of M
concatenated together. Let Ik denote the k × k identity matrix and let Ick denote the
(0,1)-complement of Ik. Let Tk denote the k × k triangular (0,1)-matrix with the (i, j)
entry being 1 if and only if i 6 j. For an m1 × n1 matrix X and an m2 × n2 matrix Y ,
we define the 2-fold product X × Y as the (m1 +m2)×n1n2 matrix where each column
consisting of a column of X placed on a column of Y and this is done in all possible
ways. This extends to p-fold products.
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Definition 1. Let X(F ) be the smallest p so that F ≺ A1 × A2 × · · · × Ap for every
choice of Ai as either Im/p, I

c
m/p or Tm/p for sufficiently large m.

Alternatively, assuming F 6≺ I or F 6≺ Ic or F 6≺ T , then X(F ) − 1 is the largest
choice of p so that F 6≺ A1 × A2 × · · · × Ap for some choices of Ai as either Im/p, I

c
m/p

or Tm/p. We note that if A1 × A2 × · · · × Ap ∈ Avoid(m,F ), then forb(m,F ) is Ω(mp).
Details are in [5]. We are assuming m is large and divisible by p, in particular that

m > (k+1)(k`+1) so that m/p > k`+1. Divisibility by p does not affect the asymptotic
growth, thus forb(m,F ) is Ω(mX(F )−1) using an appropriate (X(F )− 1)-fold product.

Conjecture 2. [4] Let F be given. Then forb(m,F ) = Θ(mX(F )−1).

The conjecture was known to be true for all 3-rowed F [4] and all k × 2 F [3].
Section 3 shows how Theorem 3 establishes the conjecture for matrices t · F when F is
a k × 2 matrix. It is of interest to generalize Conjecture 2 to forb(m,F) where |F| > 1
but we know example of F where the modified form of the conjecture fails (see [5]).

We define Fe,f,g,h as the (e+ f + g + h)× 2 matrix consisting of e rows [1 1], f rows
[1 0], g rows [0 1] and h rows [0 0]. Let 1e0f denote the (e+ f)× 1 vector of e 1’s on top
of f 0’s so that Fe,f,g,h = [1e+f0g+h |1e0f1g0h]. We let 1e denote the e × 1 vector of e
1’s and 0f denote the f × 1 vector of f 0’s. Our main result is the following which had
foiled many previous attempts.

Theorem 3. Let t > 2 be given. Then forb(m, t · F0,k,k,0) is Θ(mk).

The forbidden configuration t ·F0,k,k,0 in the language of sets, consists of two disjoint
k-sets S, T , and a family of t sets containing S but disjoint from T , and the other family
of another t sets containing T but disjoint from S. This theorem echoes our statement
in the abstract.

The result for t = 2 and k = 2 was proven in [1] and many details worked out for
t = 2 and k > 2 by the first author and Peter Keevash. The extension for t > 2, k = 2
had been open since then [5]. The proof for t > 2, k = 2 is in Section 2. The proof
for t > 2, k > 2 is in Section 3. Matrices F6(t), F7(t) were given in [5] as 4-rowed
forbidden configurations (with some columns of multiplicity t) for which Conjecture 2
predicts forb(m,F6(t)) and forb(m,F7(t)) are O(m2). Note that t · F0,2,2,0 ≺ F6(t) and
t·F0,2,2,0 ≺ F7(t) and so Theorem 3 is a step towards these bounds which would establish
Conjecture 2 for all 4-rowed F . Our proof use a new induction given in Section 2 that
considers t-simple matrices as well as a strong stability result Lemma 10. We offer some
additional applications in Section 4.

2 New Induction

We consider a new form of the standard induction for forbidden configurations [5]. Let
F be a matrix with maximum column multiplicity t. Thus F ≺ t · supp(F ). Let
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A ∈ Avoid(m,F, t − 1). Assume ‖A‖ = forb(m,F , t − 1). Given a row r we permute
rows and columns of A to obtain

A =
row r →

[
0 0 · · · 0 1 1 · · · 1
G H

]
. (2)

Now µ(α,G) 6 t − 1 and µ(α,H) 6 t − 1. For those α for which µ(α, [GH]) > t, let
C be formed with µ(α,C) = min{µ(α,G), µ(α,H)}. We rewrite our decomposition of
A as follows:

A =
row r →

[
0 0 · · · 0 1 1 · · · 1
B C C D

]
. (3)

Then we deduce that [BCD] and C are both (t − 1)-simple. The former follows from
µ(α, [B C D]) = µ(α,G) + µ(α,H) − min{µ(α,G), µ(α,H)} 6 t − 1. We have that
F 6≺ [B C D] for F ∈ F . Also for any F ′ ≺ C then [0 1]× F ′ ≺ A so we define

G = {F ′ : for F ∈ F , F ≺ [0 1]× F ′ and F 6≺ [0 1]× F ′′ for all F ′′ ≺ F ′, F ′′ 6= F ′}.
(4)

Basically, G is the family after removing redundancy from all configurations F ′ that
are obtained by removing one row from any F in F .

Also since each column α of C has µ(α, [GH]) > t, we deduce that supp(F ) 6≺ C for
each F ∈ F . Our induction on m becomes:

forb(m,F , t− 1) = ‖A‖ = ‖[BCD]‖+ ‖C‖

6 forb(m−1,F , t−1)+(t−1)·forb(m−1,G∪{supp(F ) : F ∈ F}). (5)

Lemma 4. Let H be a given simple matrix satisfying forb(m,H) is O(m`). Then
forb(m, t ·H) is O(m`+1).

Proof. We use the induction (5) where F = t · H and H = supp(F ). Induction on m
yields the desired bound.

Proof of Theorem 3 for k = 2: We will use induction on m to show forb(m, t ·
F0,2,2,0, t) is O(m2). The maximum multiplicity of a column in t ·F0,2,2,0 is t and F0,2,2,0 =
supp(t · F0,2,2,0). Also t · F0,2,2,0 ≺ [0 1]× (t · F0,2,1,0). Let A ∈ Avoid(m, t · F0,2,2,0, t− 1)
with ‖A‖ = forb(m, t · F0,2,2,0, t− 1). Apply (5). We have

forb(m, t · F0,2,2,0, t− 1) = ‖A‖ = ‖[BCD]‖+ ‖C‖

6 forb(m− 1, t · F0,2,2,0, t− 1) + (t− 1) · forb(m− 1, {F0,2,2,0, t · F0,2,1,0}).
We apply Lemma 5 with induction on m to deduce that forb(m, t·F0,2,2,0, t−1) is O(m2).
Then by (1), forb(m, t · F0,2,2,0) is also O(m2).

Theorem 3 was proven for t = k = 2 in [1] using induction in the spirit of (5)
((t− 1)-simple matrices are simple) and Lemma 5 for t = 2.
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Lemma 5. We have that forb(m, {F0,2,2,0, t · F0,2,1,0}) is O(m).

Proof. Let A ∈ Avoid(m, {F0,2,2,0, t · F0,2,1,0}). Avoiding F0,2,2,0 creates structure: Let
Xi denote the columns of A of column sum i. Let Ja×b denote the a × b matrix of 1’s
and let 0a×b denote the a × b matrix of 0’s. Now F0,2,2,0 6≺ Xi and so for ‖Xi‖ > 3, we
may deduce that there is a partition of the rows [m] into Ai ∪ Bi ∪ Ci. Let xi = |Xi|.
After suitable row and column permutations, we have Xi as follows:

type 1: Xi =
Ai{
Bi{
Ci{

 Ixi

J(i−1)×xi

0(m−xi−i+1)×xi

 or type 2: Xi =
Ai{
Bi{
Ci{

 Icxi

J(i−xi+1)×xi

0(m−i−1)×xi

 .
We will say i is of type j (j = 1 or j = 2) if the columns of sum i are of type j. These
are the sunflowers (for type 1) and inverse sunflowers (type 2) of [7] where for type 1
the petals are Ai with center Bi.

Let T (1) = {i : i is of type 1 and ‖Xi‖ > t+ 2}. We wish to show for that Bi ⊂ Bj

for i, j ∈ T (1) and i < j. Assume p ∈ Bi\Bj. Given that |Bi| < |Bj|, there are two
rows r, s ∈ Bj\Bi. Then we find a copy of t · F0,2,1,0 in rows p, r, s of [XiXj] (we would
not choose the possible column of Xi that has a 1 in row r and the column of Xi that
has a 1 in row s), a contradiction showing no such p exists and hence Bi ⊂ Bj.

We form a matrix Y1 from those Xi with i ∈ T (1). We have ‖Y1‖ =
∑

i∈T (1) ‖Xi‖ =∑
i∈T (1) |Ai|. Assume

∑
i∈T (1) |Ai| > (t + 1)m. Then there is some row p and (t + 2)-

set {s(1), s(2), . . . , s(t + 2)} with p ∈ Ai for all i ∈ {s(1), s(2), . . . , s(t + 2)}. Assume
s(1) < s(2) < · · · < s(t + 2). We have Bs(1) ⊂ Bs(2) ⊂ · · · ⊂ Bs(t+2). We may choose
r, s ∈ Bs(t+2)\Bs(t) so that r, s ∈ As(i)∪Cs(i) for i = 1, 2, . . . , t. We find a copy of t·F0,2,1,0

in rows p, r, s as follows. We take one column from each Xs(j) for j = 1, 2, . . . , t and t
columns from the Xs(t+2). We conclude that ‖Y1‖ 6 (t + 1)m. Similarly the matrix Y2
formed from those Xi such that i is of type 2 and ‖Xi‖ > t + 2 has ‖Y2‖ 6 (t + 1)m.
Now Y1 and Y2 represent all columns of A with the exception of columns of sum i with
‖Xi‖ 6 t+ 1 and so we conclude ‖A‖ 6 ‖Y1‖+ ‖Y2‖+ (t+ 1)(m− 1) + 2. Thus ‖A‖ is
O(m).

3 More evidence for the Conjecture

This section first explores the Conjecture 2 for t · F when F is k × 2. The section
concludes with the proof of Theorem 3 for k > 2. The following verifies Conjecture 2
for all k × 2 F . Note that any k × 2 matrix F can be written as Fa,b,c,d (b > c) under
proper row and column permutations. Since forb(m,F ) is invariant under taking (0, 1)-
complement, we can further assume a > d. The case of t = 1 was solved in [3] by the
following theorem.

Theorem 6. [3] Suppose a > d and b > c. Then forb(m,Fa,b,c,d) is Θ(ma+b−1) if either
b > c or a, b > 1. Also forb(m,Fa,0,0,d) is Θ(ma) and forb(m,F0,b,b,0) is Θ(mb).
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Note that Conjecture 2 is verified if there is a product construction avoiding F
yielding the same asymptotic growth as an upper bound on forb(m,F ). The k-fold
product Im/k × Im/k × · · · × Im/k ∈ Avoid(m, t · F0,k,k,0) has Θ(mk) columns. Thus
Theorem 3 verifies the conjecture for t·F0,k,k,0. The following results verify the conjecture
for t · F for the remaining k × 2 F .

Theorem 7. For b > c or a, b > 1 then forb(m, t · Fa,b,c,d) is Θ(ma+b).

Proof. The upper bound follows from forb(m,Fa,b,c,d) being Θ(ma+b−1) and then apply-
ing Lemma 4. The lower bound follows from 2 · 1a+b ≺ t ·Fa,b,c,d so that the (a+ b)-fold
product Im/(a+b)×Im/(a+b)×· · ·×Im/(a+b) ∈ Avoid(m,Fa,b,c,d) and hence forb(m, t·Fa,b,c,d)
is Ω(ma+b).

Theorem 8. Let a > d be given. Then forb(m, t · Fa,0,0,d) is Θ(ma).

Proof. This follows using Lemma 9 repeatedly and also forb(m, t·Fa,0,0,0) is O(ma) using
Theorem 14. The a-fold product Im/a × Im/a × · · · × Im/a ∈ Avoid(m, t · Fa,0,0,d).

The following result can be found in the survey on forbidden configurations [5]

Lemma 9. Assume forb(m,F ) is O(m`). Then forb(m,
[
1
0

]
× F ) is O(m`+1).

Here is the summary of results on forb(m, t · Fa,b,c,d) (a > d and b > c), which verify
Conjecture 2 for all k × 2 F .

t Configuration result reference Lower bound construction

Fa,b,c,d (b > c
or a, b > 1)

Θ(ma+b−1) [3]

a+b−1︷ ︸︸ ︷
I × I × · · · I × I

t = 1 Fa,0,0,d Θ(ma) [3]

a︷ ︸︸ ︷
I × I × · · · I × I

F0,b,b,0 Θ(mb) [3]

b−1︷ ︸︸ ︷
I × I × · · · I × I ×T

t · Fa,b,c,d (b > c
or a, b > 1)

Θ(ma+b) Lemma 4

a+b︷ ︸︸ ︷
I × I × · · · I × I

t > 2 t · Fa,0,0,d Θ(ma) Lemma 4

a︷ ︸︸ ︷
I × I × · · · I × I

t · F0,b,b,0 Θ(mb) Theorem 3

b−1︷ ︸︸ ︷
I × I × · · · I × I ×T

Table 1: All cases of forb(m, t · Fa,b,c,d) with a > d and b > c.

We note that the bound for forb(m, t · Fa,0,0,d) can be readily established by a pi-
geonhole argument. We return to Theorem 3 and first obtain some useful lemmas. Let
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Xi ∈ Avoid(m,F0,k,k,0) with all column sums i. We define Xi to be of type (a, b) if
a, b > 0 are integers with a + b = k − 1 and there is a partition Ci ∪ Di = [m] with
|Di|+ a− b = i such that any column α of Xi has exactly a 1’s in rows Ci and exactly b
0’s in rows Di. We are able to use this structure in view of the following ‘strong stability’
result:

Lemma 10. [3] Let Yi ∈ Avoid(m,F0,k,k,0) with all column sums i. Assume ‖Yi‖ >
(6(k− 1))5k+2mk−2. Then there is an m-rowed submatrix Xi of Yi and a pair of integers
a, b > 0 with a+ b = k− 1 such that Xi is of type (a, b) and where ‖Yi‖− ‖Xi‖ 6 mk−3.

Lemma 11. Let Xi ∈ Avoid(m,F0,k,k,0) have all columns of sum i and assume Xi is of
type (a, b) with a, b > 1 with a+ b = k− 1. Let Ci ∪Di = [m] be the associated partition
of the rows. We form a bipartite graph Gi = (Vi, Ei) with Vi =

(
Ci

a

)
∪
(
Di

b

)
where we

have (C,D) ∈ Ei if there is a column of Xi with a 1’s in rows C and Di\D and b 0’s in
rows D and Ci\C. Assume |Ei| > 2kmk−2.Then there is subgraph G′i = (V ′i , E

′
i) of Gi

with |E ′| > 1
2
|Ei| such that for every pair C ∈

(
Ci

a

)
and D ∈

(
Di

b

)
with (C,D) ∈ E ′ we

have
dG′

i
(C) > (b+ 1/2)mb−1, dG′

i
(D) > (a+ 1/2)ma−1. (6)

Proof. Simply delete vertices C ∈
(
Ci

a

)
with dG(C) < (b + 1/2)mb−1 and vertices D ∈(

Di

b

)
with dG(D) < (a + 1/2)ma−1 and continue deleting vertices until conditions (6)

are satisfied for any remaining vertices of G′. This will delete a maximum of (b +
1/2)mb−1(|Ci|

a

)
+ (a + 1/2)ma−1(|Di|

b

)
< kmk−2 edges which deletes less than half the

edges of G.

Lemma 12. Let k be given. Then forb(m, {F0,k,k,0, t · F0,k,k−1,0}) is O(mk−1).

Proof. Let A ∈ Avoid(m, {F0,k,k,0, t · F0,k,k−1,0}). Let Yi denote the columns of A of
column sum i. For all i for which |Yi| < (6(k−1))5k+2mk−2, delete the columns of Yi from
A. This may delete (6(k − 1))5k+2mk−1 columns. For i with |Yi| > (6(k − 1))5k+2mk−2,
apply Lemma 10 and obtain Xi with |Xi| > (6(k − 1))5k+2mk−2 −mk−3.

We consider a choice a, b with a+ b = k− 1. Let T (a, b) = {i : Xi is of type (a, b)}.
We will show that

∑
i∈T (a,b) |Xi| 6 (tk)mk−1.

Case 1. a, b > 1.
Create Gi as described in Lemma 11 to obtain G′i for each i ∈ T (a, b). Now if∑

i∈T (a,b) |E ′i| > (t+ 1)ma+b, then there will be some edge (C,D) ∈ E ′i for at least t+ 2

choices i ∈ T (a, b). Let those choices be s(1), s(2), . . . , s(t + 2) where s(1) < s(2) <
· · · < s(t+ 2). We wish to show that Xs(i) has t · F0,k−1,0,0 on rows C ∪D.

rows C

{ 1
1
1

t︷ ︸︸ ︷
1 1 · · · 1
1 1 · · · 1
1 1 · · · 1

t︷ ︸︸ ︷
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

rows D

{
0
0

1 1 · · · 1
1 1 · · · 1

0 0 · · · 0
0 0 · · · 0
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For a given setD ∈
(
Ds(i)

b

)
, we compute |{H ∈

(
Ds(i)

b

)
: H∩D 6= ∅}| 6

∑b
j=1

(
b
j

)(
Ds(i)\D

b−j

)
<

bmb−1.
Now if dG′(C) > (b + 1/2)mb−1 and (C,D) ∈ E ′s(i) then there are at least t edges

(C,H) ∈ E ′s(i) with H ∩D = ∅. We are using (b + 1/2)mb−1 > bmb−1 + t + 2 which is
true for m large enough and so asymptotics are unaffected. Thus we have t columns of
Xs(1) with 1k−1 on rows C∪D and, because these columns have a 1’s on rows C ⊆ Cs(1),
these columns are 0’s on the remaining rows of Cs(1)\C.

Similarly, because dG′
i
(D) > (a + 1/2)ma−1 there will be t + 2 edges (K,D) ∈ Es(i)

with K ∩ C = ∅ and so there are t columns of Xs(t+2) with 0k−1 on rows C ∪ D and,
because these columns have 0’s on rows D, these columns are 1’s on rows of Ds(t+2)\D.

We choose k rows in Z = Ds(t+2)\Ds(1) so that Z ⊆ Cs(1). We deduce that in the
chosen t columns of Xs(1) we have 0k in rows Z since Z ⊆ Cs(1)\C and the columns
have 1k−1 in rows C ∪D. In the chosen t columns of Xs(t+2) we have 1k in rows Z since
Z ⊂ Ds(t+2)\D and the columns have 0k−1 in rows C ∪ D. This yields t · F0,k,k−1,0, a
contradiction. Thus

∑
i∈Type(a,b) |E ′i| 6 (t+ 1)mk−1. This concludes Case 1.

Case 2. a = k − 1, b = 0 or a = 0, b = k − 1.
We proceed similarly. We need only consider a = k−1, b = 0 since the case a = 0, b =

k − 1 is just the (0,1)-complement. For i ∈ T (k − 1, 0), Xi has partition Ci ∪Di = [m]
and columns of Xi have 1’s on exactly k − 1 rows of Ci and all 1’s on rows Di. Assume∑

i∈T (k−1,0) |Xi| > (tk)mk−1. Then there are tk choices s(1), s(2), . . . , s(tk) ∈ T (k−1, 0)

where s(1) < s(2) < · · · < s(tk) such that, for some C ∈
(
Cs(i)
k−1

)
, each Xs(i) has a column

with 1’s in rows C ∪Ds(i) and 0’s in rows Cs(i)\C. We wish to find t · F0,k−1,0,0 in A in
rows C as follows using one column from each of Xs(i) for i = 1, 2, . . . , t and t columns
from Xs(tk).

rows C


1
1
1

Xs(1)

1
1
1

Xs(2)

. . .
1
1
1

Xs(t)

1
1
1

Xs(tk)

t︷ ︸︸ ︷
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
Xs(tk)

Given our choice C ∈
(
Cs(tk)

k−1

)
, we compute that |{K ∈

(
Cs(kt)

k−1

)
: K ∩ C 6= ∅}| < kmk−2.

Thus with |Xs(kt)| > kmk−2, there will be t choices K1, K2, . . . , Kt disjoint from C and
hence one column of Xs(kt) for each i = 1, 2, . . . , t with 1k−1 on rows of Ki ⊆ Cs(kt)\C
and 0’s on Cs(kt)\Ki and hence 0k−1 on rows C.

We will show below that we can choose D ⊂ Ds(kt)\ ∪ti=1 Ds(i) with |D| = k. Then
we can find t · F0,k,k−1,0 as follows. We have one column in Xs(i) for each i = 1, 2, . . . , t
which is 1k−1 on rows C and 0k on rows D (since D ⊂ Cs(i)\C for each i = 1, 2, . . . , t).
The t columns of Xs(tk) we have selected have 0k−1 on rows C and 1’s on Ds(kt)

where D ⊆ Ds(kt) and hence 1k on rows D. These 2t columns yield t · F0,k,k−1,0 in
[Xs(1) |Xs(2) · · · |Xs(t) |Xs(kt)].

the electronic journal of combinatorics 20(4) (2013), #P2 8



To show that D can be chosen we first show that Ds(i)\Ds(j) 6 k− 2 for s(i) < s(j).
Assume the contrary, Ds(i)\Ds(j) > k − 1 for s(i) < s(j). We choose C ′ ⊆ Ds(i)\Ds(j)

with |C ′| = k − 1. Given s(j) > s(i), then Ds(j)\Ds(i) > k and so we may choose
D′ ⊆ Ds(j)\Ds(i) with |D′| = k. Now C ′ ⊂ Cs(j) and D′ ⊂ Cs(i). The number of
possible columns of Xs(j) with at least one 1 on the rows C ′ is at most mk−2 and with
|Xs(j)| > mk−1 + t, we find t columns of Xs(j) with 0’s on rows C ′ and necessarily
with 1’s on rows D′. The number of possible columns of Xs(i) with at least one 1 on
the rows of D′ is |D′|mk−2 < mk−1. Given |Xs(i)| > mk−1 + t, we find t columns of
Xs(i) with 0’s on rows D′ and necessarily with 1’s on rows C ′. This yields t · F0,k,k−1,0
in [Xs(i) |Xs(j)], a contradiction. Thus Ds(i)\Ds(j) 6 k − 2 for s(i) < s(j). We may
now conclude that |Ds(kt\ ∪ti=1 Ds(i)| > k and so a choice for D exists. We conclude∑

i∈T (k−1,0) |Xi| 6 (tk)mk−1. This concludes Case 2.

There are k + 1 choices for type (a, b) and so

m∑
i=0

|Xi| 6
k∑

j=0

 ∑
i∈T (j,k−1−j)

|Xi|

 6 (k + 1)(2tk)mk−1

and so ‖A‖ 6 (2tk(k + 1))mk−1 + (6(k − 1))5k+2mk−2 which is O(mk−1).

Proof of Theorem 3 for k > 3: We use (5) so that
forb(m, t·F0,k,k,0, t−1) 6 forb(m−1, t·F0,k,k,0, t−1)+(t−1)forb(m, {F0,k,k,0, t·F0,k,k−1,0}).

Induction on m and Lemma 12 yields the bound.

4 Some applications of the Induction

Let Kk denote the k × 2k of all possible (0,1)-columns on k rows. The following is the
fundamental result about forbidden configurations.

Theorem 13. [Sauer [10], Perles and Shelah [11], Vapnik and Chervonenkis [12]] We
have that

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
.

Thus forb(m,Kk) is Θ(mk−1).

We can apply this result as follows.

Theorem 14. [8] Let F be a given k × ` (0,1)-matrix. Then forb(m,F ) is O(mk).

Proof. Let t be the maximum multiplicity of a column in F (of course t 6 `). Then
F ≺ t ·Kk and so supp(F ) ≺ Kk. Now Lemma 4 combined with Theorem 13 yields the
result.
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Interestingly this yields the exact result for forb(m, 2·Kk) [9]. A more precise result of
Anstee and Füredi [2] for forb(m, t·Kk) has the leading term being bounded by t+k−1

k+1

(
m
k

)
for t > 2. The following surprising result was obtained by Balogh and Bollobás.

Theorem 15. [6] Let k be given. There is a constant ck with forb(m, {Ik, Ick, Tk}) = ck.

This yields the following.

Theorem 16. Let t, k > 2 be given. Then forb(m, {t · Ik, t · Ick, t · Tk}) is Θ(m).

Proof. Apply Lemma 4. The matrix Im ∈ Avoid(m, {t · Ik, t · Ick, t · Tk}) shows that
forb(m, {t · Ik, t · Ick, t · Tk}) is Θ(m).

Lemma 4 is interesting for those H for which forb(m,H) is O(m`) and the number of
rows in H is bigger than ` (see [5] for examples). It is not expected that this will resolve
any boundary cases, namely those F for which forb(m, [F |α]) is bigger than forb(m,F )
by a linear factor (or more) for all choices α which are either not present in F or occur
at most once in F . The previously mentioned F6(t) and F7(t) have quite complicated
structure and the induction (5) does not appear to work directly.
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