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Abstract

In this paper, we prove the following result conjectured by Z.-W. Sun:
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by showing that the left-hand side divides each summand on the right-hand side.
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1 Introduction

In [4], Z.-W. Sun proved some new series for 1/π as well as related congruences on sums
of binomial coefficients, such as
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and, for any prime p > 3,
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≡ 0 (mod p2).

Sun [4] also proposed many interesting related conjectures, one of which is
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Conjecture 1.1 [4, Conjecture 4.2] For n = 0, 1, 2, . . . , define
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Then sn ∈ Z for all n. Also,

lim
n→∞

n
√
sn = 64. (1.1)

Sun himself has proved that sn ≡ 0 (mod 8) for n > 1 and sp−1 ≡ b(p − 1)/6c (mod p)
for any prime p. In this paper, we shall prove that Conjecture 1.1 is true by establishing
the following two theorems.

Theorem 1.2 For 0 6 k 6 n, we have
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∈ Z.

Note that, in [5,6], Sun proved many similar results on the divisibility of binomial coeffi-
cients.

Theorem 1.3 For n > 1 and 0 6 k < n/2, we have(
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and hence
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. (1.2)

It is easy to see that (1.1) follows from (1.2) and Stirling’s formula

n! ∼
√

2πn
(n
e

)n
.

2 Proof of Theorem 1.2

We need the following two lemmas.

Lemma 2.1 Let m,n > 1 and 0 6 k 6 n. Then(
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Proof. Observe that(
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The proof then follows from the fact that numbers of the form

(2a)!(2b)!

a!b!(a+ b)!
,

called the super Catalan numbers, are integers (see [1, 2, 7]). �

Lemma 2.2 Let 0 6 k 6 n be integers. Then
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Corollary 2.3 Let n > 1. Then (2n− 1) divides
(
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)
.

For the p-adic order of n!, there is a known formula
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⌋
, (2.2)

where bxc denotes the greatest integer less than or equal to a real number x. In order to
prove Lemma 2.2, we first establish the following result.

Lemma 2.4 Let m > 2 and 0 6 k 6 n be integers. Then⌊
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unless m = 3, n ≡ 2 (mod 3), and k 6≡ 1 (mod 3).

Proof. For any real numbers x and y, we have (see, for example, [3, Division 8, Problems
8 and 136])

b2xc+ b2yc > bxc+ byc+ bx+ yc,
bx+ yc > bxc+ byc.
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It follows that⌊
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Now suppose that (2.3) does not hold. Then we must have⌊
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and so, by (2.6), m | 2n− 1, then by (2.5), m | 2k or m | 2n− 2k. If m | 2k, then m | k
(since m | 2n− 1 means that m is odd), the identity (2.4) implies that⌊
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Since m | 2n− 1, the identity (2.7) can be written as
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If m > 4, then the left-hand side of (2.8) equals (2n− 1)/m, while the right-hand side of
(2.8) belongs to {
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a contradiction! Therefore, m 6 3. Since m > 2 is odd, we must have m = 3. Hence,
n ≡ 2 (mod 3) and k ≡ 0 (mod 3). Similarly, if m | 2n− 2k, then we deduce that m = 3,
n ≡ 2 (mod 3) and k ≡ 2 (mod 3). This proves the lemma. �

Proof of Lemma 2.2. For any prime p 6= 3, by (2.2) and (2.3), we have
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(2.9)

For p = 3, since ord3(3j)! = j + ord3j!, the inequality (2.9) reduces to
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the inequality (2.10) holds. Namely, the inequality (2.9) is true for p = 3. This completes
the proof. �

Proof of Theorem 1.2. By (2.1), one sees that
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which is an integer divisible by
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in view of Lemma 2.2. �

3 Proof of Theorem 1.3

Let
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In other words, the inequality (1.2) holds.
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