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Abstract
In this paper, we prove the following result conjectured by Z.-W. Sun:

()R )G ()

by showing that the left-hand side divides each summand on the right-hand side.
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1 Introduction

In [4], Z.-W. Sun proved some new series for 1/7 as well as related congruences on sums
of binomial coefficients, such as

i n Z": 6k (3k\ (6(n —k)\ (3(n—k)\ 1

— 864" 3k)\k)\3n—k) )\ n—k ) =
n=0 k=0

and, for any prime p > 3,

S ) (60 D) () =0 o

n=0 k=0

Sun [4] also proposed many interesting related conjectures, one of which is
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Conjecture 1.1 [4, Conjecture 4.2] Forn =0,1,2,..., define

e 3 13 [ ot k)

Then s, € Z for all n. Also,

lim /s, = 64. (1.1)

n—oo

Sun himself has proved that s, = 0 (mod 8) for n > 1 and s,-1 = [(p — 1)/6] (mod p)
for any prime p. In this paper, we shall prove that Conjecture 1.1 is true by establishing
the following two theorems.

Theorem 1.2 For 0 < k < n, we have

1 6k\ (3k\ (6(n —Fk)\ (3(n—k)
—371 E Z.
(2n —1)(") \3k/ \ k J\3(n — k) n—k
Note that, in [5,6], Sun proved many similar results on the divisibility of binomial coeffi-
cients.

Theorem 1.3 Forn > 1 and 0 < k <n/2, we have
6k\ (3k\ (6(n —k)\ (3(n —k)
3k)\ k) \3(n—k) n—k

(o) () G- ) C5Y)

2 6n <s, < n+1 /6n ' (1.2)
2n — 1\ 3n 2n — 1\ 3n

It is easy to see that (1.1) follows from (1.2) and Stirling’s formula

n!l ~V2mn (E) )
e

and hence

2 Proof of Theorem 1.2

We need the following two lemmas.

Lemma 2.1 Let m,n>1 and 0 < k < n. Then
mn 2mk\ (mk\ (2m(n —k)\ (m(n — k)
n mk k m(n — k) n—k )
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Proof. Observe that

) )
=ttt o) (1) 21

The proof then follows from the fact that numbers of the form

(2a)!(2b)!
ald!(a + b))V

called the super Catalan numbers, are integers (see [1,2,7]). O
Lemma 2.2 Let 0 < k < n be integers. Then

(6k)!(6n — 6k)!(2n)!
(3K)!(3n — 3k)!(3n)!(2k)!(2n — 2k)!

(2n —1)

or equivalently,

(6k)!(6n — 6K)!(2n)!(2n — 2)!

(BR)1(3n — 3%)1(3n)(2k)!(2n — 2k)1(2n — 1)1 © 2

Corollary 2.3 Let n > 1. Then (2n — 1) divides (22)

For the p-adic order of n!, there is a known formula

ord,n! = i FJ , (2.2)

)
=1 p

where |z | denotes the greatest integer less than or equal to a real number x. In order to
prove Lemma 2.2, we first establish the following result.

Lemma 2.4 Let m > 2 and 0 < k < n be integers. Then
LGI{;J LGn—Gk’J LQnJ {2n—2J
— | + + | — |+
m m m m
3k 3n — 3k 3n 2k 2n — 2k 2n—1
Z | — |+ +{—+|—|+ + , (2.3)
m m m m m m

unless m =3, n =2 (mod 3), and k # 1 (mod 3).

Proof. For any real numbers = and y, we have (see, for example, [3, Division 8, Problems
8 and 136])

2] + [y] + [z +y],

12z] + |2y] > [z] +
] = =] + |yl

lz+y
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It follows that

Sl ] ) ) = L)

Now suppose that (2.3) does not hold. Then we must have

6k 6n — 6k 3k 3n — 3k 3n
B e
m m | m . m m
2 2 2n — 2
{—n = —kJ + | kJ (2.5)
m | | m . om
Fn -2 _ on—1 | (2.6)
m . om

and so, by (2.6), m | 2n — 1, then by (2.5), m | 2k or m | 2n — 2k. If m | 2k, then m | k
(since m | 2n — 1 means that m is odd), the identity (2.4) implies that

6 3
{_HJ =2 L_HJ . (2.7)
m m
Since m | 2n — 1, the identity (2.7) can be written as
2n —1 1
1 +PJ:2V+ J (2.8)
m m m

If m > 4, then the left-hand side of (2.8) equals (2n — 1)/m, while the right-hand side of

(2.8) belongs to
{2n +2 2n 2n-—2 }

)

m ' m’  m
a contradiction! Therefore, m < 3. Since m > 2 is odd, we must have m = 3. Hence,

n =2 (mod 3) and £k =0 (mod 3). Similarly, if m | 2n — 2k, then we deduce that m = 3,
n =2 (mod 3) and k =2 (mod 3). This proves the lemma. O

Proof of Lemma 2.2. For any prime p # 3, by (2.2) and (2.3), we have

ord,(6k)! + ord,(6n — 6k)! 4 ord,(2n)! 4 ord,(2n — 2)!
> ord,(3k)! + ord,(3n — 3k)! + ord,(3n)! 4 ord,(2k)! + ord,(2n — 2k)! + ord,(2n — 1)!.
(2.9)

For p = 3, since ord3(37)! = j + ordsj!, the inequality (2.9) reduces to
ords(2n)! + ords(2n — 2)! > ordsk! + ords(n — k)! + ordgn! + ordz(2n — 1)!.  (2.10)

Noticing that

kl(f—ql)lc')(?s(;f)—' n - 2n1— 1 <2:) <Z) B <4<2:—_12) N <2:>) <Z) €z
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the inequality (2.10) holds. Namely, the inequality (2.9) is true for p = 3. This completes
the proof. 0

Proof of Theorem 1.2. By (2.1), one sees that
o () (1) G- ) (0 07)
1 (6k)!(6n — 6k)! 2n\ (n
::mz—l(3kﬁcwl—3kycmo!(2é>(k>’

which is an integer divisible by (Z) in view of Lemma 2.2. O

3 Proof of Theorem 1.3

Let
6K\ 3K\ (6(n — k) (3(n — k)
Ank = .
P8k \ k) \Bn—k) )\ n—k
Then, for n > 1 and 0 < k < n/2, we have
Ang | — (36nk + 31n — 36k* — 36k — 5)(n — 2k — 1) -
Appr (6k + 5)(6k + 1)(n — k)2 =5

ie., App = Apgr1. Since A, = A, i, for n > 1, we have

6n\ /3n - 6n\ /3n
2 =2A,0 < E A < 1A, o = 1 )

In other words, the inequality (1.2) holds.
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