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Abstract

The (n, k)-arrangement graph A(n, k) is a graph with all the k-permutations of an
n-element set as vertices where two k-permutations are adjacent if they agree in
exactly k − 1 positions. We introduce a cyclic decomposition for k-permutations
and show that this gives rise to a very fine equitable partition of A(n, k). This
equitable partition can be employed to compute the complete set of eigenvalues (of
the adjacency matrix) of A(n, k). Consequently, we determine the eigenvalues of
A(n, k) for small values of k. Finally, we show that any eigenvalue of the Johnson
graph J(n, k) is an eigenvalue of A(n, k) and that −k is the smallest eigenvalue of
A(n, k) with multiplicity O(nk) for fixed k.

Keywords: k-permutation, Cyclic decomposition, Arrangement graph, Eigenvalue
of graph

1 Introduction

Let G be a simple graph with ν vertices. The adjacency matrix of G is a ν × ν matrix
where its rows and columns are indexed by the vertex set of G and its (u, v)-entry is 1 if

∗corresponding author
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the vertices u and v are adjacent and 0 otherwise. By the eigenvalues of G we mean the
eigenvalues of its adjacency matrix.

For a positive integer `, let [`] := {1, . . . , `}. For positive integers k, n with k 6 n, a k-
permutation of [n] is an injective function from [k] to [n]. When k = n, a k-permutation is
a permutation. So any k-permutation π can be represented by a vector (i1, . . . , ik) where
π(j) = ij for j = 1, . . . , k. We denote the set of all k-permutations of [n] by V (n, k). The
set {i1, . . . , ik} is the image of π and denoted Im(π). Unlike permutations which have a
decomposition into cycles, k-permutations in general do not have such a decomposition.
We observe that a decomposition of a k-permutation into cycles and ‘paths’ is possible
where paths are the same as cycles except that in a path the last element is not mapped
to the first element. We then define the cycle type for a k-permutation π to be the list of
integers consisting of the lengths of the cycles and the paths appeared in the decomposition
of π. This gives rise to the ‘cycle-type partition’ of V (n, k) in which each class consists of
all elements of V (n, k) sharing the same cycle type. The reason for studying the cycle-type
partition of k-permutations will become clear below.

The (n, k)-arrangement graph A(n, k) has V (n, k) as its vertices, and two k-
permutations π = (u1, . . . , uk) and ρ = (v1, . . . , vk) are adjacent if they agree in exactly
k−1 positions, i.e. if for exactly one i0, ui0 6= vi0 and for all i 6= i0, ui = vi. The family of
arrangement graphs was first introduced in [10] as an interconnection network model for
parallel computation. In the interconnection network model, each processor has its own
memory unit and communicates with the other processors through a topological network,
i.e. a graph. For this purpose, the arrangement graphs possess many nice properties
such as having small diameter, a hierarchical structure, vertex and edge symmetry, sim-
ple shortest path routing, high connectivity, etc. Many properties of arrangement graphs
have been studied by a number of authors, see, e.g. [4, 5, 6, 7, 8, 19, 20]. Another family
of graphs with the same nature as the arrangement graphs are the derangement graphs.
The n-derangement graph is a graph whose vertices correspond to all the permutations
of [n] where two permutations are adjacent if they differ in all n positions. It is known
that the eigenvalues of the derangement graph are integers (see [1, 11, 15, 17]). For other
properties of the eigenvalues of the derangement graph, we refer the reader to [13, 14, 18].

As an application of the cycle-type partition of V (n, k), we consider the problem of
determining the eigenvalues of the arrangment graphs. It turns out that the cycle-type
partition of V (n, k) is indeed an equitable partition of the graph A(n, k). Normally, the
eigenvalues of equitable partitions of a graph give a subset of the set of eigenvalues of the
graph. However, in view of a result of Godsil and McKay [12], the cycle-type partition of
V (n, k) is fine enough to give the complete set of eigenvalues as well as their multiplicities.
Consequently, we will be able to determine the eigenvalues of A(n, k) for small values of
k. We also show that any eigenvalue of the Johnson graph J(n, k) is an eigenvalue of
A(n, k). (Recall that the Johnson graph J(n, k) has all the k-subsets of [n] as vertices
where two k-subsets are adjacent if they intersect in exactly k − 1 elements.) Finally, we
prove that that −k is the smallest eigenvalue of A(n, k) with multiplicity O(nk) for fixed
k. We shall close the paper by some open problems on eigenvalues of the arrangement
graphs.
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2 Cyclic decomposition of a k-permutation and basic

graphs

A permutation can be decomposed into disjoint cycles. However, in general such a de-
composition does not exist for a k-permutation. In this section, we demonstrate how a
decomposition of k-permutations is possible by taking into account a relaxation on cycles.

2.1 Decomposition of k-permutation into cycles and paths

We call a k-permutation π a path of length ` if for some u1, . . . , u` and v, π(ut) = ut+1

for t = 1, . . . , ` − 1 and π(u`) = v such that ut ∈ [k] for all t = 1, . . . , ` and v 6∈ [k]. We
denote such a path π by (u1 . . . u` v]. As usual, (u1 . . . u`) denotes a cycle of length `. The
same method for decomposing permutations into disjoint cycles can be employed for de-
composition of k-permutations into disjoint cycles and paths. We call this decomposition
the cyclic decomposition of k-permutations. Here is examples of decompositions of some
5-permutations:

(1, 2, 3, i, j) = (1)(2)(3)(4 i](5 j],

(2, 3, 4, i, j) = (1 2 3 4 i](5 j],

(2, i, j, 5, 4) = (1 2 i](3 j](4 5),

where i, j > 5.
We put this observation formally in the following proposition. The straightforward

proof is similar to the case of permutations.

Proposition 1. Any k-permutation is a product of disjoint cycles and paths. This de-
composition is unique up to the order in which the cycles and paths are written.

In some applications, it would be useful to consider a graphical representation of a k-
permutation π. This can be done simply by constructing a (directed) graph with vertices
[k] ∪ Im(π) and with the set of arcs {(u, π(u)) | u ∈ [k]}. We call the resulting graph,
the basic graph of π and denote it by BG(π). It is seen that BG(π) consists of a union
of directed cycle graphs and path graphs where the cycle and path graphs correspond
to the cycles and paths in the cyclic decomposition of π, respectively. It turns out that
in BG(π) all the edges in the cycles and paths have the same directions, the vertices
of [k] ∩ Im(π) have degree two, other vertices have degree one, and that any vertex of
Im(π)\ [k] is the head of a (directed) path. In Table 1, all non-isomorphic basic graphs of
3-permutations are depicted where the edges are shown without directions and the black
and white vertices represent elements of [k] and Im(π) \ [k], respectively.

We usually consider basic graphs without directions as the directions of the edges
has no effect on the isomorphism type of them. However, in some applications such as
the proof of Theorem 7 the direction of the edges might be useful. We remark that any
(multi-)graph with k edges, maximum degree at most 2 and with no isolated vertices is
a basic graph of some k-permutation. This is another description of the family of basic
graphs.
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3-permutation Decomposition Partition of 3 Basic graph

(1, 2, 3) (1)(2)(3) 111

 

(1, 3, 2) (1)(2 3) 12

 

(2, 3, 1) (1 2 3) 3

 

(1, 2, i) (1)(2)(3 i] 111′

 

(1, 3, i) (1)(2 3 i] 12′
 

(2, 3, i) (1 2 3 i] 3′

 

(2, 1, i) (1 2)(3, i] 21′

 

(1, i, j) (1)(2 i](3 j] 11′1′

 

(2, i, j) (1 2 i](3 j] 1′2′

 

(i, j, `) (1 i](2 j](3 `] 1′1′1′

 

Table 1: The cycle structures of 3-permutations (here i, j, ` > 3)

2.2 Cycle structure and partitions of k into parts of two kinds

To any cyclic decomposition of a permutation σ one may assign a list of integers consist-
ing of the lengths of the cycles appearing in the decomposition. This list is called the
cycle structure of σ. There is a one-to-one correspondence between the cycle structure of
permutations on [n] and the partitions of the integer n. For the case of k-permutations,
we need to distinguish between cycles and paths. To this end, we take into account the
partitions of k into parts of two kinds. More precisely, assume that there are integers of
two kinds r and r′ and we consider the ways to write n as a sum of integers of either
kind where the order of terms in the sum does not matter. For instance, k = 2 has the
following partitions into parts of two kinds: 11, 11′, 1′1′, 2, and 2′. We define the cycle
structure or cycle type of a k-permutation π to be the list consisting of the lengths of the
cycles and the paths appearing in the cyclic decomposition of π where for cycles we write
integers of the first kind and for paths we write integers of the second kind. For example,
any 3-permutation of [n] with n > 6 has one of the ten different types represented in
Table 1 where for each type, an instance of a 3-permutation with that type together with
its cyclic decomposition and the respective basic graph are demonstrated.

Proposition 2. There is a one-to-one correspondence between the cycle structure of k-
permutations and the partitions of k into parts of two kinds.

Remark 3.We define c(k) to be the number of partitions of k into parts of two kinds. The
sequence consisting of c(k)’s, namely the sequence 1, 2, 5, 10, 20, 36, 65, 110, 185, 300, . . .
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(starting with index k = 0) is the sequence A000712 of the OEIS [16]. This sequence has
many interesting interpretations and nice properties (see [9, 16]), among which are the
following two identities:

∞∑

k=0

c(k)xk =
∞∏

i=1

1

(1− xi)2 ,

and

c(k) =
k∑

i=0

p(i)p(k − i),

where p(i) is the number of partitions of i. Here is yet another interpretation of A000712:
c(k) is equal to the number of non-isomorphic basic graphs of k-permutations, or in other
words, the number of all multi-graphs with exactly k-edges and with vertex degrees 1 or
2.

The cycle type of a permutation of n is shown as 1a12a2 . . . nan where the superscripts
ai > 0 indicate multiplicities. It is known that the number of all permutations of [n] of
cycle type 1a12a2 . . . nan is equal to

n!

a1!a2!2a2 · · · an!nan
.

Here we determine the number of k-permutations sharing the same cycle structure. For
integers n > ` > 0 we use the falling factorial notation

(n)` := n(n− 1) · · · (n− `+ 1),

with the convention that (n)` = 1 if ` = 0.

Theorem 4. The number of k-permutations of [n] of the cycle type

1a12a2 . . . kak1′b12′b2 . . . k′bk (1)

is equal to
k!∏k

i=1(i
aiai!bi!)

(n− k)s,

where s = b1 + · · ·+ bk.

Proof. Note that s = |Im(π) \ [k]| for any k-permutation π of cycle type (1). Any k-
permutation with cycle type (1) can be obtained from an arbitrary permutation σ of [k]
by first inserting a1 + · · · + ak pairs of parentheses to make the cycles and inserting s
pairs consisting of a parenthesis and a bracket and then putting s integers from [n] \ [k]
alongside the brackets to make the paths. We count the number of ways that this can be
done. There are k! ways to fill in the permutation σ. The integers inserted alongside the
s brackets can be regarded as an s-permutation of [n] \ [k] and can be chosen in (n− k)s
ways. These give the number k!(n− k)s; but we must correct our overcounting. Each of
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the ai cycles of length i can be rotated around i ways and be the same cycle, so we should
divide by iai for i = 1, . . . , k. (Note that this is not the case for the paths; because in
any path (u1 . . . u` v] the last element v always comes from [n] \ [k] and rotating around
the ui’s yields different paths.) There are ai cycles of length i and bi paths of length i
which can be permuted around in ai! and bi! ways, respectively, so we divide by ai!bi! for
i = 1, . . . , k.

3 The cycle-type partition

We partition V (n, k) according to the cycle type of k-permutations. So V (n, k) is parti-
tioned into c(k) cells (cf. Remark 3) where the k-permutations of each cell/part share the
same cycle type. Equivalently, two k-permutations belong to the same cell if they have
isomorphic basic graphs. We call this partition the cycle-type partition of V (n, k). For
instance, the cycle-type partition of 3-permutations of [n] together with the corresponding
cycle type of each cell are demonstrated in Table 2.

Type Cell

111 V1 = {(1, 2, 3)}
12 V2 = {(1, 3, 2), (2, 1, 3), (3, 2, 1)}
3 V3 = {(2, 3, 1), (3, 1, 2)}

111′ V4 = {(1, 2, i), (1, i, 3), (i, 2, 3) | 4 6 i 6 n}
21′ V5 = {(2, 1, i), (3, i, 1), (i, 3, 2) | 4 6 i 6 n}

11′1′ V6 = {(1, i, j), (i, 2, j), (i, j, 3) | 4 6 i, j 6 n, i 6= j}
12′ V7 = {(1, 3, i), (3, 2, i), (1, i, 2), (2, i, 3), (i, 2, 1), (i, 1, 3) | 4 6 i 6 n}

1′1′1′ V8 = {(i, j, k) | 4 6 i, j, k 6 n, i 6= j 6= k 6= i}
1′2′ V9 = {(2, i, j), (3, i, j), (i, 1, j), (i, 3, j), (i, j, 1), (i, j, 2) | 4 6 i, j 6 n, i 6= j}
3′ V10 = {(2, 3, i), (3, 1, i), (3, i, 2), (2, i, 1), (i, 3, 1), (i, 1, 2) | 4 6 i 6 n}

Table 2: The cycle-type partition of 3-permutations

An equitable partition of a graph G is a partition Π = (V1, . . . , Vm) of the vertex set
such that each vertex in Vi has the same number qij of neighbors in Vj for any i, j (and
possibly i = j). The quotient matrix of Π is the m×m matrix Q = (qij). It is well-known
that every eigenvalue of the quotient matrix Q is an eigenvalue of G (see [2, p. 24]).
Under certain circumstances, the converse of this is also true as the next lemma shows.

We recall that a graph G is walk-regular if for every positive integer r, the number of
closed walks of length r starting at a vertex v is independent of the choice of v. Clearly,
vertex-transitive graphs are walk-regular and so are the arrangement graphs A(n, k).

Lemma 5 ([12]). Let G be a walk-regular graph with ν vertices. Let Π = (V1, . . . , Vm) be
an equitable partition of G with |V1| = 1 and let Q be the quotient matrix of Π.
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(i) Every eigenvalue of G is an eigenvalue of Q.

(ii) Let S = diag(
√
|V1|,

√
|V2|, . . . ,

√
|Vm|) and P = SQS−1. If {x1, . . . ,x`} is a full

set of orthonormal eigenvectors of P for the eigenvalue λ, then the multiplicity of λ
as an eigenvalue of G is

ν
∑̀

i=1

(xi)
2
1,

where (xi)1 denotes the first coordinate of xi.

In the next theorem we show that the cycle-type partition is indeed an equitable
partition for the arrangement graphs. This partition is fine enough to meet the condition
of Lemma 5 as the cell of type 1k contains a single k-permutation, namely (1, . . . , k).

Theorem 6. The cycle-type partition of V (n, k) is an equitable partition of A(n, k).

Proof. Let X and Y (possibly X = Y ) be two cells of the cycle-type partition of V (n, k).
Let π, ρ ∈ X. We show that there is a one-to-one correspondence between NY (π) (the set
of neighbors of π in Y ) and NY (ρ). Let

π = α1 · · ·α`β1 · · · βm,
ρ = γ1 · · · γ`δ1 · · · δm,

be the cycle decompositions where αi and γi are cycles of the same length and βi and δi are
paths of the same length. Let αi = (ai1 . . . airi), γi = (a′i1 . . . a

′
iri

), βi = (bi1 . . . bi(si−1) bisi ],
and δi = (b′i1 . . . b

′
i(si−1) b

′
isi

]. Note that bisi , b
′
isi
∈ [n] \ [k] and aij, a

′
ij, bie, b

′
ie ∈ [k] for all

i, j and 1 6 e 6 si − 1.
Let σ1 be the permutation on [k] that maps aij → a′ij and bie → b′ie for all i, j and

1 6 e 6 si − 1 and σ2 : [n] \ ([k] ∪ Im(π))→ [n] \ ([k] ∪ Im(ρ)) be an arbitrary bijection.
Let

σ = σ1σ2

m∏

i=1

(bisi b′isi).

Now, σ is a permutation on [n] and σπσ−1 = ρ. Let ζ ∈ NY (π). Clearly, σζσ−1 ∈ Y .
We have ζ(u0) 6= π(u0) for exactly one u0 ∈ [k] and ζ(u) = π(u) for all u ∈ [k] \ {u0}.
Now, σπσ−1 and σζσ−1 coincides at u for all u ∈ [k] \ {u0} and differ at u0. Hence,
σζσ−1 ∈ NY (ρ). The map ψ : NY (π)→ NY (ρ) defined by ψ(ζ) = σζσ−1 is a bijection, so
the proof follows.

Next, we explicitly give the quotient matrix of the cycle-type partition of A(n, k).
To state this result, we need more notations. We may denote the cycle type of a k-
permutation by the notation [A,B], where A and B represent multisets of unprimed and
primed integers, respectively. Thus, elements of A represent cycles while elements of B
represent paths. For a list L and i ∈ L, we denote the resulting list of removing (one)
i from L by Li and the resulting list of adding r to L by Lr. We may combine these,
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so, e.g. Lr,t
i,j is the list obtained from L by removing i, j and adding r, t. The number of

elements of L counting multiplicities is denoted |L|.
In the next theorem, given a representative π of the cycle type [A,B], we determine the

cycle types of the neighbors of π which are described in the mutually exclusive subcases
of the theorem. We also count the number of neighbors of π of each type.

Theorem 7. Suppose that π ∈ V (n, k) has the cycle type [A,B]. Then the neighbors of
π are as follows.

(i) For any i ∈ A with multiplicity a,

(i.1) π has ia(n− k − |B|) neighbors in [Ai, B
i];

(i.2) for any j ∈ B with multiplicity b, π has abi neighbors in [Ai, B
i+j
j ].

(ii) For any j ∈ B with multiplicity b and for any ` with 1 6 ` 6 j,

(ii.1) π has b neighbors in [A`, Bj−`
j ];

(ii.2) for any m ∈ Bj with multiplicity c and m + ` 6= j, in [A,Bm+`,j−`
j,m ], π has 2bc

neighbors if m 6= j and m− j + ` > 1 and has bc neighbors otherwise;

(ii.3) in [A,B`,j−`
j ], π has 2b(n − k − |B|) neighbors if j 6= 2` and b(n − k − |B|)

neighbors if j = 2`.

(iii) If B = jb11 . . . jbhh , then π has |B|(n − k − |B|) +
∑

16r<t6h brbt neighbors in [A,B]
(in particular, if B = ∅, then π has no neighbor in [A,B]).

Proof. Let G = BG(π). The vertex π′ ∈ V (n, k) is adjacent to π if there is a unique
u ∈ [k] such that π(u) 6= π′(u). Considering the basic graphs, that means one can obtain
BG(π′) from G by changing the arc (u, π(u)) to (u, π′(u)). It follows that we can identify
all the neighbors of π in A(n, k) by determining all basic graphs obtained from G by
changing an arc (u, v) to (u,w). Notice that we are allowed to do this only by changing
the head of the arc and not the tail of the arc. Also as the resulting graph must be a basic
graph, we have necessarily either w ∈ [k] and it is a degree 1 vertex of G or w ∈ [n]\V (G).

We describe all the basic graphs obtained from G through the above procedure in
what follows.

(i) Let C be a cycle of length i in G. The only way to obtain a basic graph from G by
changing an arc (u, v) of C to (u,w) is if either (a) w ∈ [n] \V (G) or (b) w ∈ [k] and w is
the tail of a path of length j, say. For the case (a), the resulting graph is isomorphic to
the one obtained from G by replacing C with a path of length i, and thus it is isomorphic
to the basic graph H of [Ai, B

i]. We have (n−k−|B|) different choices for w and also we
may choose any of ai edges of the i-cycles to obtain a basic graph isomorphic to H. Thus
π has ai(n − k − |B|) neighbors in [Ai, B

i], proving (i.1). For the case (b), the resulting
graph is isomorphic to the basic graph H of [Ai, B

i+j
j ]. If there exist b paths of length j in

G, then we have abi different ways to obtain a basic graph isomorphic to H. This proves
(i.2).
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(ii) Let (u1 . . . uj uj+1] be a path of length j in G. Consider the basic graph H obtained
from G by changing the arc (u`, u`+1), 1 6 ` 6 j, to (u,w). There are three possibilities,
namely: (a) w = u1, (b) w ∈ [k] \ {u1}, or (c) w ∈ [n] \ V (G). In the case (a), H is
isomorphic to the basic graph of [A`, Bj−`

j ]. From any path of length j we may obtain

exactly one graph isomorphic to H. It follows that π has b neighbors in [A`, Bj−`
j ],

proving (ii.1). In the case (b), w is necessarily the tail of a path of length m, say. Thus
H is isomorphic to the basic graph of [A,Bm+`,j−`

j,m ]. This gives bc neighbors for π in

[A,Bm+`,j−`
j,m ]. Note that if m 6= j and r := m − j + ` > 1, then we may obtain more

neighbors for π in [A,Bm+`,j−`
j,m ]. As m 6= j and m ∈ Bj, we have j ∈ Bm. With the same

reasoning as above, π has bc neighbors in [A,Bj+r,m−r
m,j ]. However, Bj+r,m−r

m,j = Bm+`,j−`
j,m .

Therefore, if m 6= j and m− j+ ` > 1, the total number of neighbors of π in [A,Bm+`,j−`
j,m ]

is 2bc. This proves (ii.2). In the case (c), we have H isomorphic to the basic graph of
[A,B`,j−`

j ]. We have b paths of length j and also (n−k−|B|) different choices for w. This

gives b(n− k− |B|) neighbors for π in [A,B`,j−`
j ]. But, if j 6= 2`, then by interchanging `

and j − ` we obtain another b(n− k − |B|) copies of H from G. This proves (ii.3).
(iii) There are only two ways to change an arc (u, v) to (u,w) in G and obtain a basic

graph isomorphic to G, namely (a) by choosing v to be the head of some path in G and
w ∈ [n] \ V (G), (b) by the same way as in (ii.2) but with m + ` = j. For (a), v can be
any of the heads of the |B| paths of G and w any of the (n− k− |B|) elements of [n] not
appearing in G. This gives |B|(n− k − |B|) different copies of G. Now we count the rest
of the neighbors of π coming from (b). For any m, j ∈ B with m < j, letting ` = j −m,
we have Bm+`,j−`

j,m = B. There are
∑

16r<t6h brbt different ways to choose pairs of m, j ∈ B
with m < j. The proof now follows by summing up the number of neighbors given in the
cases (a) and (b).

4 Eigenvalues of A(n, k)

In this section we determine the eigenvalues of A(n, k) for k 6 7. As mentioned before, the
arrangement graphs are vertex-transitive and thus walk-regular. Furthermore, the cycle-
type partition of A(n, k) contains a cell of cardinality 1. So Lemma 5 can be applied to
derive the eigenvalues of of A(n, k). For the graphs A(n, 2), though, we employ a different
method taking into account a characterization which directly gives the eigenvalues.

Since A(n, k) is a k(n − k)-regular graph, the largest eigenvalue is k(n − k). When
n = k, the edge set is an empty set. So, A(k, k) has one eigenvalue only, which is 0.
So we shall assume that n > k. When k = 1, A(n, 1) is the complete graph with n
vertices. Therefore the eigenvalues of A(n, 1) are (n−1) with multiplicity 1, and −1 with
multiplicity n− 1.

4.1 Eigenvalues of A(n, 2)

We use the following well-known lemma (see [2, p. 10]) to derive the eigenvalues of A(n, 2).
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Lemma 8. If G is an r-regular graph (r > 2) with ν vertices and ε edges, and eigenvalues
λi, i = 1, . . . , ν, then the line graph of G is (2r − 2)-regular with eigenvalues λi + r − 2,
i = 1, . . . , ν together with ε− ν times −2.

Proposition 9. Let n > 3. The eigenvalues of the arrangement graph A(n, 2) are

(−2)[n
2−3n+1], (n− 4)[n−1], (n− 2)[n−1], (2n− 4)[1],

where the superscripts indicate multiplicities.

Proof. Let Hn denote the graph obtained from the complete bipartite graph Kn,n after
removing a perfect matching. Assume that {a1, . . . , an, b1, . . . , bn} is the vertex set and
{aibj | 1 6 i, j 6 n, i 6= j} is the edge set of Hn. In the line graph L(Hn) of Hn, two
distinct edges aibj and arbs are adjacent if and only if either i = r or s = j. This shows
that the map which sends the vertex (i, j) of A(n, 2) to the vertex aibj of L(Hn) defines
an isomorphism between A(n, 2) and L(Hn).

Now, it suffices to determine the eigenvalues of L(Hn). Since the adjacency matrix
of Hn is (J2 − I2)⊗ (Jn − In), with ‘⊗’ denoting the Kronecker product, the eigenvalues
of Hn are ±(n − 1) with multiplicity 1 and ±1 with multiplicity n − 1. The result now
follows by applying Lemma 8.

4.2 Eigenvalues of A(n, 3) and A(n, 4)

Throughout this subsection, we use the notation ni for (n− i) for saving space in tables
and arrays.

Theorem 10. For n > 4, the eigenvalues of A(n, 3) are

(−3)[n(n−2)(n−4)−1], (n− 7)[n(n−3)/2], (n− 6)[(n−2)(n−1)], (n− 4)[n(n−3)],

(n− 3)[(n−1)(n−2)/2], (2n− 9)[n−1], (2n− 6)[2(n−1)], (3n− 9) [1].

Proof. The eigenvalues of A(4, 3) and A(5, 3) are determined by a computer; these are

{−3[1], −2[6], −1[3], 0[4], 1[3], 2[6], 3[1]} and {−3[14], −2[5], −1[12], 1[14], 2[6], 4[8], 6[1]},
respectively, which agree with the assertion. (Note that letting n = 4 in the assertion,
the sum of the multiplicities of −3 and n− 7 equals 1.) Now, we may assume that n > 6.

By Theorem 7, the quotient matrix of the cycle-type partition of A(n, 3) is the following
where the cells are indexed as in Table 2:

Q =




0 0 0 3n3 0 0 0 0 0 0
0 0 0 0 n3 0 2n3 0 0 0
0 0 0 0 0 0 0 0 0 3n3
1 0 0 n4 0 2n4 2 0 0 0
0 1 0 0 n4 0 0 0 2n4 2
0 0 0 2 0 2n5 2 n5 2 0
0 1 0 1 0 n4 n4 0 n4 1
0 0 0 0 0 3 0 3n6 6 0
0 0 0 0 1 1 1 n5 2n− 9 2
0 0 1 0 1 0 1 0 2n4 n4




.
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By computation, we worked out the eigenvalues and eigenvectors of Q as given in Table 3.

Eigenvalue Eigenvector

−3 [−3n3n4, n3n4, 0, 3n4, −n4, −2, −n4, 0, 1, 0]

−3 [−n3n4n5, 0, 0, n4n5, 0, −n5, 0, 1, 0, 0]

−3 [−n3, n3, −n3, 1, −1, 0, −1, 0, 0, 1]

n− 7 [3n3n4, 3n3n4, 3n3n4, n4n7, n4n7, 22− 4n, n4n7, 18, 22− 4n, n4n7]

n− 6 [6n3, 0, −3n3, 2n6, −2n3, −6, n3, 0, 3, −n6]

n− 4 [−6n3, 0, 3n3, −2n4, −2n1, 2, n1, 0, −1, n4]

n− 3 [3, −3, 3, 1, −1, 0, −1, 0, 0, 1]

2n− 9 [3n3, 3n3, 3n3, 2n− 9, 2n− 9, n9, 2n− 9, −9, n9, 2n− 9]

2n− 6 [−6, 0, 3, −4, 2, −2, −1, 0, 1, 2]

3n− 9 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Table 3: The eigenvalues and the (transposed) eigenvectors of the quotient matrix of A(n, 3)

Let

S = diag
(√

1,
√

3,
√

2,
√

3(n− 3),
√

3(n− 3),
√

3(n− 3)(n− 4),
√

6(n− 3),
√

(n− 3)(n− 4)(n− 5),
√

6(n− 3)(n− 4),
√

6n− 18
)
,

and P = SQS−1. Note that v is an eigenvector of Q for the eigenvalue λ if and only if Sv
is an eigenvector of P for the eigenvalue λ. For any eigenvalue λ of Q with multiplicity 1
and with eigenvector v, setting w = Sv, the multiplicity of λ as an eigenvalue of A(n, 3)
is obtained by Lemma 5 as

n(n− 1)(n− 2)
(w)21
w>w

.

For instance,

v = [3(n− 3), 3(n− 3), 3(n− 3), 2n− 9, 2n− 9, n− 9, 2n− 9,−9, n− 9, 2n− 9]>

is an eigenvector of Q for the 1-fold eigenvalue 2n− 9. Hence,

w = Sv =
[
3n3, 3

√
3n3, 3

√
2n3, (2n− 9)

√
3n3, (2n− 9)

√
3n3, (n− 9)

√
3n3n4,

(2n− 9)
√

6n3,−9
√
n3n4n5, (n− 9)

√
6n3n4, (2n− 9)

√
6n− 18

]>
,

is an eigenvector of P for the eigenvalue 2n−9. The multiplicity of 2n−9 as an eigenvalue
of A(n, 3) is then equal to

n(n− 1)(n− 2)
(w)21
w>w

= n(n− 1)(n− 2)
9(n− 3)2

9n(n− 2)(n− 3)2
= n− 1.
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By similar calculations, the multiplicities of other eigenvalues of A(n, 3) can be determined
(except for the eigenvalue −3). The multiplicity of −3 is n(n− 1)(n− 2) minus the sum
of all the multiplicities of the rest of the eigenvalues.

Theorem 11. For n > 5, the eigenvalues of A(n, 4) are as follows:

(−4)[n(n−3)(n
2−7n+8)+1] (n− 10)[n(n−1)(n−5)/6] (n− 9)[n(n−2)(n−4)]

(n− 8)[(n−1)(n−2)(n−3)/2] (n− 7)[2n(n−2)(n−4)/3] (n− 6)[n(n−1)(n−5)/2]

(n− 5)[n(n−2)(n−4)] (n− 4)[(n−1)(n−2)(n−3)/6] (2n− 14)[n(n−3)/2]

(2n− 12)[3(n−1)(n−2)/2] (2n− 10)[3n(n−3)/2] (2n− 8)[5n(n−3)/2+3]

(3n− 16)[n−1] (3n− 12)[3(n−1)] (4n− 16)[1].

Proof. The eigenvalues of A(5, 4), A(6, 4) and A(7, 4) are determined by a computer; these
are

{−4[1], −3[12], −2[28], −1[4], 0[30], 1[4], 2[28], 3[12], 4[1]},
{−4[42], −3[48], −2[39], −1[32], 0[45], 1[48], 2[42], 4[48], 6[15], 8[1]}, and

{−4[225], −3[14], −2[105], −1[60], 0[84], 1[42], 2[150], 3[20], 4[42], 5[6] 6[73], 9[18], 12[1]},

respectively, which agree with the assertion. So we may assume that n > 6.
We consider the following order for the cycle types of 4-permutations:

1111, 112, 22, 13, 4, 1111′, 121′, 31′, 111′1′, 21′1′, 112′,

22′, 11′1′1′, 11′2′, 13′, 1′1′1′1′, 1′1′2′, 2′2′, 1′3′, 4′.

We order the cells of the cycle-type partition according to the above ordering. From
Theorem 7, the quotient matrix Q of the cycle-type partition of A(n, 4) is computed as:

Proof. The eigenvalues of A(5, 4), A(6, 4) and A(7, 4) are determined by a computer; these are

{−4[1], −3[12], −2[28], −1[4], 0[30], 1[4], 2[28], 3[12], 4[1]},

{−4[42], −3[48], −2[39], −1[32], 0[45], 1[48], 2[42], 4[48], 6[15], 8[1]}, and

{−4[225], −3[14], −2[105], −1[60], 0[84], 1[42], 2[150], 3[20], 4[42], 5[6] 6[73], 9[18], 12[1]},

respectively, which agree with the assertion. So we may assume that n ≥ 6.

We consider the following order for the cycle types of 4-permutations:

1111, 112, 22, 13, 4, 1111′, 121′, 31′, 111′1′, 21′1′, 112′, 22′, 11′1′1′, 11′2′, 13′, 1′1′1′1′, 1′1′2′, 2′2′, 1′3′, 4′.

We order the cells of the cycle-type partition according to the above ordering. From Theorem 7, the quotient
matrix Q of the cycle-type partition of A(n, 4) is computed as:




0 0 0 0 0 4n4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2n4 0 0 0 2n4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 4n4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 n4 0 0 0 0 0 0 3n4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4n4
1 0 0 0 0 n5 0 0 3n5 0 3 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 n5 0 0 n5 0 1 0 2n5 2 0 0 0 0 0
0 0 0 1 0 0 0 n5 0 0 0 0 0 0 0 0 0 0 3n5 3
0 0 0 0 0 2 0 0 2n6 0 2 0 2n6 4 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 2n6 0 2 0 0 0 0 2n6 0 4 0
0 1 0 0 0 1 0 0 n5 0 n5 0 0 2n5 2 0 0 0 0 0
0 0 1 0 0 0 1 0 0 n5 0 n5 0 0 0 0 0 2n5 0 2
0 0 0 0 0 0 0 0 3 0 0 0 3n7 6 0 n7 3 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 n6 2n− 11 2 0 n6 1 1 0
0 0 0 1 0 0 1 0 0 0 1 0 0 2n5 n5 0 0 0 n5 1
0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 4n8 12 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 2 0 n7 3n− 19 2 4 0
0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 2n6 2n6 2 2
0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 2n6 1 2n− 11 2
0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 n5 2n5 n5




.

By computation, we obtain the eigenvalues and eigenvectors of Q as given in Table 4.
Let

S = diag
(√

1,
√
6,
√
3,
√
8,
√
6,
√

4(n− 4),
√

12(n− 4),
√

8(n− 4),
√

6(n− 4)(n− 5),
√

6(n− 4)(n− 5),
√

12(n− 4),
√
12(n− 4),

√
4(n− 4)(n− 5)(n− 6),

√
24(n− 4)(n− 5),

√
24(n− 4),

√
(n− 4)(n− 5)(n− 6)(n− 7),

√
12(n− 4)(n− 5)(n− 6),

√
12(n− 4)(n− 5),

√
24(n− 4)(n− 5),

√
24(n− 4)

)
,

and P = SQS−1. For any eigenvalue λ of Q with multiplicity 1 and with eigenvector v, setting w = Sv, the

multiplicity of λ as an eigenvalue of A(n, 4) is obtained by Lemma 5 as

n(n− 1)(n− 2)(n− 3)
(w)21
w>w

.

However, if the multiplicity of λ for Q is larger than 1, we need to find an orthogonal set of eigenvectors for λ and

12

By computation, we obtain the eigenvalues and eigenvectors of Q as given in Table 4.
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Eigenvalue Eigenvector

−4 [5n4n5n6, 0, −n4n5n6, −n4n5n6, n4n5n6, −5n5n6, 0, n5n6, 5n6, −n6, 0, n5n6, −3, −n6, n5n6, 0,

1, 0, 0, −n5n6]
−4 [2n4n5, 0, 0, −n4n5, n4n5, −2n5, 0, n5, 2, 0, 0, 0, 0, −1, n5, 0, 0, 1, 0, −n5]
−4 [2n4n5, 0, −2n4n5, −n4n5, 2n4n5, −2n5, 0, n5, 2, −2, 0, 2n5, 0, −1, n5, 0, 0, 0, 1, −2n5]

−4 [n4, −n4, n4, n4, −n4, −1, 1, −1, 0, 0, 1, −1, 0, 0, −1, 0, 0, 0, 0, 1]

−4 [n4n5n6n7, 0, 0, 0, 0, −n5n6n7, 0, 0, n6n7, 0, 0, 0, −n7, 0, 0, 1, 0, 0, 0, 0]
3n− 16 [4n4, 4n4, 4n4, 4n4, 4n4, 3n− 16, 3n− 16, 3n− 16, −2n8, −2n8, 3n− 16, 3n− 16, n16 − 2n8,

3n− 16, −16, n− 16, −2n8, −2n8, 3n− 16]

n− 10 [−4n4n5n6, −4n4n5n6, −4n4n5n6, −4n4n5n6, −4n4n5n6, −n5n6n10, −n5n6n10, −n5n6n10, 4n6n8,
4n6n8, −n5n6n10, −n5n6n10, 132− 18n, 4n6n8, −n5n6n10, 96, 132− 18n, 4n6n8, 4n6n8, −n5n6n10]

n− 9
[
−12n4n5, −4n4n5, 4n4n5, 0, 4n4n5, −3n5n9, 4n5, 3(n− 5)2/2, 10n− 66, −2n5, −2n5n7,

n5n9, −24, 3n− 19, −(n− 5)2/2, 0, 8, −4n7, 19− 3n, n5n9
]

n− 8 [−12n4, 4n4, 4n4, 0, −4n4, −3n8, 3n− 16, −3n4, 8, −8, −n, n8, 0, −4, n4, 0, 0, 0, 4, −n8]
n− 7 [4n4, 0, 4n4, −2n4, 0, n7, 0, −n7/2, −2, −2, 0, n7, 0, 1, −n7/2, 0, 0, −2, 1, 0]

n− 6 [−12n4n5, −4n4n5, 4n4n5, 0, 4n4n5, −3n5n6, −n5(3n− 10), −3n2n5, 4n6, 4n2, (n+ 2)n5,

n5n6, −6, −4, n2n5, 0, 2, −4n4, 4, n5n6]

n− 5 [−12n4, 4n4, 4n4, 0, −4n4, −3n5, −4, n3/2, 2, −2, 2n3, n5, 0, −1, −n1/2, 0, 0, 0, 1, −n5]
n− 4 [−4, 4, −4, −4, 4, −1, 1, −1, 0, 0, 1, −1, 0, 0, −1, 0, 0, 0, 0, 1]

2n− 14 [−6n4n5, −6n4n5, −6n4n5, −6n4n5, −6n4n5, −3n5n7, −3n5n7, −3n5n7, τ, τ, −3n5n7,

−3n5n7, 9n3, τ, −3n5n7, −72, 9n3, τ, τ, −3n5n7] where τ = 21n− n2 − 92

2n− 12 [−6n4,−2n4, 2n4, 0, 2n4, 18− 3n, 2, 3n12/2,−n12, n4,−2n5, n6, 6,−n8/2,−n4/2, 0,−2,−4, n4/2, n6]

2n− 10 [6n4, 2n4, −2n4, 0, −2n4, 3n5, n3, 3, n8, n, n7, −n5, −3, −2, −1, 0, 1, −n4, 2, −n5]
2n− 8 [12, −2, 4, −3, 2, 6, −2, 0, 2, 0, 0, 2, 0, −1, −2, 0, 0, 1, 0, 1]

2n− 8 [12, −4, −4, 0, 4, 6, −4, 3, 2, −2, 0, −2, 0, −1, −1, 0, 0, 0, 1, 2]

3n− 12 [12, 4, −4, 0, −4, 9, 1, −3, 6, −2, 5, −3, 3, 2, 1, 0, −1, −2, −2, −3]

4n− 16 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Table 4: The eigenvalues and the (transposed) eigenvectors of the quotient matrix of A(n, 4)

(−5)[n
5−15n4+75n3−145n2+89n−1] (n− 13)[n(n−1)(n−2)(n−7)/24] (n− 12)[n(n−1)(n−3)(n−6)/2]

(n− 11)[n(n−5)(7n)2−35n+37)/6] (n− 10)[(n−1)(n−2)(n−3)(n−4)/6] (n− 9)[5n(n−3)(n2−7n+8)/4]

(n− 8)[n(n−1)(n−2)(n−7)/6] (n− 7)[n(n−1)(7n)2−63n+131)/6] (n− 6)[n(n−2)(n−3)(n−5)/2]

(n− 5)[(n−1)(n−2)(n−3)(n−4)/24] (2n− 19)[n(n−1)(n−5)/6] (2n− 17)[4n(n−2)(n−4)/3]

(2n− 15)[(n−1)(n−2)(n−3)] (2n− 14)[n(7n)
2−42n+50)/2] (2n− 12)[2n(n−2)(n−4)]

(2n− 11)[5n(n−1)(n−5)/6] (2n− 10)[(n−2)(7n2−28n+6)/3] (3n− 23)[n(n−3)/2]

(3n− 20)[2(n−1)(n−2)] (3n− 18)[2n(n−3)] (3n− 15)[(11n
2−33n+12)/2]

(4n− 25)[n−1] (4n− 20)[4n−4] (5n− 25)[1]

Table 5: The eigenvalues of A(n, 5)

17

Table 4: The eigenvalues and the (transposed) eigenvectors of the quotient matrix of A(n, 4)

Let

S = diag
(√

1,
√

6,
√

3,
√

8,
√

6,
√

4n4,
√

12n4,
√

8n4,
√

6n4n5,
√

6n4n5,
√

12n4,
√

12n4,
√

4n4n5n6,

√
24n4n5,

√
24n4,

√
n4n5n6n7,

√
12n4n5n6,

√
12n4n5,

√
24n4n5,

√
24n4

)
,

and P = SQS−1. For any eigenvalue λ of Q with multiplicity 1 and with eigenvector v,
setting w = Sv, the multiplicity of λ as an eigenvalue of A(n, 4) is obtained by Lemma 5
as

n(n− 1)(n− 2)(n− 3)
(w)21
w>w

.

However, if the multiplicity of λ for Q is larger than 1, we need to find an orthogonal set

the electronic journal of combinatorics 20(4) (2013), #P22 13



of eigenvectors for λ and P . Besides −4, only 2n− 8 is such an eigenvalue. Set

w1 = S [12,−2, 4,−3, 2, 6,−2, 0, 2, 0, 0, 2, 0,−1,−2, 0, 0, 1, 0, 1]> ,

w2 = S [12,−4,−4, 0, 4, 6,−4, 3, 2,−2, 0,−2, 0,−1,−1, 0, 0, 0, 1, 2]> .

Now the vectors u1,u2 with u1 = w1 and u2 = w2 − w>
2 w2

w>
1 w2

w1 forms a set of orthogonal

eigenvectors of P for 2n− 8. By Lemma 5, the multiplicity of 2n− 8 as an eigenvalue of
A(n, 4) is

n(n− 1)(n− 2)(n− 3)

(
(u1)

2
1

u>1 u1

+
(u2)

2
1

u>2 u2

)

= n(n− 1)(n− 2)(n− 3)

(
12

6− 15n+ 5n2
+

(n2 − 3n+ 6)2

2n(n− 1)(n− 2)(n− 3)(5n2 − 15n+ 6)

)

=
5n(n− 3)

2
+ 3.

Now, the multiplicity of −4 is n(n−1)(n−2)(n−3) minus the sum of all the multiplicities
of the rest of the eigenvalues.

4.3 Eigenvalues of A(n, k) for k = 5, 6, 7

In a similar fashion as for A(n, 3) and A(n, 4), we are able to determine the complete set
of eigenvalues of more families of the arrangement graphs. The eigenvalues of A(n, k) for
k = 5, 6, 7 are given in Tables 5, 6 and 7. We would like to point out that by using our
method it is possible to compute the eigenvalues of the graphs A(n, k) for some larger
values of k > 7.

(−5)[n
5−15n4+75n3−145n2+89n−1] (n− 13)[n(n−1)(n−2)(n−7)/24] (n− 12)[n(n−1)(n−3)(n−6)/2]

(n− 11)[n(n−5)(7n)
2−35n+37)/6] (n− 10)[(n−1)(n−2)(n−3)(n−4)/6] (n− 9)[5n(n−3)(n

2−7n+8)/4]

(n− 8)[n(n−1)(n−2)(n−7)/6] (n− 7)[n(n−1)(7n)
2−63n+131)/6] (n− 6)[n(n−2)(n−3)(n−5)/2]

(n− 5)[(n−1)(n−2)(n−3)(n−4)/24] (2n− 19)[n(n−1)(n−5)/6] (2n− 17)[4n(n−2)(n−4)/3]

(2n− 15)[(n−1)(n−2)(n−3)] (2n− 14)[n(7n)
2−42n+50)/2] (2n− 12)[2n(n−2)(n−4)]

(2n− 11)[5n(n−1)(n−5)/6] (2n− 10)[(n−2)(7n
2−28n+6)/3] (3n− 23)[n(n−3)/2]

(3n− 20)[2(n−1)(n−2)] (3n− 18)[2n(n−3)] (3n− 15)[(11n
2−33n+12)/2]

(4n− 25)[n−1] (4n− 20)[4n−4] (5n− 25)[1]

Table 5: The eigenvalues of A(n, 5)
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(−6)[n
6−21n5+160n4−545n3+814n2−415n+1] (n− 16)[n(n−1)(n−2)(n−3)(n−9)/120] (n− 15)[n(n−1)(n−2)(n−4)(n−8)/6]

(n− 14)[n(n−1)(n−7)(7n2−49n+78)/8] (n− 13)[n(n−3)(n−6)(n2−6n+6)] (n− 12)[(n−1)(n−2)(n−5)(n2−7n+2)/4]

(n− 11)[n(n−4)(7n3−77n2+217n−162)/4] (n− 10)[n(n−1)(n−3)(n−4)(n−7)/4] (n− 9)[n(n−1)(n−2)(n2−12n+34)]

(n− 8)[n(n−1)(n−3)(7n2−77n+202)/8] (n− 7)[n(n−2)(n−3)(n−4)(n−6)/6] (n− 6)[(n−1)(n−2)(n−3)(n−4)(n−5)/120]

(2n− 24)[n(n−1)(n−2)(n−7)/24] (2n− 22)[5n(n−1)(n−3)(n−6)/8] (2n− 20)[n(n−5)(2n−3)(2n−7)/2]

(2n− 18)[(7n
3−63n2+136n−40)(n−1)/4] (2n− 17)[2n(n−2)(n−3)(n−5)] (2n− 16)[15n(n−1)(n−3)(n−6)/8]

(2n− 15)[4n(n−1)(n−4)(n−5)/3] (2n− 14)[n(n−2)(13n2−104n+171)/8] (2n− 13)[2n(n−1)(n−3)(n−6)]

(2n− 12)[(7n
4−70n3+217n2−210n+20)/4] (3n− 30)[n(n−1)(n−5)/6] (3n− 27)[5n(n−4)(n−2)/3]

(3n− 23)[3n(n−2)(n−2)] (3n− 24)[5(n−4)(n−1)2/2] (3n− 21)[10n(n−2)(n−4)/3]

(3n− 20)[3n(n−1)(n−5)/2] (3n− 18)[(n−4)(47n2−94n+15)/6] (4n− 34)[n(n−3)/2]

(4n− 30)[5(n−1)(n−2)/2] (4n− 28)[5n(n−3)/2] (4n− 24)[(19n
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7−28n6+301n5−1575n4+4179n3−5243n2+2372n−1] (n− 19)[n(n−1)(n−2)(n−3)(n−4)(n−11)/720]

(n− 18)[n(n−1)(n−2)(n−3)(n−5)(n−10)/24] (n− 17)[n(n−1)(n−2)(n−9)(23n2−207n+439)/60]
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(2n− 29)[n(n−1)(n−2)(n−3)(n−9)/120] (2n− 27)[n(n−1)(n−2)(n−4)(n−8)/5]
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(2n− 18)[n(n−1)(n−3)(n−4)(n−7)] (2n− 17)[7n(n−1)(7n3−98n2+427n−568)/20]

(2n− 16)[5n(n−2)(n−4)(n2−9n+11)/3] (2n− 15)[7n(n−1)(n−7)(3n2−21n+34)/8]
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(3n− 30)[n(n−1)(n−2)(n−7)/4] (3n− 29)[7n(n−1)(n−3)(n−6)/4]
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(3n− 26)[7n(n−1)(n−3)(n−6)n/4] (3n− 25)[7n(n−1)(n2−9n+19)/2]

(3n− 24)[5n(n−2)(n−3)(n−5)/2] (3n− 22)[7n(n−1)(n−2)(n−7)/12]

(3n− 23)[35n(n−1)(n−3)(n−6)/8] (3n− 21)[(75n
4−750n3+2233n2−1958n+120)/8]

(4n− 43)[n(n−1)(n−5)/6] (4n− 39)[2n(n−2)(n−4)]

(4n− 36)[n(n−1)(n−5)] (4n− 35)[5(n−1)(n−2)(n−3)/2]
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3−312n2+425n2−60)/3]

(5n− 47)[n(n−3)/2] (5n− 42)[3(n−1)(n−2)]

(5n− 40)[3n(n−3)] (5n− 35)[(29n
2−87n+30)/2]

(6n− 49)[n−1] (6n− 42)[6(n−1)]

(7n− 49)[1]
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4.4 Connection with the Johnson graph

We first recall the eigenvalues of the Johnson graph (see [2, p. 179]).

Lemma 12. The eigenvalues of J(n, k) are

(k − i)(n− k − i)− i with multiplicity

(
n

i

)
−
(

n

i− 1

)
, for i = 0, . . . , k.

Let α1, . . . , α(n
k)

be all the k-subsets of [n]. Let Vi be the set of all permutations of

αi. If |αi ∩ αj| = k − 1, then each π ∈ Vi is adjacent to exactly one q ∈ Vj and if
|αi ∩ αj| < k − 1, then no vertex of Vi has a neighbor in Vj. It follows that (V1, . . . , Vn)
is an equitable partition of A(n, k) where its quotient matrix is the adjacency matrix of
J(n, k). So we come up with the following.

Proposition 13. For every i = 0, . . . , k, (k− i)(n− k− i)− i is an eigenvalue of A(n, k)
with multiplicity at least

(
n
i

)
−
(

n
i−1
)
.

4.5 The smallest eigenvalue

From Proposition 13 it follows that −k is an eigenvalue of A(n, k) with multiplicity at
least

(
n
k

)
−
(

n
k−1
)
. In this section we establish that −k is indeed the smallest eigenvalue,

but with a much larger multiplicity.

Theorem 14. If n > 2k, then −k is the smallest eigenvalue of A(n, k) with multiplicity
at least n(n− 1) · · · (n− k + 2)(n− 2k + 1).

Proof. Consider the complete k-partite graph Kn,...,n and let ai1, . . . , ain be the vertices
of the ith part for i = 1, . . . , k. We remove the edges {aijarj | 1 6 j 6 n, 1 6 i, r 6 k}
and denote the resulting graph by Hn,k. A set of vertices {a1j1 , . . . , akjk} forms a k-clique
in Hn,k if and only if (j1, . . . , jk) is a k-permutation of [n]. Hence there is a one-to-one
correspondence between the k-cliques of Hn,k and the k-permutations of [n]. For a k-
permutation π we denote the corresponding k-clique by C(π). Now, two k-permutations
π1 and π2 are adjacent in A(n, k) if and only if |C(π1)∩C(π2)| = k−1. Let M denote the
incidence matrix of (k − 1)-cliques versus k-cliques of Hn,k, that is the rows and columns
of M are indexed by the (k − 1)-cliques and the k-cliques of Hn,k, respectively, where
M(C,C ′) = 1 if C ⊂ C ′ and M(C,C ′) = 0 otherwise. It is straightforward to see that
the adjacency matrix of A(n, k) is equal to M>M − kI. It follows that −k is the smallest
eigenvalue of A(n, k). As M has n(n− 1) · · · (n−k+ 2)k rows and n(n− 1) · · · (n−k+ 1)
columns, it follows that the multiplicity of −k as an eigenvalue of A(n, k) is at least
n(n− 1) · · · (n− k + 2)(n− 2k + 1).

We close the paper with some open problems on the eigenvalues of the arrangement
graphs.

The main problem we would like to put forward is the following:
Problem 1. What are the eigenvalues of the arrangement graph A(n, k)?
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Our observations allow us to narrow down Problem 1 to the following more specific
conjectures:
Conjecture 2. The eigenvalues of the arrangement graphs A(n, k) consist entirely of
integers.1

Conjecture 3. For any integer k, there is an integer n0 such that for all n > n0, −k is
the only negative eigenvalue of A(n, k).
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