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Abstract

We give a bijective proof of the Aztec diamond theorem, stating that there are
2n(n+1)/2 domino tilings of the Aztec diamond of order n. The proof in fact es-
tablishes a similar result for non-intersecting families of n+ 1 Schröder paths, with
horizontal, diagonal or vertical steps, linking the grid points of two adjacent sides of
an n× n square grid; these families are well known to be in bijection with tilings of
the Aztec diamond. Our bijection is produced by an invertible “combing” algorithm,
operating on families of paths without non-intersection condition, but instead with
the requirement that any vertical steps come at the end of a path, and which are
clearly 2n(n+1)/2 in number; it transforms them into non-intersecting families.

1 Introduction
The term “Aztec diamond” introduced by Elkies, Kuperberg, Larsen and Propp [EKLP92]
refers to a diamond-shaped set of squares in the plane, obtained by taking a triangular
array of squares aligned against two perpendicular axes, and completing it with its mirror
images in those two axes; the order of the diamond is the number of squares along each
of the sides of the triangular array. Their main result concerns counting the number of
domino tilings (i.e., partitions into subsets of two adjacent squares) of the Aztec diamond.

Theorem 1 (Aztec diamond theorem). There are exactly 2(n+1
2 ) domino tilings of the

Aztec diamond of order n.

This result has been proved in various manners; the original article alone gives four
different proofs, all closely related to a correspondence that it establishes between the
domino tilings and certain pairs of alternating sign matrices. A first proof that involves
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associating a collection of disjoint paths to a domino tiling was given by Brualdi and Kirk-
land [BrKi05]; they use such an association (where the paths are in fact closed oriented
cycles) to translate the enumeration problem into one of computing the determinant of
a {−1, 0, 1}-matrix of order n2 + n, which they reduce to the determinant of a Hankel
matrix of Schröder numbers of order n, and then finally evaluate using some more al-
gebraic manipulations. Their method is simplified by Eu and Fu [EuFu05] who, using
a somewhat different correspondence illustrated in Figure 1, bring domino tilings of an
order n Aztec diamond into bijection with non-intersecting families of n lattice paths link-
ing two adjacent sides of an n× n square grid (the common corner is unused), the paths
having horizontal, diagonal or vertical steps. With aid of the Lindström-Gessel-Viennot
method, they express the number of such families as the determinant of a Hankel matrix
of Schröder numbers (somewhat different from the one in [BrKi05]), and evaluate it to
the proper power of 2 through a clever interplay between algebraic and combinatorial
viewpoints.

In this paper we propose another proof of the Aztec diamond theorem in terms of
non-intersecting families of lattice paths. We start by a further simplification of the
argument of [EuFu05], giving the enumeration of disjoint path families as a determinant
of a matrix of Delannoy rather than Schröder numbers (the Delannoy paths they count are
less restricted than Schröder paths are), which can be evaluated recursively using just row
and column operations. Our main result however is a bijective proof of this enumeration,
by giving a reversible procedure that constructs such non-intersecting families from an
array of

(
n+1
2

)
independent values taken from {0, 1} (that we shall call bits). Indeed

we use these values to first construct a family of n + 1 (possibly intersecting) paths Pi
with 0 6 i 6 n, where there are 2i possibilities for Pi; then we modify the family by
a succession of operations that may interchange steps among its paths, so as to ensure
they all become disjoint. These modifications are invertible step-by-step; to make this
precise we specify at each intermediate point of the transformation precise conditions on
the family that ensure that continuing both in the forward direction and in the backward
direction can be completed successfully. As a consequence we obtain the descriptions of
a number of collections of intermediate families of paths, which are all equinumerous to
the set of disjoint path families.

Ours is not strictly speaking the first bijective proof of the Aztec diamond theorem.
Indeed the fourth proof of the original paper, though not formulated as a bijective proof,
does give a “domino-shuffling” procedure (which is more explicitly described in [JPS98,
section 2]), with the aid of which one can build domino tilings of Aztec diamonds of in-
creasing order, in a manner that uses a net influx of n(n+1)/2 bits of external information
(each passage from a tiling of order i − 1 to order i uses i bits), and such that all these
bits can be recovered from the final tiling produced. However, in spite of some superficial
similarities, the procedure we present is quite different in nature. The main differences are
that our procedure operates not on tilings but on families of (possibly intersecting) paths;
that it proceeds in a regular forward progression rather than alternating deconstruction,
shuffling, and construction steps; and that this progression involves parts of the final con-
figuration, successively attaining their final state, rather than a passage through complete
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Figure 1: A domino tiling of the Aztec diamond of order 20, and (in green) the corre-
sponding family of 21 disjoint paths

tilings of increasing order. We shall say a bit more about domino shuffling towards the
end of our paper. Like domino shuffling, our algorithm provides an efficient method to
produce large “random” examples of disjoint families of lattice paths as in Figure 2 (or of
domino tilings), which illustrate the “arctic circle” phenomenon of [JPS98].

The domino tiling point of view in fact plays no role at all in our construction; indeed
we discovered the known connection with tilings of Aztec diamonds only after the first
author had found the bijective proof, formulated as a proof of an enumeration formula
for families of lattice paths. In this paper we shall more or less follow the route by which
we approached the problem, leaving the connection with Aztec diamonds aside until the
final section. Henceforth n will be the number of paths in a family, which is one more
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Figure 2: A random disjoint family of 196 paths

than the order of the corresponding Aztec diamond.
We give some definitions in section 2, and in section 3 enumerate disjoint families

of lattice paths using a determinant evaluation. In section 4 we give some illustrations
and considerations leading to an informal approach to our algorithm, followed by a more
formal statement and proof in section 5. Finally we detail in section 6 the bijection
between disjoint families of Delannoy paths and domino tilings (even though fairly clear
in a pictorial example, it is worth while to state and prove it carefully), which in fact is
not specific to the Aztec diamond at all; we also discuss some complementary matters.
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2 Definitions
We shall consider paths through points in a square lattice whose basic steps are either by
a unit vector in one of two directions along the axes, or a diagonal step by the sum of those
two vectors. We shall call these Delannoy paths. Concretely, since we shall want our paths
to connect points on the two borders of the positive quadrant N ×N ⊂ Z × Z, we take
our basic steps to be by one of the vectors (0,+1), (−1,+1) and (−1, 0), and the step will
then respectively be called horizontal, diagonal or vertical. This terminology implies that
we think of the first index (or coordinate) as varying vertically, and the second index as
varying horizontally, as in matrices. We shall frequently refer to a set of vertically aligned
points as a “column”; in column k the constant second index is equal to k. However for
visualisation it will be slightly more convenient to have the first index increase upwards
rather than (as in matrices) downwards, so this is what we shall do. This amounts to
using the convention of Cartesian coordinates, but with the order of these coordinates
interchanged.

Definition 2.1. A Delannoy path from p to q, for points p, q ∈ Z × Z, is a sequence
P = (p0, p1, . . . , pk) with k ∈ N, pi ∈ Z×Z for 0 6 i 6 k, p0 = p, pk = q, and pi+1 − pi ∈
{(0,+1), (−1,+1), (−1, 0)} for 0 6 i < k. The support of P is supp(P ) = {p0, p1, . . . , pk}.

We denote by ai,j be the number of Delannoy paths from (i, 0) to (0, j) (a number also
known as the Delannoy number D(i, j)). Then

ai,0 = 1 = a0,j and ai+1,j+1 = ai,j+1 + ai+1,j + ai,j for all i, j ∈ N. (1)

Definition 2.2. The infinite matrix of these numbers is A = (ai,j)i,j∈N; its upper-left
n× n sub-matrix is A[n] = (ai,j)06i,j<n, for any n ∈ N.

Applying the Lindström-Gessel-Viennot method to the determinant of A[n] leads to
the following class of families consisting of n Delannoy paths each.

Definition 2.3. If π ∈ Sn is a permutation of [n] = {0, 1, . . . , n − 1}, then we shall call
“π-family” any n-tuple (P0, P1, . . . , Pn−1) where Pi is a Delannoy path from (i, 0) to (0, πi)
for i ∈ [n]. In the special case where π is the identity permutation of [n], a π-family will
be simply called an “n-family”. A π-family is called disjoint if supp(P0), supp(P1), . . .
and supp(Pn−1) are all disjoint.

A π-family cannot be disjoint unless π is the identity permutation. We shall use general
π-families only in the initial interpretation of det(A[n]): after reducing its evaluation to
counting disjoint families, we shall only deal with n-families.

Definition 2.4. A Schröder n-family is an n-family (P0, . . . , Pn−1) with the property
that for each i the path Pi does not pass to the side of the origin of the anti-diagonal line
joining its initial and final points: in formula, for each point (k, l) ∈ supp(Pi) one has
k + l > i.
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Paths in a Schröder n-family are (similar to) actual Schröder paths. A simple induction
argument shows that any disjoint n-family is a Schröder n-family. In formulating our
bijective proof for the enumeration of disjoint n-families, we shall employ only Schröder
n-families, but which are not necessarily disjoint. A type of Schröder paths of particular
interest is the following.

Definition 2.5. A Delannoy path (p0, p1, . . . , pk) from (i, 0) to (0, i) is called cliff-shaped
if pi = (k − i, i), in other words if the first i steps of the path are either horizontal or
diagonal, and any remaining steps are vertical. A cliff-shaped (Schröder) n-family is an
n-family whose paths are cliff-shaped paths.

Clearly any cliff-shaped Delannoy path is a Schröder path; therefore the qualification
“Schröder” when used after “cliff-shaped” is redundant. For a cliff-shaped path from (i, 0)
to (0, i), the first i steps can be chosen independently to be horizontal or diagonal, after
which the rest of the path is determined; therefore there are 2i such paths, and in all 2(n

2)

cliff-shaped n-families.

3 Enumeration of disjoint Schröder n-families
If we denote the set of π-families by F (π) then we have #F (π) =

∏
i∈[n] ai,πiby definition

of the numbers ai,j, and we can therefore evaluate

det(A[n]) =
∑
π∈Sn

sg(π)
∏
i∈[n]

ai,πi =
∑
π∈Sn

sg(π)#F (π). (2)

Now the Lindström-Gessel-Viennot method says we can replace the latter summation
by its contribution from disjoint families only, since all other contributions cancel out.
Indeed if a π-family (P0, . . . , Pn−1) has any pair of distinct paths Pi, Pj whose supports
have non-empty intersection, one can modify Pi and Pj by interchanging their parts
beyond (in the obvious sense) some point of that intersection to obtain a π′-family, with
π′ = π ◦ (i j) and hence sg(π′) = − sg(π), which therefore gives an opposite contribution
to the summation. It remains to make this cancellation systematic, which can be done
by fixing a rule that chooses for every non-disjoint family a pair {i, j} and a point of
intersection of the supports of Pi and Pj, in such a way that the same choices will be
produced for the family obtained after modifying Pi and Pj by the ensuing interchange;
this will ensure one obtains a sign-reversing involution of the set of non-disjoint families.
This rule can be chosen in a multitude of ways (although it is not entirely trivial to do so,
since the modification may change the set of candidate pairs {i, j} of indices), and leave
it to the reader to choose one.

Since a π-family can only be disjoint if π is the identity permutation, we find that
det(A[n]) is equal to the number of disjoint Schröder n-families. On the other hand this
determinant can be easily evaluated recursively using algebraic manipulations. If n > 0
and E[n] = (δi,j − δi+1,j)i,j∈[n] is the upper unitriangular n × n matrix with entries −1
directly above the diagonal and zeroes elsewhere above the diagonal, then the product

the electronic journal of combinatorics 20(4) (2013), #P24 6



A′[n] = E>[n]A[n]E[n] = (a′i,j)i,j∈[n] has entries a′i,j that are δi,j if i = 0 or j = 0, and are
otherwise given by

a′i,j = ai,j − ai,j−1 − ai−1,j + ai−1,j−1 = 2ai−1,j−1 if i, j > 0, (3)

where the latter equality is a consequence of the recursion relation (1). This means that
A′[n] can be written in (1, n− 1)× (1, n− 1) block matrix form

E>[n]A[n]E[n] =

(
1 0
0 2A[n−1]

)
if n > 0, (4)

from which, since det(E[n]) = 1, it follows that det(A[n]) = 2n−1 det(A[n−1]) when n > 0,
so

det(A[n]) = 2(n
2) for all n ∈ N. (5)

This proves

Theorem 2. For n ∈ N, the number of disjoint Schröder n-families is 2(n
2).

4 Some illustrations, and informal approach to a bijec-
tion

In this section we give some illustrations of the problem at hand, and some considerations
and examples that might help appreciate the bijective proof of theorem 2 that we shall
give. Impatient readers may skip to the next section where this proof is given, and which
is independent of the current one. There the bijection will be formalised in the form of
pseudo-code; a computer program that implements this algorithm, and which was used to
prepare the illustrations in this paper, is available from the website [vLee12] of the second
author.

We shall start by listing all 2(4
2) = 64 disjoint Schröder 4-families, to give an impression

of the variety these present. They are displayed in Figure 3, ordered by increasing number
of non-diagonal steps from bottom(-left) to top(-right).

A first fact that is apparent in this figure is that the number of horizontal steps (which
always equals the number of vertical steps), or by complementation the number of diagonal
steps, follows a (symmetric) binomial distribution for m = 6 =

(
4
2

)
independent trials, as

the frequencies are 1, 6, 15, 20, 15, 6, 1 respectively for 0, 1, . . . , 6 such steps. Even more
remarkably (if less obviously), the joint distribution of the number of vertical steps in each
of the four columns (vertical lines of the grid), which we shall call the column counts, is
the product of independent binomial distributions for m = 0, 1, 2, 3 respectively. The
corresponding statements remain true for the collection of all disjoint Schröder n-families
for any n ∈ N (this is in fact a corollary to our bijective proof). By an obvious symmetry
one also has the corresponding statement for the joint distribution of the number of
horizontal steps on each of the four horizontal lines of the grid (row counts), with m
increasing from bottom to top.
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Figure 3: The collection of all disjoint Schröder 4-families

One also has a similar statement for joint distribution of what we shall call inter-column
counts, the number of horizontal steps connecting each pair of successive columns; now
m decreases, from n− 1 between the leftmost pair of columns to 1 between the rightmost
pair. This statement can be seen to be equivalent to the one about column counts, if
one uses the duality illustrated in Figure 4; this is a bijection between the set of disjoint
Schröder n-families and the set of such families transformed by a central reflection sending
the origin to (n− 1

2
, n− 1

2
) (grid points are mapped to centres of squares of the original

grid). This correspondence is such that halfway on each horizontal or vertical step of
a disjoint n family, the step crosses a vertical respectively horizontal step of the dual
family. By contrast to these facts, the joint distribution of the number of horizontal (or
equivalently vertical) steps in each of the individual paths that make up a disjoint family
does not satisfy any such independence.

Given these observations, one may hope to find a bijection between disjoint Schröder
n-families and triangular arrays of

(
n
2

)
“bits” (values in {0, 1}) in such a way that, for a
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Figure 4: A disjoint 8-family and (in red) its dual family

certain arrangement of the triangle into columns of length i for i = 0, 1, . . . , n − 1, the
sum of the bits in column j will give the column count for column j of the corresponding
disjoint n-family.

Looking at just the 6 paths with a single horizontal and vertical step, in the bottom
line of Figure 3, one sees that the point of intersection of the lines containing these steps
are all different, and form the triangle of all grid points that are not visited by the paths
of the unique 4-family with diagonal steps only (at the bottom left). This might suggest
associating the triangular array of bits to those grid points, in the hope to find a bijection
with disjoint n-families such that the column counts and the row counts of an n-family
are given by the sums of these bits along the corresponding column or row. This is
easily seen to be impossible however: the joint distribution of the column counts and row
counts of disjoint n-families is different from the joint distribution of column sums and
row sums in such triangular array of bits. For instance for any c 6 n there exist disjoint
n-families with c horizontal and c vertical steps, all of them contributing to the same
column count respectively row count; when c > 2 the corresponding situation cannot
occur for the column and row sums of a triangular array of bits. On the other hand
it may be checked in the example that the joint distribution of the column counts and
the inter-column counts over all disjoint 4-families is precisely that of column sums and
row sums in such triangular arrays of

(
4
2

)
= 6 bits. This suggests that in formulating a

bijection one should prefer to abandon the transposition symmetry, and instead focus on
(say) vertical alignment only. Indeed our bijection will be such that column counts (of
vertical steps) and inter-column counts (of horizontal steps) can be immediately read off
from the triangular bit-array. However, the way these steps are distributed within their
column respectively inter-column space will not be so easy to read off.
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The starting point of our bijection will then be to translate a triangular array of
(
n
2

)
bits into a cliff-shaped n-family, where line i of the triangle (viewed in some appropriate
direction) determines the cliff-shaped path Pi. For such families of paths column counts
and inter-column counts are defined, just like for disjoint families; this time one has the
particular circumstance that only path Pi contributes to the column count for column i.
So each bit has two associated indices: that of a path Pi (which also gives the column
to which it may contribute a vertical step), and that of a an inter-column space, from
column j to j+ 1, to which it may contribute a horizontal step; the triangle runs through
values 0 6 j < i < n. There does not seem to be a particularly good way to view our
triangle as positioned geometrically in some way relative to the n-family. A somewhat
suggestive choice would be to position the bits at the (midpoints of) the horizontal steps
in the special “no diagonal steps” n-family (the one at the top right of Figure 3); then
column sums of bits give the corresponding inter-column counts for the path family, and
the rows sum the corresponding (after transposition) column counts.

Our main task will then be to find a systematic and reversible way to take any cliff-
shaped n-family and redistribute its horizontal and vertical steps among the different
paths, keeping each of these steps within its inter-column space respectively within its
column, so as to obtain a disjoint family. We can give some heuristic arguments to
explain the form that our algorithm will take. For the redistribution of steps, the vertical
steps will play a passive role, since the fact that within column k they are originally all
concentrated in the path Pk makes that they initially carry very little information. So
we shall operate primarily on the initial parts of cliff-shaped paths, which contain a mix
of horizontal and diagonal steps; whenever we move a horizontal step from one path to
another (exchanging it with a diagonal step), a corresponding vertical step will also be
moved between the paths so as to keep the ending point of each path unchanged.

An important aspect of our “untangling” procedure will be that it operates essentially
on parts of the paths that contain only horizontal and diagonal steps. Since redistributing
vertical steps in column k may move them from path Pk into paths Pi with i > k, it is
practical to so treat columns sequentially by decreasing value of k, and to leave column k
as it is once the vertical steps it contains are redistributed. In this way we avoid having
“polluted” paths with vertical steps in the columns under consideration, and their parts
beyond column k (the column where redistribution currently takes place) can be ignored
by the procedure.

If the initial cliff-shaped n-family happens to be already disjoint, our procedure will
just leave it as it is. Although this condition is satisfied by a vanishingly small fraction of
the families as n increases (notwithstanding the 26 such cases out of 64 for n = 4), the idea
of acting only when necessary is an important principle for the procedure. The following
setting is one where action will be required: we have two successive paths Pi, Pi+1 with
i > k, whose parts up to the point where they enter column k (which parts do not contain
any vertical steps) intersect. At the point in time where we start considering column k
(vertical steps having been redistributed in all columns beyond it), this situation may
occur for i = k: since Pk cannot have been involved in any of the previous operations,
it is in its initial state, and could be any cliff-shaped path. In particular there is no
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reason to suppose anything about its position relative to Pk+1. And even though Pk+1

can have been operated upon, and therefore may be more likely to have certain forms
than others, it certainly can also involve any sequence of horizontal and diagonal steps
before entering column k. Indeed Pk+1 could also be in its initial state, as would happen
if no action at all was required before considering column k, and as is certainly the case
at the very beginning, when for k = n − 2 we consider the paths Pn−2, Pn−1. So apart
from the absence of vertical steps we cannot assume anything about the first k steps of Pi
and Pi+1. On the other hand we shall assume that in column k only Pi may have vertical
steps initially, and also that beyond column k the paths are already disjoint.

Figure 5: Initial parts of a pair of paths in need of untangling

A typical situation is depicted in Figure 5; the red path is Pi and the black one Pi+1.
The paths have been truncated to their initial parts relevant to the task of untangling:
path Pi+1 has no vertical steps in column k = 23 and passes to column k + 1, while path
Pi does have at least the vertical steps in column k shown. It may be that Pi continues
further downwards (as it will when i = k, since then Pi is cliff-shaped), or it may pass to
column k + 1 as well; but if it does, it must do so while staying below Pi+1.

Since the paths depicted first meet in column 4, the principle to act only when needed
suggests leaving everything up to column 3 intact. We might then avoid the collision in
column 4 either by taking a diagonal step in Pi or by taking a horizontal step in Pi+1,
but if we want to keep the number of horizontal steps unchanged, and more precisely the
number of horizontal steps from column 3 to column 4, the only (easy) way to achieve
this is by making both these changes. As this transfers a horizontal step from Pi to Pi+1,
we shall also need to transfer a vertical step, in column k. As we shall see below, the
latter transfer combined with the initial absence of vertical steps in Pi+1 is a key point in
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being able to reverse the modification(s) made, as it serves as witness for the effort that
was required to make the pair of paths disjoint.

Having “switched step directions” between columns 3 and 4, the remainders of Pi
and Pi+1 are shifted down respectively up by one unit. It might seem that the next (and
only) remaining problem that needs resolving occurs in the passage to column 15, where
the original path Pi rises two units above Pi+1 for the first time, so that the mentioned
remainders meet in spite of the shifts. However, while switching step directions in the
passages to columns 4 and 15 only (and moving two vertical steps to Pi+1) would succeed
in making the paths disjoint, the result leaves insufficient information to reconstruct the
set of steps that were adjusted, and hence the initial paths. The modified steps cause
the new paths to move apart at a point where they are as close together as they may
get, but so do the passages to columns 8 and 12 (in the modified paths), with nothing to
distinguish the situation in these columns from that in columns 4 and 15. Therefore, we
shall instead switch directions every time that the height of Pi above Pi+1 first reaches
a new nonnegative value, which in the example happens for the values 0, 1, 2, 3 when
passing respectively to columns 4, 6, 15 and 23. The result of those four interchanges,
and of moving 4 vertical steps from Pi to Pi+1 in column 23, is shown in Figure 6.

Figure 6: Initial parts of the pair of paths untangled

One can view this transformation in terms of a single path ∆ of a new kind, defined
by the “difference” of Pi+1 and Pi: one that makes a down-step whenever between a pair
of columns Pi+1 has a diagonal step and Pi a horizontal one, an up-step when Pi+1 has a
horizontal step and Pi a diagonal one, and a neutral step when Pi+1 and Pi have the same
type of step (in ∆ the two kinds of neutral steps are distinguished, so that no information
is lost). Then Pi and Pi+1 are disjoint if and only if the maximal depth d beneath its
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starting level to which ∆ descends is 0, and we have described a procedure to transform
any ∆ into a path with d = 0, by reversing all those down-steps that lead to a new left-
to-right minimum. The procedure is well known in this setting, and in various equivalent
guises; see for instance [vLee10] and references therein. The mapping it defines becomes
injective when restricted to paths with a given initial value of d. This can be seen by
viewing the transformation as obtained by iterating as long as possible the operation of
reversing the first down-step that leads to the globally minimal level (which is initially d);
this iteration produces the reversals from right to left. Each such operation is invertible
by reversing the last up-step starting at the globally minimal level, so given d one can
undo the entire transformation by repeating this inverse operation d times.

The procedure described allows making a pair of successive paths Pi, Pi+1 disjoint up
to column k, and is reversible provided that Pi+1 initially had no vertical steps in that
column. Assuming that the paths Pk+1, . . . , Pn−1 have previously been made disjoint,
we can use this procedure to make Pk disjoint from Pk+1. But since this in general
involves moving parts of both paths away from each other, it may cause Pk+1 to intersect
Pk+2 even though they were disjoint before. In fact one could not expect being able to
make Pk, . . . , Pn−1 disjoint so easily: one needs to potentially introduce vertical steps
in column k for all these paths. After all, once this disjointness is obtained, further
transformations will no longer change column k, and for each i > k there certainly exist
disjoint n-families in which Pi has one or more vertical steps in column k.

An obvious idea is then to continue applying the untangling procedure as long as there
are pairs of adjacent paths that intersect. But unless this process proceeds in a very orderly
fashion, it will be problematic to invert, and could even fail to terminate. Fortunately it
turns out that the process is indeed very orderly: if after untangling Pi and Pi+1 we need
to untangle Pi+1 and Pi+2, then this may cause Pi+1 to “bounce back” towards Pi, but
when this happens the extra space that their initial untangling had produced between Pi
and Pi+1 is always sufficient to absorb the displacement of Pi+1, thus avoiding any new
intersection between them. Given this fact (proved in the next section), a single sweep of
untangling of paths by increasing value of i, starting at i = k, will suffice. The sweep will
end when no new intersections are produced, which at the very last is bound to happen
after untangling the final paths Pn−2 and Pn−1, if one ever gets to that point.

The succession of intermediate paths families during such a sweep of executions of the
untangling procedure for increasing values of i is illustrated in Figure 7, with the path Pi
for the next such execution in red. In the very last such execution, the paths are found
to be disjoint already and nothing is changed.

To put everything together, it remains to start with a cliff-shaped n-family determined
by a triangular array of

(
n
2

)
bits, and apply the above “sweeps” distributing vertical steps

in column k among the paths, for k = n − 2, . . . , 2, 1. This process is illustrated in
Figure 8, showing the transformation of a cliff-shaped 49-family into a disjoint 49-family
in several stages, including the initial and final ones. To avoid distraction, not yet treated
cliff-shaped paths, which intersect each other and the already “combed” ones, are in light
blue.
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Figure 7: One sweep of untangling until disjointness is obtained

5 A bijective proof
We shall now formulate a bijective proof of theorem 2, by giving an algorithmically defined
bijection between the set of disjoint Schröder n-families and the set of cliff-shaped Schröder
n-families, the latter set having the number of elements mentioned in the theorem. We
shall focus first on the direction from cliff-shaped to disjoint n-families, where the goal is
to remove intersections between pairs of paths (this is what “combing” in our title refers
to). However our claim that the map so defined is a bijection depends the existence of
an inverse transformation defined for any disjoint n-families, and which defines an inverse
mapping; in this direction the “goal” is to move, for all k, all vertical steps in column k
towards path Pk, where they will appear at the end, so that the paths become cliff-
shaped. Whenever one algorithm transforms a family of one type into another, the other
algorithm applied to the family produced will realise a step-by-step inverse of the initial
transformation.

Our basic operations, forward and backward, operate on a pair of successive paths
(Pi, Pi+1) in a Schröder n-family (the others are ignored), and depend on an additional
parameter k 6 i. These paths should have no vertical steps in columns j < k; the
operations will not introduce such steps either. Moreover they leave each of the paths
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Figure 8: Several intermediate phases of combing 49 paths

unchanged beyond column k, so the only way vertical steps play a role is by a possible
transfer between the paths of vertical steps in column k. The forward operation defines
a bijection from the pairs of such paths for which Pi+1 does not have any vertical steps
in column k while Pi has enough of such steps in a sense to be made precise, to the pairs
of such paths with disjoint supports. In the context where we shall apply the operations,
these conditions will be satisfied, and Pi, Pi+1 will also be disjoint beyond column k.

In what follows the following assumptions are tacitly made: all paths will be assumed
to without vertical steps in columns j < k, the paths Pi and P ′i are Schröder paths from
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(i, 0) to (0, i), and the paths Pi+1 and P ′i+1 are Schröder paths from (i+ 1, 0) to (0, i+ 1).
The absence of vertical steps allows the parts of such paths up to column k to be viewed
as graphs of functions: for δ ∈ {0, 1} and 0 6 j 6 k, let hδ(j) be the greatest (and unique,
unless j = k) value v with (v, j) ∈ supp(Pi+δ). These functions h0 and h1 are weakly
decreasing, and their values decrease by at most 1 at each step.

For defining the forward operation (with the mentioned assumptions on Pi, Pi+1), put

dj = max{h0(j′) + 1− h1(j′) | 0 6 j′ 6 j } for 0 6 j 6 k. (6)

The sequence (d0, d1, . . . , dk) is weakly increasing, and by at most 1 at each step; it starts
with d0 = 0. One will (still) have dk = 0 if and only if the paths Pi and Pi+1 have disjoint
supports up to column k. Now define h′0, h′1 by

h′0(j) = h0(j)− dj and h′1(j) = h1(j) + dj for 0 6 j 6 k. (7)

There is at most one pair of paths (P ′i , P
′
i+1), unchanged from their final points in column k

on with respect to (Pi, Pi+1), that gives rise to (h′0, h
′
1) in the same way as (Pi, Pi+1) gives

rise to (h0, h1). Our operation is defined only when such (P ′i , P
′
i+1) exists, and then

replaces Pi by P ′i and Pi+1 by P ′i+1.
For any j < k, the steps in P ′i , P

′
i+1 from column j to column j + 1 will be of the

same type as the corresponding steps in Pi, Pi+1 respectively, unless dj < dj+1. By (6),
the latter case occurs only in situations where h0(j) = h0(j+ 1) and h1(j) > h1(j+ 1), in
other words when the step from column j to column j+ 1 is horizontal in Pi and diagonal
in Pi+1. When indeed dj < dj+1, these directions are interchanged in P ′i , P ′i+1: the step
from column j to column j + 1 is diagonal in P ′i and horizontal in P ′i+1. This situation
arises dk times in all. As a result, P ′i+1 has (h1(k) + dk, k) as first point in column k, after
which it has dk vertical steps to reach the point (h1(k), k) where the original path Pi+1

enters column k.
The path P ′i on the other hand will have dk vertical steps less in column k than Pi

has. The (unique) condition for the existence of (P ′i , P
′
i+1) then is that Pi has at least that

many such steps to begin with. So we can detail the requirement alluded to above that Pi
have enough vertical steps in column k: we must assume that it has at least dk such steps,
as defined in (6). An equivalent, maybe more natural, way of stating this requirement is
that if we would modify Pi by removing all its vertical steps from column k and insert
them into column 0 instead (shifting all intermediate steps), then the resulting Delannoy
path would have its support disjoint from that of Pi+1.

It is clear that h′0(j) < h′1(j) for all 0 6 j 6 k, since

h′1(j)− h′0(j)− 1 = h1(j)− h0(j)− 1 + 2dj > dj, (8)

and dj > 0; moreover for j = k one gets that h′0(k) < h′1(k)−dk = h1(k), which is the first
coordinate of the point where Pi+1 enters into column k, and by the assumption that Pi+1

has no vertical steps in column k, this point is also the last one of P ′i+1 in that column.
This shows that the supports of P ′i and P ′i+1 are disjoint up to column k inclusive. In
fact this inequality shows that these paths leave at least dj empty places between them
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in any column j < k, so whenever dj increases with j, the modified paths are forced to
remain further and further apart. Thus an increase dj < dj+1 not only implies one has
a diagonal step in P ′i and a horizontal step in P ′i+1 between columns j and j + 1, but
also that the paths then continue to leave this increased number dj+1 of spaces (or more)
between them, until they enter column k.

The backward operation uses this property to detect the points of increase of dj from
the shape of the paths P ′i , P ′i+1 alone (so that it can then reconstruct (d0, . . . , dk)), but
needs to distinguish this situation from one where the original difference h1(j) − h0(j)
increases at j + 1 without ever falling back subsequently. But in the latter case one has
dk = dj < h′1(j) − h′0(j) (the equality follows from “not falling back”, and the inequality
from (8)), whereas in the case dj < dj+1 one has instead dk > dj+1 = dj+1 = h′1(j)−h′0(j)
(the final equality holds because the maximum in (6) must be attained for j′ = j).
Therefore one can tell the two cases apart provided that dk is known. But that is the
case: Pi+1 has no vertical steps in column k, so one can read off dk as the number of
vertical steps of P ′i+1 in column k.

So we can now formulate the backward operation, which can be applied to a pair of
paths (P ′i , P

′
i+1) with supports disjoint up to column k inclusive. We start by defining

functions h′0, h′1 in terms of respectively P ′i , P ′i+1, as before, and in addition let d be the
number of vertical steps of P ′i+1 in column k; then define the sequence (d0, d1, . . . , dk) by

dj = min({d} ∪ {h′1(j′)− h′0(j′)− 1 | j 6 j′ 6 k }) for 0 6 j 6 k. (9)

We then find h0, h1 by using equation (7) in the opposite direction:

h0(j) = h′0(j) + dj and h1(j) = h′1(j)− dj for 0 6 j 6 k, (10)

and finally take (Pi, Pi+1) to be the unique pair of paths, unchanged with respect to
(P ′i , P

′
i+1) from their final points in column k onwards, giving rise to (h0, h1).

Several easy verifications suffice to see that this backward operation is well defined.
The sequence (d0, d1, . . . , dk) is weakly increasing by at most one at each step, and satisfies
dk = d (since the supports of P ′i and P ′i+1 are disjoint in column k) and d0 = 0 (since the
disjointness of the supports of P ′i and P ′i+1 in column j gives h′1(j)− h′0(j)− 1 > 0, while
h′1(0)− h′0(0)− 1 = 0). All d vertical steps in column k of P ′i+1 are absent from Pi+1 but
transferred to Pi, and the steps in Pi and Pi+1 from column j to j + 1 stay of the same
kind as respectively in Pi and Pi+1 when dj = dj+1, while the steps interchange directions
when dj < dj+1; this establishes the existence of (Pi, Pi+1).

When the pair (P ′i , P
′
i+1) to which the backward operation is applied was itself obtained

by the forward operation from (Pi, Pi+1), it can be checked that in the backward operation
d = dk, and that the sequence (d0, . . . , dk) is the same as it was in the forward operation
(the condition causing dj < dj+1 in the backward operation is equivalent to the one
for which we argued that it characterises dj < dj+1 in the forward operation); in this
case the pair obtained in the backward operation is therefore the original pair (Pi, Pi+1).
Conversely, if the backward operation is applied to any applicable pair (P ′i , P

′
i+1), then the

forward operation can be applied to the resulting pair (Pi, Pi+1), and it will reconstruct
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(P ′i , P
′
i+1). Again this follows by showing that the forward operation reproduces the same

sequence (d0, . . . , dk) as the backward operation, as follows. For a maximal interval of
consecutive indices j for which during the backward operation dj has a constant value,
say c, one has the relation h0(j) + 1− h1(j) = 2c− (h′1(j)− h′0(j)− 1) throughout. Also
the maximal value of this expression is attained for the minimum such j (as well as for the
maximum such j, provided it is less than k). Therefore during the forward operation, the
value of dj from (6) will be constant on such intervals as well. On the other hand, when
dj < dj+1 during the backward operation, one has h0(j)+1−h1(j) = h0(j+1)−h1(j+1),
and together with the constancy result we just gave this shows that dj < dj+1 during the
forward operation as well, and therefore that (d0, . . . , dk) is reconstructed identically.

Let us resume the description of these basic operations as somewhat more formalised
computational procedures. To that end we need a concrete representation of the n-families
of paths operated upon. We choose a representation that facilitates handling paths with a
varying number of steps, and allows making evident the simple structure of our operations.
An n-family of paths is encoded by a pair of lower triangular matrices (B,D) indexed by
[n] × [n] (recall that [n] = {0, 1, . . . , n − 1}). The matrix B is strictly lower triangular
with entries in {0, 1}, while D is weakly lower triangular with entries in N. the entry
Bi,j indicates the direction of the step in Pi between column j and j + 1 (a value 0 for
horizontal, or 1 for diagonal), and the entry Di,j counts the number of vertical steps of Pi
in column j. A cliff-shaped n-family is determined by B alone, and the forward “combing”
algorithm will gradually compute D for the corresponding disjoint n-family from it while
updating B to match it. The reverse “uncombing” algorithm takes a disjoint n-family
encoded by B,D and computes B for the corresponding cliff-shaped n-family from it.

The forward basic operation, which will make paths Pi, Pi+1 disjoint up to column k 6 i
inclusive, assumes Di,k is already determined, and at the end of its execution transfers
part of its value to Di+1,k (taken to be 0 initially). Its description in procedure 1 uses local
variables cur ∈ Z recording the current value of h0(j) + 1 − h1(j), and d ∈ N recording
the maximum of cur so far. In this pseudo-code ‘←’ denotes assignment of a new value,
and we write indices in square brackets to remind that matrices are treated as arrays with
individually assignable entries.

untangle(i, k) :
cur← 0, d← 0
for j from 0 to k − 1 do

cur← cur +B[i+ 1, j]−B[i, j]
if cur > d then

d← cur
B[i, j]← 1, B[i+ 1, j]← 0 {interchange directions of steps}

end if
end for
D[i, k]← D[i, k]− d, D[i+ 1, k]← d {transfer d vertical steps to Pi+1}

Procedure 1: Forward operation on paths i, i+ 1 up to column k inclusive
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The backward operation in procedure 2 retraces the steps of procedure 1 using the
same local variables cur and d. While the sequence of values of d retraces those in
procedure 1 in reverse order, the values of cur are different: they record the current value
of h′1(j)−h′0(j)−1 for the functions h′0, h′1 corresponding to the disjoint paths described by
the initial values for procedure 2; in particular cur > 0 throughout the execution. In order
to set cur correctly, it assumes that the values h′0(k) and h′1(k), where paths Pi and Pi+1

respectively enter column k (values that are not directly available in our encoding) have
been stored beforehand as elements hi, hi+1 of an auxiliary array (not local to cliffify);
these values are also updated to reflect the effect of the operation.

cliffify(i, k) :
d← D[i+ 1, k], cur← h[i+ 1]− h[i]− 1 {0 6 d 6 cur}
D[i+ 1, k]← 0, D[i, k]← D[i, k] + d {transfer d vertical steps to Pi}
h[i+ 1]← h[i+ 1]− d, h[i]← h[i] + d {adapt entry point into column}
for j from k − 1 down to 0 do

cur ← cur +B[i+ 1, j]−B[i, j]
if cur < d then

d← cur
B[i, j]← 0, B[i+ 1, j]← 1

end if
end for

Procedure 2: Backward operation on paths i, i+ 1 up to column k inclusive

We can now formulate somewhat more formally what was proved above about the
forward and backward operations, as statement about the given procedures. For con-
ciseness we denote by Pathfam(n) the set of pairs of matrices (B,D) where B is strictly
lower triangular [n]× [n] matrix with entries in {0, 1}, while D is weakly lower triangular
[n]× [n] matrix with entries in N.

The procedures obviously only inspect and alter a small part of these matrices, but
there is no need to make explicit mention of that fact. As we proceed along the path Pi, the
values of Bi,j and Di,j encountered are subtracted from the level; therefore the inequalities
below are in the opposite direction as the corresponding comparison of the levels of two
paths. Also we have chosen to leave out the respective initial levels i and i+1 of the paths
Pi and Pi+1 from the expressions, so when interpreting the inequalities as comparisons of
levels, one should take into account the difference in offset.

Proposition 5.1. For 0 6 k 6 i < n− 1, procedure 1 defines a bijection, and procedure
2 defines the inverse bijection, between on one hand the set of pairs (B,D) ∈ Pathfam(n)
satisfying

Di+1,k = 0, and∑j−1

j′=0
Bi+1,j′ 6 Di,k +

∑j−1

j′=0
Bi,j′ , for 0 6 j 6 k,
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and on the other hand the set of pairs (B,D) ∈ Pathfam(n) satisfying∑j−1

j′=0
Bi+1,j′ 6

∑j−1

j′=0
Bi,j′ , for 0 6 j < k, and∑k−1

j=0
Bi+1,j +Di+1,k 6

∑k−1

j=0
Bi,j.

The relations hi′ = i′−
∑k−1

j=0 Bi′,j for i′ = i, i+1 are assumed to hold initially in procedure
2, and continue to hold after its execution.

We now build an algorithmic bijection corresponding to theorem 2 by repeated ap-
plication of basic operations. The iteration itself is straightforward, although a bit of
work will remain to show that the goal is attained. For a given value of k, we shall start
calling untangle(k, k) to make Pk and Pk+1 disjoint (recall that Pk does not extend beyond
column k), then untangle(k + 1, k) to make Pk+1 and Pk+2 disjoint up to column k, and
so forth up to untangle(n− 2, k) to make the last two paths Pn−1 and Pn−2 disjoint up to
column k. We shall show that the disjointness obtained in a step is not lost in the follow-
ing step, so this iteration will result in paths Pk, . . . , Pn−1 being disjoint up to column k.
Placing the iteration within another iteration, in which k decreases from n − 2 to 0, we
ensure that all paths that extend beyond column k are already disjoint when this inner
iteration starts. Since the parts beyond column k are unaffected by it, the inner iteration
will in fact achieve that Pk, . . . , Pn−1 are entirely disjoint, and at the end of the outer
iteration the whole n-family will be disjoint. Note that in general applying untangle(i, k)
will destroy the disjointness of Pi+1 and Pi+2 up to column k, which explains why the
inner iteration is needed.

Since each call untangle(i, k) takes care of setting the value of Di+1,k for use in the
subsequent call untangle(i + 1, k), all that remains to do is to ensure that Dk,k is set
correctly before the inner iteration at k starts; this is easy since the number of final
vertical steps in the cliff-shaped path Pk is equal to its number of horizontal steps. We
obtain the combing algorithm described in procedure 3.

for k from n− 1 down to 0 do
D[k, k]← k −

∑
06j<k B[k, j] {initialise diagonal entry}

for i from k to n− 2 do
untangle(i, k)

end for
end for

Procedure 3: Combing algorithm from cliff-shaped to disjoint n-families

A first verification to be made is that the condition of proposition 5.1 is satisfied when-
ever untangle(i, k) is invoked. This is clear initially when i = k, since the initialisation of
Dk,k gives that Dk,k +

∑j−1
j′=0Bi,j′ = k −

∑k−1
j′=j Bi,j′ > j. To prove that the inequality is

satisfied when i > k, we need the hypothesis that the paths Pi and Pi+1 were disjoint just
before untangle(i−1, k) was executed. This means that one has

∑j−1
j′=0Bi+1,j′ 6

∑j−1
j′=0Bi,j′

for 0 6 j 6 k at the start of untangle(i − 1, k). If d = Di,k is the final value obtained
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by this variable during that execution, then for any such j the value of
∑j−1

j′=0Bi,j′ is
decreased by at most d by the procedure, and since the values Bi+1,j′ are unaffected, one
obtains

∑j−1
j′=0Bi+1,j′ 6 d +

∑j−1
j′=0Bi,j′ at the end of untangle(i − 1, k), and therefore at

the beginning of untangle(i, k); this is the condition required.
A reverse (uncombing) algorithm is also easy to formulate. Here both B and D have

well defined values initially, and the only initialisation required is that of the vector h,
which should give the levels at which paths Pi and Pi+1 enter column k at the point where
cliffify(i, k) is invoked, as mentioned in proposition 5.1. Since procedure 2 takes care of
updating the vector h according to the changes to B it produces, these initialisations
are easily integrated into the uncombing algorithm, which only needs to take care of the
passage from column k − 1 to k. We obtain the algorithm described in procedure 4.

for k from 0 to n− 1 do
for i from n− 1 down to k do

if k = 0 then
h[i]← i {initialise height function for column 0}

else
h[i]← h[i]−B[i, k − 1] {adapt height function to column k}

end if
if i < n− 1 then

cliffify(i, k)
end if

end for
end for

Procedure 4: Uncombing algorithm from disjoint to cliff-shaped n-families

For this algorithm it is easy to see that in the inner loop for k, the condition of
proposition 5.1 is satisfied, provided that the paths Pk, . . . , Pn−1 are disjoint at the start of
the loop. Indeed the condition when calling cliffify(i, k) precisely requires the disjointness
of Pi and Pi+1, and although a preceding cliffify(i + 1, k) may have changed the entries
Bi+1,j that describe Pi+1, this can only have made them smaller, moving Pi+1 away from
Pi. In column k the vertical steps introduced by cliffify(i+1, k) come before the unchanging
point where Pi+1 leaves that column, so this does not endanger disjointness with Pi either.
It is on the other hand not obvious that the paths Pk+1, . . . , Pn−1 will again be disjoint at
the end of the inner loop (and of course Pk in general will not be disjoint from them). This
brings us to the main technical verification that needs to be done in order to conclude
that we have described well defined combing and uncombing bijections.

Proposition 5.2. Let Pathfam(n, k) denote the subset of Pathfam(n) of pairs (B,D)
encoding n-families without any vertical steps in any non-final column before column k
(so Di,j = 0 whenever 0 6 j < k and j < i < n) and for which the supports of the
paths Pk, . . . , Pn−1 are all disjoint. Then for each k < n, the inner loop at k of proce-
dure 3 defines a bijection, and the one of procedure 4 defines the inverse bijection, between
Pathfam(n, k + 1) and Pathfam(n, k)
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Proof. We have already seen that, when starting in the forward direction from an element
of Pathfam(n, k + 1), the calls untangle(i, k) in the inner loop of procedure 3 are invoked
under the proper conditions: the number of units of Di,k (vertical steps) that such a
call transfers to Di+1,k does not exceed the value of Di,k at that point. Starting in the
backward direction from an element of Pathfam(n, k), the inner loop of procedure 4 will
also invoke the calls of cliffify(i, k) under the proper conditions, and they will transfer
all units from Di+1,k to Di,k, so that in the end all units of column k of D have been
combined into Dk,k. The only point left to prove is the disjointness of the supports of the
indicated set of paths at the completion of the inner loop, in both directions. This was
assumed and remains unchanged beyond column k, and for column k the verifications
were done in proposition 5.1 (the disjointness in that column obtained by untangle(i, k)
is not endangered by a following untangle(i + 1, k)). So only the parts of the paths in
columns j < k need to be considered.

It is part of proposition 5.1 that after untangle(i, k) the paths P ′i and P ′i+1 have disjoint
supports up to column k, but (if i 6= n−2) the subsequent application of untangle(i+1, k)
may move P ′i+1 in the direction of P ′i again, and we need to show that the resulting path
P ′′i+1 nevertheless stays disjoint from P ′i . Let as before h0, h1 be the functions describing
the initial paths Pi and Pi+1, with h′0, h

′
1 the ones after modification by untangle(i, k);

let h2 similarly describe the initial path Pi+2, and call the functions obtained after
untangle(i + 1, k) modifies h′1 and h2 respectively h′′1 and h′2. Just as untangle(i, k) de-
termines a sequence (d0, . . . , dk) there is a sequence determined by untangle(i + 1, k)
that we call (e0, . . . , ek); then one has equation (7) and similarly h′′1(j) = h′1(j)− ej, and
h′2(j) = h2(j)+ej for 0 6 j 6 k. From (8) we have h′0(j) < h′1(j)−dj and we wish to show
h′0(j) < h′′1(j) = h′1(j) − ej. It will therefore suffice to show that ej 6 dj for 0 6 j 6 k.
We shall do so by induction on j; the starting case e0 = 0 = d0 is trivial, so suppose
j > 0. Then the equivalent of (6) for ej can be written ej = max(ej−1, h

′
1(j) + 1− h2(j)).

Now by induction ej−1 6 dj−1 6 dj, while from the hypothesis h1(j) < h2(j) that Pi+1

and Pi+2 are initially disjoint we get h′1(j) + 1 − h2(j) = dj + h1(j) + 1 − h2(j) 6 dj as
well, so indeed ej 6 dj.

Having shown that the inner loop at k of procedure 3 maps Pathfam(n, k + 1) to
Pathfam(n, k), we must also prove that conversely the inner loop at k of procedure 4 maps
Pathfam(n, k) to Pathfam(n, k+1). The situation is a bit different, in that the disjointness
of Pi+2 and Pi+1 that we need to show (for k 6 i < n − 2) is first potentially destroyed
by cliffify(i + 1, k), and then must be restored by cliffify(i, k). We can use the same
notation as above, but the hypotheses differ: we assume that cliffify(i + 1, k) transforms
(h′′1, h

′
2) into (h′1, h2) while producing (from right to left) a sequence (e0, . . . , ek), and

then cliffify(i, k) transforms (h′0, h
′
1) into (h0, h1) while producing a sequence (d0, . . . , dk).

Again the key point is establishing dj > ej for 0 6 j 6 k, since analogously to (8) one has
h′1(j) = h′′1(j) + ej < h′2(j), and so the condition dj > ej will imply the desired inequality
h1(j) = h′1(j) − dj < h′2(j) − ej = h2(j). This time we use descending induction on j;
the initial case ek 6 dk is a consequence of the fact that cliffify(i + 1, k) transfers all
ek vertical steps of P ′i+1 to P ′i , where they contribute to dk. In the induction step we
use equation (9) in the form dj = min(dj+1, h

′
1(j) − h′0(j) − 1), which allows us to prove
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dj > ej in two parts, as before: by induction dj+1 > ej+1 > ej, and since h′′1(j) > h′0(j) (the
hypothesis that the original paths P ′′i+1 and P ′i are disjoint) one also has h′1(j)−h′0(j)−1 =
h′′1(j) + ej − h′0(j)− 1 > ej. This completes the proof.

We can now state our main result, a bijective version of theorem 2.

Theorem 3. The algorithm of procedure 3 defines a bijection, and the algorithm of pro-
cedure 4 defines the inverse bijection, between on hand the set of cliff-shaped Schröder
n-families, encoded by the corresponding strictly lower triangular matrices B with entries
in {0, 1}, and on the other hand the set of disjoint Schröder n-families, encoded by the
corresponding pairs (B,D).

Proof. After pairing each B corresponding to a cliff-shaped n-family with the correspond-
ing diagonal matrix D with diagonal entries Dk,k = k −

∑
06j<iBi,k, the set of cliff-

shaped Schröder n-families corresponds to Pathfam(n, n) and the set of disjoint Schröder
n-families corresponds to Pathfam(n, 0). Now procedure 3 realises the composite map

Pathfam(n, n)→ Pathfam(n, n− 1)→ · · · → Pathfam(n, 0) (11)

where the individual maps are the bijections of proposition 5.2, and procedure 4 realises
the reverse composition of the corresponding inverse bijections.

It may be observed that the initial map Pathfam(n, n) → Pathfam(n, n− 1) and the
final map Pathfam(n, 1) → Pathfam(n, 0) are in fact identity maps: the sets of families
involved are the same in both cases (with just slightly different descriptions), namely that
of the cliff-shaped n-families respectively that of the disjoint n-families, and for k = n− 1
and k = 0 our procedures only perform some administrative actions without any changes
to the paths.

6 Some complements and discussion
As we have mentioned in the introduction, and illustrated in Figure 1, there is a bijection
between what we have called disjoint n-families and tilings of the Aztec diamond of
order n − 1. It is not easy to attribute the discovery of this bijection clearly. To our
knowledge, a bijection between disjoint families of paths and domino tilings of the Aztec
diamond is first described in the literature by Johansson in [Joha02], although unpublished
sources witness that the existence of such a correspondence was known in certain circles
at least about a decade earlier. (We note that in the cited description, like in the proof of
[EuFu05, proposition 2.2], no path of length 0 is present in the disjoint family; curiously
an interdiction for the (next) shortest path to pass through the corresponding point,
which now becomes necessary in order to obtain the correspondence with tilings of the
Aztec diamond, is not formulated either.) However a similar bijection in a slightly different
context, and involving “families” of just one path, goes back to Sachs and Zernitz [SaZe94].
That context is originally that of counting dimer coverings (perfect matchings) in a graph
describing the adjacency of squares in the augmented Aztec diamond, obtained from an
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Aztec diamond of order n by replacing the 2 × 2n rectangle it contains by a 3 × 2n
rectangle. Each such covering (equivalent to a domino tiling of the augmented Aztec
diamond) turns out to be determined (bijectively) by a path from source to sink in a
particular orientation of the graph that is illustrated in Figure 9. The observation that
those paths can be replaced by paths built up of three types of steps, two of which are not
parallel but at a 45◦-angle with the corresponding dominoes (therefore leading to what
we have called Delannoy paths), is due to Dana Randall [LRaS01], and is mentioned in
[Ciu96] and [Stan99, p. 277 (6.49 a)].

Figure 9: Directed graph for augmented Aztec diamond, order 4

Even though careful inspection of an illustration like our Figure 1 makes it quite
obvious that a correspondence between domino tilings and families of disjoint paths can
be defined, and that this should be a bijection to an easily described set of such paths, it
is worth while to formulate a precise statement and proof. For that we could in principle
refer to the arguments given in [Joha02] (and our arguments will in any case be of a
very similar nature to those), but we shall here take the occasion to give a statement
that tries to isolate the precise properties of the situation at hand that are necessary to
ensure that the construction can be carried out. These turn out to be very few, and we
therefore obtain a quite general statement about domino tilings, which in particular does
not mention the Aztec diamond at all.

Proposition 6.1. Let S be a finite subset of Z2, viewed as a set of squares in the plane,
with B = { (i, j) ∈ S | i ≡ j (mod 2) } and W = S \ B its subsets of black respectively
white squares. Define sets E, I,X of vertical edges with a white square w to their left and
a black square b to their right, where E (the “entries”) is the set of such edges with w /∈ W
and b ∈ B, the set X (the “exits”) is that of such edges with w ∈ W and b /∈ B, and I (the
“interior edges”) is the set of such edges with w ∈ W and b ∈ B; formally (identifying
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such an edge with the black square to its right) we set

E = { b ∈ B | b− (0, 1) /∈ W },
I = { b ∈ B | b− (0, 1) ∈ W },
X = { b ∈ Z2 \B | b− (0, 1) ∈ W }.

There is a bijection between on one hand the set of domino tilings of S and on the other
hand the set of disjoint families of paths, using steps chosen from {(1, 1), (0, 2), (−1, 1)},
each path going from a element of E to an element of X while passing through elements
of I as intermediate points only, and such that each element of E or of X is the starting
respectively ending point of a path.

Finiteness is the only hypothesis made for the set of squares for which domino tilings
are considered (and even that could probably be avoided, but this would require some
adaptation of the statement). This means of course that very possibly no domino tilings
exist at all, and therefore no path families. The most obvious obstruction against the
existence of such tiling is a nonzero balance #B−#W between black and white squares;
this balance is equal to the balance #E−#X between entry and exit points for the path
which clearly must be zero for path families to exist. But there may be other obstructions,
which possibly are more easily recognised in one of the two formulations than in the other.

While the expressions for E, I,X given in the statement of the proposition for conve-
nience identify (as an element of Z2) any vertical edge that has a black square to its right
with that black square, our proof will use a geometric language that distinguishes the two
as different kinds of objects.

Proof. First let a domino tiling of S is given. Associate to each domino d of the tiling
a pair (e, e′) ∈ (E ∪ I) × (I ∪ X), which will serve as a step in one of the paths of the
corresponding family whenever e 6= e′: take e to be the left edge of the black square of d,
and e′ the right edge of the white square of d. Every edge in E∪I occurs as e exactly once,
namely for the domino that contains the square b ∈ B at the right of the edge, and every
edge in I ∪ X occurs as e′ exactly once, namely for the domino the contains the square
w ∈ W at the left of the edge. According to the four possibilities for the orientation and
colouring of a domino, each such pair (e, e′) obtained either has e = e′, or otherwise e′− e
is in the set {(1, 1), (0, 2), (−1, 1)} of allowed steps. So with I ′ the subset of I of edges
for which the squares w, b to its left and right do not form a domino of the tiling, every
i ∈ I ′ joins a unique (e0, i) with a unique (i, e′1), and i− e0 and e′1 − i are allowed steps.
One can then follow unique paths from each entry to each exit and vice versa, and these
paths exhaust the set of valid steps obtained from the tiling (monotonicity in the second
coordinate makes cycles impossible).

Conversely let a family of paths as described in the proposition be given. For any
black square b ∈ B of S, its left edge e belongs to E∪I. If e is in I but not on any path of
the family, then the white square w to the left of e is in W , and we let (w, b) be a domino
of the tiling; otherwise we pair up b with the white square to the left of the edge e′ reached
from e by one forward step on the path passing through it. Similarly the right edge e′ of
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any square w ∈ W belongs to I ∪ X, and w is paired either with the black square the
right of e′ if e′ ∈ I is not on any path for the family, or otherwise with the black square to
the right of the edge e reached by going one step back along the path passing through e′.
Clearly this attribution of squares is reciprocal, so one obtains a partition of S = B ∪W
into dominoes. The maps from domino tilings to path families and vice versa are inverses
of each other, by inspection of the definitions.

We note that a similar result can be proved in the same way for lozenge tilings of a
subset of triangles in a triangular tiling of the plane, and leads to a bijection with families
of disjoint paths in which only two basic steps are allowed. This correspondence is very
well known, probably more so than the one for domino tilings, as there is a visually
obvious correspondence between lozenge tilings and stacks of cubes (plane partitions),
under which the family of paths associated to the tiling traces the edges of “slices” of
cubes into which the stack can be cut.

To apply this proposition to obtain the correspondence between domino tilings of the
Aztec diamond of order n−1 and disjoint Schröder n-families, we may position the Aztec
diamond so that all entry points are at its bottom left, and all exists at its bottom right,
as it illustrated in the first part of Figure 10. One can then apply a linear transformation
with matrix 1

2

(
1 −1
1 1

)
to the paths so as to map their basic steps respectively to (0, 1),

(−1, 1) and (−1, 0), and then shift them so that path Pi runs from (i, 0) to (0, i) as we
have assumed. We get such paths for 0 < i < n, but we do not get P0 at (0, 0); indeed our
proposition cannot produce paths with 0 steps, as one has E ∩X = ∅. However, since the
edge corresponding to the origin, marked in yellow in Figure 10, is not in E ∪ I ∪X, none
of the paths Pi for i > 0 can pass though it, so we can safely add a path P0 of 0 steps at
the origin to complete the disjoint n-family. The edge in question may be thought of as
part of the Aztec diamond configuration, even though neither of the squares it separates
belong to the diamond.

The proposition allows us to understand the qualitative difference between the prob-
lems of tiling the Aztec diamond and the augmented Aztec diamond: the latter (if properly
positioned) gives rise in the path setting to a situation where there is just a single entry
point and a single exit, whereas for the Aztec diamond there are as many entry points
and exits as the order of the diamond. This difference is illustrated in Figure 10.

From the point of view of domino tilings, the choice to focus on vertical edges between
squares with a black square on their right is an arbitrary one among four similar possibil-
ities. This means that with a single domino tiling one can associate four different disjoint
path families by making different choices, adapting the direction of the basic steps in the
paths, as is illustrated in Figure 11. Note that the duality illustrated in Figure 4 just
expresses the relation between two of these disjoint path families associated to the same
domino tiling, for classes of edges chosen with the same direction (SW–NE in our figure),
but with the opposite relation to the black-white colouring of squares.

There is another way to view this choice of orientation underlying the bijection from
tilings to path families. The choice of a collection of edges to focus on (like the vertical
edges with a black square to their right) can be seen as the choice of a pairing of the squares
of Z×Z, the pairs being those separated by the chosen type of edges (in the example any
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Figure 10: Aztec and augmented diamonds; entry points and exits

black square is paired with the white square to its left). Calling this chosen pairing the
“background pairing”, the association of paths to a tiling T then is essentially as follows:
starting with a black square, move to the white square w paired with it under T , then to
the black square paired with w under the background pairing, and repeat; squares that
are paired with the same square under T as under the background pairing would give
short loops, and are excluded. The description of proposition 6.1 combines two successive
such steps into one, and places where the background pairing straddles the boundary of S
give an entry or exit point for the paths. The fact that the white-to-black move for the
background pairing is always in the same direction gives a “forced drift” to paths that
makes loops impossible. Yet, one can play the same game even for a background pairing
that lacks this “unidirectional” property, although that means that the set of steps a path
can choose from varies from one place to another, and loops will in general be possible.
If the background matching happens to give, by itself, a tiling of S, then in fact there are
no entries and exits, and all paths will be loops; this is what happens in [BrKi05], where
an “all horizontal” background matching is chosen, shifted in each row so as to not cross
the Aztec diamond boundary.

In the introduction we mentioned that the “domino shuffling” method, like our al-
gorithm, constructs a domino tiling of the Aztec diamond of order n using a sequence
of n(n+1)

2
bits as input, in an invertible manner. The following more detailed descrip-

tion shows that nevertheless domino shuffling is of an entirely different nature than our
procedure.

Domino shuffling constructs tilings of Aztec diamonds of increasing order until the
desired order is attained. In passing from one order to the next, first “bad blocks” of two
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Figure 11: Four families of disjoint paths for a single tiling

dominoes each are removed, then each of the remaining dominoes is shifted one place
in one of 4 directions (according to the 4 types that can be found in Figure 11), thus
enlarging the diamond, and finally the resulting open space is filled with a choice of “good
blocks” of two dominoes each. Each bad or good block has one of two possible tilings,
and so carries one bit of information; the net information added is the difference between
the numbers of good and bad blocks added, which is always i when passing from order
i− 1 to order i.

Although the information removed with the bad blocks can be recycled when inserting
good blocks, this repeated partial deconstruction/reconstruction gives an essential irreg-
ularity of operation to domino shuffling; removal cannot be avoided, as the dominoes in
bad blocks would get in the way of the others. The method is based on a representation
of tilings by a pair of compatible alternating sign matrices differing by 1 in size, with each
matrix restricting the possibilities for choosing the other to a (relatively small) power
of 2, those of choosing bad/good blocks. The shuffling procedure can be seen as similar
to climbing up a ladder of increasing alternating sign matrices, of which adjacent ones
compatible. A complete tiling fixes two such matrices (rungs of the ladder); removal of
bad blocks means releasing the smaller matrix of a pair while holding on to the other;
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the shuffling proper makes this other matrix switch roles from larger to smaller of a pair;
finally insertion of good blocks chooses a new bigger matrix to complete the pair (tiling),
and which will serve as support in the next iteration.

We conclude with a brief description of how we found our algorithm without realising at
first any connection with the Aztec diamond theorem. It started with a question [M.SE11]
posed on the online form Math.StackExchange. It asked for an explanation of the nice
evaluation of a the determinant of a matrix with entries defined by a recurrence relation, an
insignificant generalisation of the matrix A[n] of Delannoy numbers of section 2. One of the
answers given (by “Grigory M”) proposed a combinatorial explanation in terms of counting
families of non-intersecting lattice paths, but failed to complete the argument by showing
that this enumeration was given by the proposed formula. The second author, having
came across this question and incomplete answer, was also unable to find a combinatorial
argument, but discussed the problem with the first author. Thus discussion did not
immediately lead to a bijective proof either, but the first author ultimately found an
informal description of the algorithm underlying the bijection presented in this paper.
Several months later the second author learned from Christian Krattenthaler that this
lattice path enumeration was known to be equivalent to the well known Aztec diamond
theorem, but that no quite satisfactory bijective proof of it was known. With interest in
the question renewed in this manner, the details of the informal algorithm were worked
out, which led to its implementation in a computer program, and the more formal proof
presented in the current paper.
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