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Abstract

The aim of this paper is to gather several new results concerning the enumera-
tion of specific classes of polycubes. We first consider two classes of 3-dimensional
vertically-convex directed polycubes: the plateau polycubes and the parallelogram
polycubes. An expression of the generating function is provided for the former
class, as well as an asymptotic result for the number of polycubes of each class with
respect to volume and width. We also consider three classes of d-dimensional poly-
cubes (d > 3) and we state asymptotic results for the number of polycubes of each
class with respect to volume and width.

1 Introduction
In the cartesian plane N2, a polyomino is a finite connected union of elementary

cells (unit squares) without cut points and defined up to a translation. Even though
polyominoes have been studied for a long time in combinatorics, no exact formula is
known for general polyominoes but many results have been found concerning some classes
of polyominoes, see for instance [6] or [13].

Polyominoes also have a 3-dimensional equivalent: the polycubes [17]. If we consider,
now, that an elementary cell is a unit cube, then a polycube is a face-connected finite set
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of elementary cells defined up to a translation in N3. As with polyominoes, polycubes
appear in statistical physics, more precisely in the phenomenon of percolation (see [5] for
example). A lot of studies have led to count polycubes according to the number n of cells
composing them. The first values were found in 1972 up to n = 6 [17] and the last one
(to our knowledge) in 2006, up to n = 18 [2]. If we extend the notion of polycube to
d-dimensions, where d > 3, these objects are also used in an efficient model of real-time
validation [16], as well as in the representation of finite geometrical languages [8, 14, 12].

However a small number of families of polycubes have been investigated. The most
well-known, for which there exists a rich literature, is the one of plane partitions (see
[3, 11, 4, 19] for instance). Recently, a new method has allowed us to enumerate several
families of polycubes (in dimension 3 and greater than 3) as far as they can be split into
strata [10, 14, 12]. It is worthwhile noticing that it is the investigation of the families of
plateau and parallelogram polycubes (as reported in [9]) that motivated the design of this
method.

In the next section, following the model of polyominoes, we define several classes of
polycubes and we recall a method, due to M. Bousquet-Mélou [6], for the enumeration
of classes of column-convex polyominoes, that we will use to enumerate plateaus. Then,
in Section 3, we present the results obtained for the enumeration of a particular class of
vertically-convex polycubes (the plateau ones). Partial results for one subclass (parallel-
ogram polycubes) of the class of plateau polycubes are reported in Section 4. The last
section contains asymptotic results concerning d-dimensional polycubes (d > 3) that can
be deduced from results of Sections 3 and 4 and that complete those found in [10].

2 Preliminaries

2.1 Polycubes

A polyomino is said to be row-convex (resp. column-convex ) if its intersection with
any horizontal (resp. vertical) strip is convex. It is said to be directed if each of its cells
can be reached from a distinguished cell, called the root, by a path only made of East and
North steps.

Let (0,~i,~j,~k) be an orthonormal coordinate system where~i and ~k are horizontal vectors
and ~j the only vertical vector.

As for polyominoes, several parameters can be defined for a polycube. The volume is
the number of elementary cells, the width (resp. height, depth) is the difference between
the greatest and the smallest indices of the polycube according to ~i (resp. ~j, ~k). A
polycube is said to be horizontally-convex if its intersection with any horizontal plane
(~i,~k) is a row-convex polyomino; it is said to be vertically-convex if its intersection with
any vertical plane (~i,~j) is a column-convex polyomino. An example of horizontally-convex
polycube is given in Figure 1. Similarly, a polycube is said to be antihorizontally-convex if
its intersection with any horizontal plane (~i,~k) is a column-convex polyomino; it is said to
be antivertically-convex if its intersection with any vertical plane (~j,~k) is a column-convex
polyomino.
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Figure 1: A horizontally-convex polycube.

A polycube is said to be convex if it is both horizontally, antihorizontally, vertically
and antivertically convex. The 2-dimensional notion of step is extended as follows. An
East (resp. North, Ahead) step is a move of one unit in the ~i-direction (resp. ~j-direction,
~k-direction). So, a polycube is said to be directed if each of its cells can be reached from
a distinguished cell, called the root, by a path only made of East, North and Ahead steps.

The 2-dimensional notion of column is extended as follows. A stratum is a polycube of
width 1. Hence a stratum can be directed or horizontally (resp. vertically, antihorizontally,
antivertically) convex. Two examples of strata are given in Figure 2. The notion of
stratum allows us to define two new families of polycubes.

A polycube is said to be s-directed if the two following conditions are satisfied:
(1) its strata are directed,
(2) its strata are glued together so that the polycube is directed.

A polycube is said to be vertically convex s-directed if the two following conditions are
satisfied:
(1) its strata are vertically convex directed,
(2) its strata are glued together so that the polycube is directed.

(1) (2)

Figure 2: An ordinary stratum (1) and a directed stratum (2).

A particular vertically convex s-directed polycube is the plateau polycube that can be
obtained by gluing together vertical plateaus.

Intuitively, we define the front (resp. the back) of a polycube as the closest (resp. the
furthest) side of the plane (O,~i,~j). The bottoms and the tops of a polycube are defined

the electronic journal of combinatorics 20(4) (2013), #P26 3



Figure 3: A plateau polycube of width 3 and volume 75 and a plateau of volume 25.

similarly as for a polyomino. A parallelogram polycube is a plateau polycube such that
each vertical plateau has no vertical plateau to its right and behind it that gets a cell
under its bottom neither to its left and in front of it that gets a cell above its top. Note
that this definition implies that the projection of a parallelogram polycube w.r.t. (O,~i,~j)
(resp. w.r.t. (O,~j,~k)) gives a parallelogram polyomino.

2.2 Enumeration

Let R = R[[s, x, q]] be the algebra of formal power series in the variables s, x, q and
with real coefficients and let A be a sub-algebra of R such that the series are convergent
for s = 1. If X(s, x, q) is such a series, we will often denote it X(s). Its derivative, with
respect to s will be denoted X ′(s).

In [6], Bousquet-Mélou uses the decomposition of column-convex polyominoes to ex-
press functional equations that have the same form for any class of convex polyominoes.
She also proves the following lemma to solve this type of equation:

Lemma 1. [6] Let X(s) be a formal power series lying in A. Suppose that:

X(s) = xe(s) + xf(s)X(1) + xg(s)X(sq),

where e(s), f(s) and g(s) are some given power series in A. Then

X(1) =
E(1)

1− F (1)
,

where
E(s) =

∑
n>0

xn+1g(s)g(sq) . . . g(sqn−1)e(sqn)

and
F (s) =

∑
n>0

xn+1g(s)g(sq) . . . g(sqn−1)f(sqn).
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Figure 4: Decomposition of plateaus and plateau polycubes.

3 Enumeration of plateau polycubes
A plateau polycube can be split into plateaus that are glued together. So, we need, at

first, to find an expression of the generating function of plateaus with respect to height,
volume and area of the rightmost face. Next, we use this result to enumerate plateau
polycubes.

3.1 Case of plateaus

Let P (s, p, q) be the generating function of vertical plateaus with respect to height
(coded by s), volume (coded by p) and surface of the rightmost face (coded by q). Notice
that the volume of a plateau is equal to the area of its rightmost face. However, as
we need the area later, we simultaneously consider the two parameters. Let us remark
that our method is inspired by the one described in [6] to enumerate various classes of
column-convex polygons.

To enumerate vertical plateaus, we have to consider two different cases (see Figure 4):

• the columns (vertical plateaus of depth 1): their generating function is
spq

1− spq
.

• the plateaus of depth > 1: such plateaus are obtained by gluing a new column
behind a plateau of depth > 1; they are enumerated by P (spq, p, q).

Hence the following proposition:

Proposition 2. The generating function P (s, p, q) of plateaus satisfies the functional
equation:

P (s, p, q) =
spq

1− spq
+ P (spq, p, q).

Using the Lemma 1, we obtain the following proposition:

Proposition 3. The generating function P (s, p, q) of plateaus satisfies:

P (1, p, q) =
∑
n>1

(pq)n

1− (pq)n
.

the electronic journal of combinatorics 20(4) (2013), #P26 5



Let P (1, p, 1) =
∑
n>1

fnp
n; we can remark that fn = τ(n) is the number of divisors of n

[20]. Finding a bijection between these two families is trivial. For instance, we just have
to consider that a divisor d of n is in bijection with the plateau of volume n and height
d. Notice also that there is no explicit formula for τ(n).

3.2 Case of plateau polycubes

The idea is to decompose these polycubes in vertical plateaus. Let G(t,p) be their
generating function with respect to width and volume. We have to consider two cases to
enumerate them:

• the plateau polycubes are plateaus: using proposition 2, we immediately find that
their generating function is tP (1, p, 1);

• they can be split into a plateau on which we glue a plateau polycube: notice that
the South-West corner of the polycube must be glued on a cell of the right face of

the plateau; their generating function is t(
∂P

∂q
)(1, p, 1)G(t, p).

Finally, we obtain the following equation:

G(t, p) = tP (1, p, 1) + t(
∂P

∂q
)(1, p, 1)G(t, p)

and the following proposition:

Proposition 4.

G(t, p) =

t
∑
k>1

pk

1− pk

1−
∑
k>1

ktpk

(1− pk)2

.

From Proposition 4, it is easy to obtain the first values of G(t, p). They are given in
Table 1. From these values, it has been possible to find some properties about G(t, p).
Let us set G(t, p) =

∑
n,m

gn,mt
npm where gn,m is the number of plateau polycubes of width

n and volume m.

Proposition 5.
1. g1,n = τ(n);
2. gn,n = 1;
3. gn−1,n = 4n− 6;
4. gn−2,n = 8n2 − 42n+ 56;

5. gn−3,n =
32

3
n3 − 120n2 +

1384

3
n− 605.
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Table 1: The first values of gn,m.
p\t 1 2 3 4 5 6 7 8 9 10 11 12
1 1
2 2 1
3 2 6 1
4 3 16 10 1
5 2 35 46 14 1
6 4 60 147 92 18 1
7 2 98 378 403 154 22 1
8 4 148 824 1372 867 232 26 1
9 3 198 1638 3894 3714 1603 326 30 1
10 4 290 2948 9680 13068 8332 2675 436 34 1
11 2 352 5029 21726 39594 35178 16410 4147 562 38 1
12 6 480 8100 44836 106740 126540 81152 29388 6083 704 42 1

Proof. The proofs of these formulas are based on a unique principle. We start from the
plateau of height 1, depth 1 and width n − i, i 6 3 (and volume n − i). Next, we build
all the polycubes of width n− i and volume n from this plateau by adding i cells, cutting
and gluing it. Thus, we only detail the proof of the value of gn−2,n. Let us consider the
polycube of volume n− 2 and width n− 2 and let us enumerate all the ways to inject two
cells to obtain a plateau polycube. There are two main cases :

• the two cells are inserted on the same plateau:

– if we insert the cells on the last plateau, as in Figure 5, we have two possibilites,
vertically or horizontally;

Figure 5: Insertion on the last plateau.

– otherwise, for a given column, there are six ways to insert two cells : three
vertical insertions (see Figure 6) and three horizontal ones. As we can choose
any of the n− 3 columns, we obtain 6(n− 3) possibilities.

• the cells are inserted on two different plateaus, as in Figure 7:

– one of the two cells is on the last plateau and there are two different ways to
glue it. The second cell is then added to one of the n− 3 other plateaus. Since
we have four different ways to inject the cell, we obtain 8(n− 3) possibilities;
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Figure 6: Insertion on a plateau different of the last one.

Figure 7: Insertion on two different plateaus.

– in the case where no cell is added to the last plateau, we have to choose 2
plateaus among n−3, what gives

(
n−3
2

)
possibilities. Moreover, we have already

established that there are 4 different ways to add a cell to a plateau. Since
this operation must be applied on two different plateaus, we obtain 42

(
n−3
2

)
possibilities.

When we add all the possibilities we finally find: gn−2,n = 8n2 − 42n+ 56.

Notice that this proof is similar as the ones established in [10] in the case of the
enumeration concerning families of 3-dimensional polycubes. Moreover, it is not possible
to find a formula in the general case because it depends on the τ(k) coefficients that do
not have explicit formula. However, it is possible to state the following proposition:

Proposition 6. gn−i,n is a polynomial in Q[n] whose highest-degree-term is equal to
4i

i!
ni.

Proof. The proof is based on the same principle as in Proposition 5. Let us consider the
plateau of height 1, depth 1 and width n − i and let us add to it i cells on i different
columns (except for the last one). We have

(
n−i−1

i

)
different choices of columns. Then,

for each selected column, we have 2 ∗ 2 possible constructions to obtain a polycube. As
we perform this construction on i columns, we finally obtain 4i

(
n−i−1

i

)
possibilities.

In all the other cases, we only have
(
n−i−1
i−j

)
, j > 1, possibilities to choose columns,

leading to a term of degree i−j. Since j > 1, the highest-degree-term is in O(ni−j), which
is unimportant in front of O(ni). So, the highest degree term in n is 4i

i!
ni.

Computing a polynomial interpolation of G(t, p) leads to the following results:
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Corollary 7.

gn−3,n =
32

3
n3 − 120n2 +

1384

3
n− 605

gn−4,n =
32

3
n4 − 208n3 +

4678

3
n2 − 5324n+ 6972

gn−5,n =
128

15
n5 − 256n4 + 3144n3 − 19756n2 +

951742

15
n− 83160

gn−6,n =
256

45
n6 − 1216

5
n5 +

39824

9
n4 − 131572

3
n3 +

11231344

45
n2 − 11583502

15
n

+ 1013028

gn−7,n =
1024

315
n7 − 2816

15
n6 +

213184

45
n5 − 203152

3
n4 +

26635408

45
n3 − 47411774

15
n2

+
333749548

35
n− 12517020

gn−8,n =
512

315
n8 − 2560

21
n7 +

183232

45
n6 − 237344

3
n5 +

43996894

45
n4 − 7864440n3

+
12654017396

315
n2 − 832930465

7
n+ 156257400

4 Some propositions about parallelogram polycubes
Let us establish a functional equation satisfied by the generating function of paral-

lelogram polycubes with respect to several parameters. We first introduce the following
variables:

• p that encodes the volume of the polycube;

• t, its width;

• q, the area of the rightmost face of the polycube;

• h, the heigth of the last plateau;

• r, the depth of the last plateau.

Let us note H(t, h, r, p, q) =
∑
n,m

hn,mt
npm, the generating function of parallelogram

polycubes with respect to the above-mentioned parameters. Let us notice that these
polycubes appear in the modelling of real-time applications composed of two periodic
tasks [15].

Let us consider a parallelogram polycube. Then, several cases can appear:

• The first case (decomposition 2 in Figure 8) is the one where it is reduced to a
plateau. Thus, it is enumerated by Pl(t, h, r, p, q).
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1 = 2 + 3

- 4 - 5

+ 6

Figure 8: Decomposition of the construction of a parallelogram polycube.

• Otherwise, the parallelogram polycube can be built from a smaller polycube, adding
to it a new plateau. We start by gluing a cell at the top and at the bottom of the
rightmost plateau (decomposition 3 in Figure 8). We add as many cells as we want
on the top and under the bottom. Then, we duplicate this column upward and
downward to build the last plateau.

Let us translate this construction into a generating function. All the possibilities
are enumerated by H(t, h, r, p, q).

We begin by gluing a cell at the top and at the bottom of the rightmost plateau.
Adding a new cell leads to the creation of a new plateau and the new cell is coded
by pqrh. The constructions that we obtain are enumerated by H(t, 1, 1, p, 1)pqrth.

Then, we make the cell grow up and down. Adding a cell amounts to an increase of
1 of the area, the volume and the height of the rightmost plateau, which leads to a
factor pqh. Adding as many cells as possible upward is enumerated by:

1 + pqh+ (pqh)2 + . . .+ (pqh)n =
1

1− pqh
.

A similar reasoning for downward growth leads to a factor
1

(1− pqh)2
. Therefore

we get the following generating function:
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H(t, 1, 1, p, 1)
pqrth

(1− pqh)2
.

Finally, we must make grow simultaneously and identically all the lines of the newly
created column, to obtain any plateau. Let us notice that there are n+ 1 different
ways to add n cells to make a line from a cell. It means that, for the last plateau, we
substitute p by pn+1, q by qn+1 and r by rn+1, for all n > 0. Then, the generating
function of the second case is:∑

n>0

(n+ 1)H(t, 1, 1, p, 1)
pn+1qn+1rn+1th

(1− pn+1qn+1h)2
.

• The previous growth creates polycubes that are not parallelograms, in particular
when the last plateau has a too low bottom (decomposition 4 in Figure 8).
To begin, let us consider a parallelogram polycube. We stick at the back a column
of height equal to the height of the last plateau, what means we add a new plateau.
This is translated by substituting h by hpq. Next, we add a unique cell under this
column. This is translated by H(t, hpq, 1, p, 1)pqrth. Then, we make the column

grow upward and downward, what leads, as previously, to a factor
1

(1− pqh)2
.

Finally, the simultaneous and identical growth of all the lines of the created column
is generated by the substitution, for the last plateau, of p by pn+1, q by qn+1 and r
of rn+1, for all n > 0. This case is enumerated by:∑

n>0

(n+ 1)H(t, hpn+1qn+1, 1, p, 1)
pn+1qn+1rn+1th

(1− pn+1qn+1h)2
.

• We also have to remove polycubes such that last plateau has a too much forward
front face (decomposition 5 in Figure 8).
We can notice that, compared wtih the case of upward growth, we simply have to
invert the role of r and h, what allows us to conclude that this case is enumerated
by: ∑

n>0

(n+ 1)H(t, 1, rpn+1qn+1, p, 1)
pn+1qn+1rthn+1

(1− rpn+1qn+1)2
.

• Computing the above expression, we have removed twice the polycubes such that
their last plateau has a bottom too low and a front face too much forward (decom-
position 6 in Figure 8). So, we have to add their generating function.
One more time, let us consider a parallelogram polycube, enumerated byH(t, h, r, p, q).
First, we duplicate the last plateau, what is expressed by H(t, hpq, rpq, p, 1)t. Sec-
ond, we add a line and a column to this plateau, what is enumerated by H(t, (h +
1)pq, (r + 1)pq, p, 1)pqrth. Then, we make grow upward and backward the plateau,
which leads, for the last plateau, to substitute p by pn+1, q by qn+1 and r by rn+1,
for all n > 0:
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∑
n>0

(n+ 1)H(t, (hn+1 + 1)pn+1qn+1, (r + 1)pq, p, 1)pn+1qn+1rthn+1.

Thus, the upward and backward growth allows us to find the following generating
function: ∑

m>0

∑
n>0

(m+ 1)(n+ 1)trm+1hn+1(pq)n+m+1

×H(t, (hn+1 + 1)pn+1qn+1, (rm+1 + 1)pm+1qm+1, p, 1).

Proposition 8. The generating function of the parallelogram polycubes with respect to
volume, width, area of the rightmost face, heigth of the last plateau and depth satisfies:

H(t, h, r, p, q) = Pl(t, h, r, p, q)

+
∑
n>0

(n+ 1)H(t, 1, 1, p, 1)
pn+1qn+1rn+1th

(1− pn+1qn+1h)2

−
∑
n>0

(n+ 1)H(t, hpn+1qn+1, 1, p, 1)
pn+1qn+1rn+1th

(1− pn+1qn+1h)2

−
∑
n>0

(n+ 1)H(t, 1, rpn+1qn+1, p, 1)
pn+1qn+1rthn+1

(1− rpn+1qn+1)2

+
∑
m>0

∑
n>0

(m+ 1)(n+ 1)trm+1hn+1(pq)n+m+1

× H(t, (hn+1 + 1)pn+1qn+1, (rm+1 + 1)pm+1qm+1, p, 1)

Unfortunately, we did not succeed in solving the previous functional equation. As far
as we know, there is, at the moment, no method allowing us to find an expression of
H(t, p). However, it has been possible to extend some properties of P (t, p, ) to H(t, p).
Their characterization is summed up in the following proposition:

Proposition 9.
1. hn,n = 1;
2. h1,n = τ(n);
3. hn−1,n = 2(n− 1);
4. hn−2,n = 2n2 − 6n+ 2;

4. hn−3,n =
4

3
n3 − 8n2 +

23

3
n+ 13.

The proof is similar as the one of Proposition 5. Since the values of hn−i,n depend on
the values of τ(i) it is not possible to find a general formula. However, with a similar
proof as for Proposition 6 it is possible to find the asymptotic value of the polynomial:

Proposition 10. hn−i,n is a polynomial in Q[n] whose highest-degree-term is equal to
2i

i!
ni.

the electronic journal of combinatorics 20(4) (2013), #P26 12



5 Asymptotic d-dimensional results
We first generalize some parameters and definitions from 3-dimensional polycubes to

d-dimensional ones, with d > 4. Then we give some asymptotic results concerning three
new families of d-dimensional polycubes. Let us remark that these results extend the ones
established in [10] in the case of specific d-dimensional polycubes.

5.1 The extension to d-dimensional polycubes

Let us now consider Nd, with d > 3. An elementary cell is a unitary d-cube. A
d-polycube is then a d-face connected finite set of elementary cells, defined up to a trans-
lation. The volume of a d-polycube is the number of its elementary cells.

Let (0, ~i1, . . . , ~id) be an orthonormal coordinate system. The width (resp. height) of
a d-polycube is the difference between its greatest index and its smallest index according
to ~i1 (resp. ~i2). A d-polycube is said to be vertically-convex if its intersection with any
hyperplane (~i2, . . . , ~id) is a vertically-convex (d − 1)-polycube. It is said horizontally-
convex if its intersection with any hyperplane (~i1, ~i3, ~i4, . . . , ~id) is a horizontally-convex
(d− 1)-polycube. Other convexities can be defined, but they are not useful here.

The notion of step is extended as follows. A step in direction j is a positive move
of one unit along the axis ~ij. Then a directed d-polycube is such that each cell can be
reached from a distinguished one, the root, by a path only made of steps in direction j,
with 1 6 j 6 d.

A d-stratum of a d-polycube is a d-polycube of width 1. We will say stratum instead
of d-stratum if there is no ambiguity. For d > 3, the rightmost face of the ith stratum is
the d-face of this stratum on which is glued the (i + 1)th stratum and its surface is the
number of its cells. The (i+ 1)th stratum is called the rightmost stratum of the ith one.

A s-d-polycube is a d-polycube that can be split into strata. A pseudo-directed d-
polycube is a s-d-polycube such that each of its strata has to be glued to the previous one
using a distinguished cell that must coincide with any cell of the previous stratum. The
distinguished cell of a stratum can be, for instance, the lowest cell of the first column. In
fact, the distinguished cell plays the same role as the root in the case of directed polycubes.
Even if the considered strata are not directed, they are glued according to a similar rule.

5.2 Asymptotic results

Let d > 3 and let Rd(t, p) =
∑

n,m>0

Rd
n,mt

npm the generating function of directed s-d-

polycubes with respect to width and volume.

Proposition 11. The expresssion rdn−i,n is a polynomial in Q[n] whose highest-degree-

term is equal to
2i(d− 1)i

i!
ni.

Proof. The proof is essentially based on the fact that adding a cell to a stratum of a
directed s-d-polycube is equivalent to inject a cell into a directed s-(d− 1)-polycube. As
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a consequence, there is a unique possibility to add a cell to a d-stratum of volume 1 with
respect to each of the d− 1 directions. Then, the rightmost stratum initially glued to the
modified stratum can be glued again in two different ways in order to satisfy the property
of direction of directed s-d-polycubes. Note that the last stratum is not concerned by
this construction since it has no rightmost stratum. So, there are 2(d − 1) possible
constructions for the i selected strata, which leads to (2(d − 1))i

(
n−i−1

i

)
possibilities to

realize this operation. If the last stratum belongs to the set of selected strata, there
are only 2i × (d − 1)i−1

(
n−i−2

i

)
possibilities. In all the other cases, there are

(
n−i−1
i−j

)
or(

n−i−2
i−j

)
(and j > 1) possibilities to choose strata, leading to a term of degree i− j. Since

j > 1, the highest-degree-term in O(ni−j) is unimportant with respect to ni. Finally, the

highest-degree-term of rdn−i,n is equal to
2i(d− 1)i

i!
ni.

Let Ud(t, p) =
∑

n,m>0

udn,mt
npm the generating function of directed s-polycubes with re-

spect to width and volume. With a similar reasoning, it is also possible to prove the
following result:

Proposition 12. The expresssion udn−i,n is a polynomial in Q[n] whose highest-degree-

term is equal to
2i(d− 1)i

i!
ni.

Note that, in [10], the same asymptotic result appears for another class of polycubes,
the rs-directed d-polycubes. Moreover, the Propositions 11 and 12 generalize known
results in dimension 3 [10].

Let us now adress the case of s-d-polycubes. Let V d(t, p) =
∑

n,m>0 v
d
n,mt

npm their
generating function with respect to width and volume.

Proposition 13. The expresssion vdn−i,n is a polynomial in Q[n] whose highest-degree-

term is of the form
α2i(d− 1)i

i!
ni where α is a power of 2 such that 1 6 α 6 2i.

Proof. The difference with proofs of Propositions 11 and 13 results from the gluing of
modified strata. As the considered d-polycube is no more directed, there are not nec-
essarily two different ways to glue again the rightmost stratum initially glued to the
modified stratum. If the rightmost stratum contains only one cell, there are effectively
two ways. But if it contains two cells, there are four ways of gluing, which leads to the
proposition.

6 Conclusion
After introducing criteria to easily characterize classes of polycubes, we have defined

a new directed family, the plateau polycubes, that we have enumerated with respect to
volume and width. We also have exhibited a subclass: the parallelogram polycubes.
Even though we did not find an expression of their generating function, it has been
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possible to extend to these polycubes the main properties found for the plateau polycubes.
Moreover, this work has also allowed us to extend to any dimension two asymptotic results
valid for some classes of 3-dimensional polycubes and to find another one concerning the
enumeration of d-dimensional polycubes (d > 3) that can be split into strata. We currently
work on how to refine the study of parallelogram polycubes and, more precisely, we expect
to find a general expression for their generating function. We also expect to find formulae
for new families of s-d-polycubes.
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