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Abstract

Given a 3-graph F , its codegree threshold co-ex(n, F ) is the largest number
d = d(n) such that there exists an n-vertex 3-graph in which every pair of vertices
is contained in at least d triples but which contains no member of F as a subgraph.
The limit

γ(F ) = lim
n→∞

co-ex(n, F )

n− 2

is known to exist and is called the codegree density of F .
In this paper we generalise a construction of Czygrinow and Nagle to bound

below the codegree density of complete 3-graphs: for all integers s > 4, the codegree
density of the complete 3-graph on s vertices Ks satisfies

γ(Ks) > 1− 1

s− 2
.

We then provide constructions based on Steiner triple systems which show that if
this lower bound is sharp, then we do not have stability in general.

In addition we prove bounds on the codegree density for two other infinite fam-
ilies of 3-graphs.
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1 Introduction

In this paper, we study codegree density for various families of 3-graphs.

1.1 Notation and definitions

Given a set A and an integer r, write A(r) for the collection of r-subsets of A. Also, for
n ∈ N write [n] for {1, 2, . . . n}.

A 3-graph is a pair G = (V,E), where V = V (G) is a set of vertices and E = E(G) ⊆
V (3) is a set of triples, or 3-edges. A subgraph of G is a 3-graph H with V (H) ⊆ V (G) and
E(H) ⊆ E(G). The codegree d(x, y) of vertices x, y ∈ V (G) is the number of 3-edges of
G containing the pair {x, y}. The minimum codegree of G is δ2(G) = minxy∈V (2) d(x, y).

We shall also consider some 2-graphs, or ordinary graphs, which are pairs G = (V,E),
with E now a set of (2-)edges, E ⊆ V (2).

We recall the classical definitions of the Turán number and Turán density of a 3-graph.

Definition 1. Let n ∈ N, and let F be a non-empty 3-graph. The Turán number ex(n, F )
of F is the largest number e = e(n) such that there exists an n-vertex 3-graph with at
least e triples and no copy of F as a subgraph.

An easy averaging argument shows that the sequence ex(n, F )/
(
n
3

)
is monotone de-

creasing in [0, 1], and hence converges to a limit, known as the Turán density.

Definition 2. The Turán density of a non-empty 3-graph F is the limit

π(F ) = lim
n→∞

ex(n, F )(
n
3

) .

The Turán density may be thought of as the asymptotically maximal proportion of
3-edges which may be present in an F -free 3-graph, and is one of the central objects of
study in extremal hypergraph theory. In this paper, we are interested in another limit
density, namely codegree density.

Definition 3. Let n ∈ N and let F be a non-empty 3-graph. The codegree threshold of F
co-ex(n, F ) is the largest number d = d(n) such that there exists an n-vertex 3-graph in
which every pair of vertices is contained in at least d triples but which contains no copy
of F as a subgraph.

Mubayi and Zhao [15] showed that for any F , the sequence co-ex(n, F )/(n− 2) tends
to a limit as n → ∞. (Note that this sequence is not monotone, as shown by Lo and
Markström [13], so that the existence of a limit is not trivial.) This allows us to define
the codegree density of a non-empty 3-graph.

Definition 4. The codegree density of a non-empty 3-graph F is defined to be the limit

γ(F ) = lim
n→∞

co-ex(n, F )

n− 2
.
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1.2 History

Codegree density was first studied by Mubayi [14], who determined it for the Fano plane
F7. Keevash [10] used hypergraph regularity to show co-ex(n, F7) = bn/2c for n sufficiently
large, with the unique extremal configuration being a complete balanced bipartite 3-graph.
De Biasio and Jiang [4] later gave another proof of this fact avoiding the use of hypergraph
regularity.

Mubayi and Zhao [15] showed that codegree densities are well-defined and studied
various properties of γ. In particular they showed that for every c ∈ [0, 1] there exists
a family of 3-graphs F with γ(F) = c (so that codegree density does not ‘jump’), and
that the ‘supersaturation’ phenomenon familiar from extremal graph theory also occurs
for codegree density. (See [15] for details and definitions.)

Marchant, Pikhurko, Vaughan and the author [5] determined the codegree threshold
of F3,2 = ([5], {123, 124, 125, 345}), while Pikhurko,Vaughan and the author determined
the codegree density of K−4 = ([4], {123, 124, 134}), resolving a conjecture of Nagle [16].

Nagle [16] and Czygrinow and Nagle [3] have in addition conjectured that γ(K4) = 1/2,
where K4 denotes the complete 3-graph on 4 vertices. We describe their lower-bound
construction below.

Construction 5 (Czygrinow and Nagle’s construction). Let n ∈ N. Let T be a tourna-
ment (an orientation of the edges of the complete 2-graph) on [n]. We define a 3-graph
GT on [n] by setting ijk with i < j < k to be a 3-edge of GT if the ordered pairs (i, j) and
(i, k) receive opposite orientations in T .

It is easy to check that GT has no K4 subgraph and that by choosing T uniformly at
random we obtain a 3-graph that with high probability has minimum codegree at least
n/2− o(n). Czygrinow and Nagle conjectured that this was asymptotically best possible,
in other words that γ(K4) = 1/2.

No other codegree densities are known or conjectured, and like Turán’s famous con-
jecture that π(K4) = 5/9, the Czygrinow–Nagle conjecture remains wide open. We refer
a reader to Keevash’s recent survey [11] for a more complete discussion of Turán-type
problems for 3-graphs.

1.3 Contribution of this paper

In this note we first describe a general construction showing that

γ(Ks) > 1− 1

s− 2

for all s > 4, where Ks denotes the complete 3-graph on s vertices, Ks = ([s], [s](3)).
This construction is an easy generalization of the Czygrinow–Nagle construction based
on random edge-colourings of the complete 2-graph. Since the first version of this paper
came out, we learned that Lo and Markström had made the same observation in an earlier
preprint (see Proposition 1.1 in [13]).
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Our main contribution is to show that for s congruent to 1 or 5 modulo 6, we can give
different non-isomorphic constructions giving the same lower bound on γ(Ks). These are
based on Steiner triple systems, and imply that if our lower-bound is tight (as we believe)
then the codegree density problem for complete 3-graphs is not stable in general: several
very different near-extremal configurations exist. This mirrors the conjectured behaviour
of Turán density for complete 3-graphs (see [11, 17]). In the particular case s = 6, we are
also able to give an alternative random construction based on Ramsey numbers showing
γ(K6) > 3/4.

Finally we also give bounds on the codegree and Turán densities of two other families
of 3-graphs and present a number of open problems.

Our paper is structured as follows. In Section 2, we give several different lower bound
constructions for the codegree density of complete 3-graphs. In Section 3, we turn our
attention to 3-graphs of the form ([t] t {x?}, {ijx? : 1 6 i < j 6 t}) (these correspond to
complete 2-graphs on t vertices in the links of the vertices — see Section 3 for a formal
definition) and give general bounds for both their codegree density and their Turán density.
Finally in Section 4 we introduce co-spanned 3-graphs, and give bounds on their codegree
density.

2 Complete 3-graphs

Let n ∈ N and [n] = {1, 2, . . . n}.

Construction 6 (Colouring construction). Let c : [n](2) → [s] be a colouring of the edges
of the complete 2-graph on [n] with s colours. We construct a 3-graph Gc based on this
colouring in the following manner: for every triple i, j, k ∈ [n] with i < j < k, we add the
3-edge ijk to E(Gc) if and only if c(ij) 6= c(ik).

Remark 7. This may naturally be viewed as a generalisation of the Czygrinow–Nagle
construction: we may obtain a 2-colouring of [n](2) from a tournament T on [n] by setting
c(ij) = 1 for i < j if ij is oriented from i to j in T , and c(ij) = 2 if instead ij is oriented
from j to i.

Since the first version of this paper came out, we learned that Lo and Markström had
also given this construction in a preprint (see Proposition 1.1 in [13]).

Proposition 8. For any colouring c as above, the 3-graph Gc is Ks+2-free.

Proof. Let i1, i2, . . . is+2 be a set of s+ 2 distinct vertices from [n] with i1 < i2 . . . < is+2.
The (s+ 1) pairs i1i2, i1i3, . . . i1is+2 are s-coloured, so by the pigeon-hole principle two of
them receive the same colour, say ij1 and ij2, and the 3-edge ij1j2 is therefore missing
from Gc. Thus Gc is Ks+2-free as claimed.

Remark 9. Construction 6 does allow copies of Ks+2 with one triple removed to appear as
a subgraph. Indeed s-colour the pairs from [s+2] by setting c(ij) = j−i (mod s) for i < j.
The only triple of [s+2](3) missing from Gc is 12(s+2). This suggests Construction 6 is in
some sense saturated, and makes it a plausible candidate for an extremal configuration.
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Theorem 10. For all integers s > 2,

γ(Ks+2) > 1− 1

s
.

Proof. Let n be sufficiently large. Independently colour each pair from [n] with an element
of [s] chosen uniformly at random, and let c denote the random colouring thus obtained.

Consider now the 3-graph Gc. By Proposition 8, we know it is Ks+2-free. We show
that with high probability it has minimum codegree

δ2(Gc) =

(
1− 1

s

)
n+ o(n).

For each pair ij ∈ [n](2) with i < j, and every k ∈ [n] \ {ij}, let Xij,k be the Bernoulli
random variable taking the value 1 if ijk ∈ E(Gc) and 0 otherwise. The sum Xij =∑

k∈[n]\{ij}Xij,k is then the codegree of i, j in Gc.

Claim 11. Fix i < j. Then {Xij,k : k ∈ [n] \ {ij}} forms a family of independent
identically distributed Bernoulli random variables with parameter 1− 1

s
.

This is a simple exercise – for completeness, a proof is included in the appendix to
this paper. We can now apply a standard Chernoff bound. Fix ε > 0.

P
(
δ2(Gc) 6 (1− 1

s
− ε)n

)
6

(
n

2

)
P
(
dGc(1, 2) 6 (1− 1

s
− ε)n

)
6 n2e−

ε2

2
n

= o(1).

Thus for a typical colouring c, the minimum codegree of Gc is at least (1− 1
s
− ε)n. Since

ε > 0 was arbitrary, it follows that

γ(Ks+2) > 1− 1

s
,

as claimed.

Our main contribution in this paper is that other, very different constructions are
possible. Thus if the lower-bound on the codegree density of Ks+2 given above is tight
then in general we do not have stability for the codegree densities of complete 3-graphs.

Construction 12 (A Steiner triple system construction). Let s > 5 be an integer con-
gruent to 3 or 5 modulo 6. Let S be a Steiner triple system on [s−2] — that is, a 3-graph
on [s−2] such that every pair of vertices is contained in exactly one 3-edge. Such systems
are known to always exist, subject to the aforementioned modulo 6 condition [12].

Given n ∈ N, let ts−2i=1Vi be a balanced (s−2)-partition of [n] (i.e. a partition with part
sizes as equal as possible). Write ‘triples of the form ViVjVk’ as a shorthand for ‘triples
xyz with (x, y, z) ∈ Vi × Vj × Vk’. We define a 3-graph GS on the vertex set [n] by taking
the following triples to form the 3-edge set:
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• all triples of the form ViViVj for distinct i, j ∈ [s− 2]

• all triples of the form ViVjVk for distinct i, j, k ∈ [s−2] such that ijk does not belong
to S.

(This is equivalent to taking the complement of a blow-up of S and removing all triples
which meet only one of the parts Vi.)

Proposition 13. For any n ∈ N, s congruent to 3 or 5 modulo 6 and any Steiner triple
system S on [s−2], the 3-graph GS is Ks-free and has minimum codegree (1− 1

s−2)n+O(1).

Proof. First of all let us establish GS is Ks-free. Note that as we have no 3-edges of the
form ViViVi, any s-set of vertices meeting some part Vi in at least 3 vertices cannot span
a Ks. Now any s-set meeting no part in more than 2 vertices must meet at least ds/2e
parts.

We claim that every set of at least ds/2e vertices from [s− 2] must span at least one
3-edge of S. Indeed label such a set as X = {x1, x2, . . . , xds/2e}. Suppose for contradiction
that X is an independent set in S. Then since S is a Steiner triple system, for each of xi,
i = 2, . . . ds/2e, there exists a unique yi such that x1xiyi is a 3-edge of S, and moreover
these yi are distinct (else the pair x1yi would be contained in more than one 3-edge). Thus
we would need ⌈s

2

⌉
− 1 6 |[s− 2] \X| = s−

⌈s
2

⌉
− 2,

a contradiction.
Thus any s-set of vertices meeting at least ds/2e different parts Vi must meet three

distinct part Vi, Vj, Vk such that ijk is a 3-edge of S. By construction, no triple of the
form ViVjVk is a 3-edge of GS, and thus our s-set misses at least one 3-edge. It follows
that GS is Ks-free, as claimed.

Now let us compute its codegree. Consider two vertices v, v′ of GS. If they belong
to the same part Vi, then for every vertex w /∈ Vi, vv′w is a 3-edge of GS, and thus the
codegree of v and v′ is at least (1− 1

s−2)n+O(1) (since our partition was balanced).
On the other hand suppose that v ∈ Vi and v′ ∈ Vi′ for some distinct i, i′ ∈ [s − 2].

Then for any w ∈ Vi t Vi′ , vv′w is a 3-edge of GS. In addition, let us denote by i′′ the
unique member of [s− 2] such that ii′i′′ is a 3-edge of the Steiner triple system S. Then
for all j ∈ [s− 2] \ {i, i′, i′′} and all w ∈ Vj, vv′w is a 3-edge of GS. Thus the codegree of
v, v′ is again at least (1− 1

s−2)n+O(1).

Remark 14. The construction above based on Steiner triple system gives a rather large
number of non-isomorphic constructions: while the Fano plane is the unique (up to iso-
morphism) Steiner triple system on 7 vertices, there are for example 11,084,874,829 non-
isomorphic Steiner triple systems on 19 vertices (see Section 4.5 in [2]).

Remark 15. The 3-graphs arising from Construction 12 have large (linear-sized) indepen-
dent vertex sets, whereas it is easy to show using Chernoff bounds that typical 3-graphs
arising from Construction 6 and random colourings c do not. Thus our two constructions
are genuinely different.
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For s = 6, we can give another construction based on random colourings and the
Ramsey number of the triangle.

Construction 16 (A Ramsey-based construction). Let n ∈ N. Given a colouring c :
[n](2) → {1, 2}, let Gc be the 3-graph on [n] with 3-edges consisting of all triples not
inducing a monochromatic triangle with respect to c.

Since the Ramsey number for monochromatic triangles in 2-coloured graphs is
R(3, 3) = 6, every 6-set of vertices in Gc must be missing at least one 3-edge, so that Gc

is K6-free as required. The expected codegree of a pair of vertices in a typical colouring c
is 3

4
(n−1). Applying the same probabilistic tools as in Theorem 10, we can easily recover

from this another proof of γ(K6) > 3/4.

Remark 17. Typical instances of Construction 16 and Construction 6 with s = 4 are
genuinely different. Indeed let c and c′ be respectively a 2- and a 4-colouring of [n](2),
chosen uniformly at random. Consider a 5-set U = {u1, u2, u3, u4, u5} from [n] with
1 6 u1 < u2 < . . . < u5 6 n.

The probability that U induces a copy of K5 in Gc is the probability that c decomposes
the pairs from U into two monochromatic 5-cycles, one with colour 1 and the other with
colour 2. This occurs with probability

#{decompositions} × 2−10 = 3× 2−7.

On the other hand for i = 1, 2, 3, let Ai be the event that for every j, j′ : i < j < j′ 6 5,
c′ assigns different colours to uiuj and uiuj′ ; this is exactly the event that all 3-edges of
the form uiujuj′ with i < j < j′ are in the 3-graph Gc′ obtained from c′ by applying
Construction 6.

Observe that the characteristic functions of the Ai events form a family of independent
random variables, since they depend on the colours assigned by c′ to disjoint edge-sets,
and that the probability that U induces a copy of K5 in Gc′ is exactly the probability
that

⋂3
i=1Ai occurs. This probability is thus

P(A1)P(A2)P(A3) =
4!

44

4!/1!

43

4!/2!

42

=
33

210
.

It follows in particular that K5 subgraphs have different frequencies in Gc and Gc′ for
typical c, c′. The lower-bound constructions for γ(K6) arising from Construction 6 and
Construction 16 are thus genuinely different.

An obvious question to ask is whether the lower bound we provide is tight.

Question 18. Is γ(Ks) = 1− 1
s−2 for all s > 4?

For comparison, let us note that the Turán density of Ks is conjectured to be 1− 4
(s−1)2 ,

with many known non-isomorphic constructions attaining that bound [11]. However the
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standard examples contain pairs of vertices with codegree only 1− 2
s−1 proportion of the

maximum possible.
It would also be interesting to know whether the Czygrinow–Nagle construction is the

only example of a K4-free 3-graph with codegree density 1/2 + o(1).

Question 19. Are all K4-free configurations with codegree density 1/2 + o(1) ‘close’ to
a Czygrinow–Nagle construction?

3 Suspensions of complete 2-graphs

Let G be a 3-graph. Given a vertex x ∈ V (G), we may form a 2-graph in a natural way
by considering the pairs of vertices v, v′ making a 3-edge with x in G.

Definition 20. The link graph of x ∈ V (G) is the 2-graph

Gx = (V (G) \ {x}, {vv′ : xvv′ ∈ E(G)}) .

For every 2-graph H we can consider the 3-graph corresponding to the presence of an
H-subgraph in a link-graph.

Definition 21. Given a 2-graph H, let S(H) denote the suspension of H, that is, the
3-graph with vertex set V (H) t {x?} and 3-edges

{x?vv′ : vv′ ∈ E(H)}.

So for example the complete 3-graph on 4 vertices with one 3-edge removed, K−4 , may

be thought of as the suspension S(K
(2)
3 ) of the ordinary triangle K

(2)
3 .

As mentioned in the introduction, Pikhurko, Vaughan and the author [6] recently
showed γ(K−4 ) = 1/4, with the extremal configuration obtained by taking as the 3-edges

the oriented triangles in a random tournament. It is rather natural to ask what γ(S(K
(2)
s ))

may be in general, where K
(2)
s is the complete graph on s vertices,

K(2)
s = ([s], {ij : 1 6 i < j 6 s}).

Problem 22. Give bounds for γ(S(K
(2)
s )).

Note that by Turán’s theorem [18] and averaging we have γ(S(K
(2)
s )) 6 1− 1

s−1 . We
give below a construction (which we do not believe is sharp in general) which shows that
this trivial upper bound is not off by more than a multiplicative factor of 1− 1

s−2 .

Construction 23 (Rainbow triangles). Let c : [n](2) → [s− 1] be a colouring of the edges
of the complete 2-graph on [n] with s − 1 colours. We construct a 3-graph Gc based on
this colouring in the following manner: for every triple i, j, k ∈ [n], add the 3-edge ijk to
E(Gc) if and only if c(ij), c(ik), c(jk) are distinct — that is, if each of the sides of the
triangle ijk receives a different colour. We call such a triangle a ‘rainbow triangle’.
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Proposition 24. For every colouring c, the 3-graph Gc is S(K
(2)
s )-free.

Proof. Let v0, v1, . . . , vs be an s + 1-set of vertices from [n]. Then by the pigeon-hole
principle, there exist 1 6 i < j 6 s such that c(v0vi) = c(v0vj). It follows that the

triangle v0vivj is not rainbow, and hence that v1, v2 . . . vs do not induce a copy of K
(2)
s

in the link graph of v0 in Gc. Since v0, v1, . . . , vs was arbitrary, it follows that Gc is
S(K

(2)
s )-free, as claimed.

Corollary 25.

γ(S(K(2)
s )) > (1− 1

s− 1
)(1− 2

s− 1
).

Proof. Picking c uniformly at random and applying Construction 23, we have that the
expected codegree of any pair of vertices in Gc is (1− 1

s−1)(1− 2
s−1)(n− 2). Applying the

same probabilistic tools as in Theorem 10, we obtain from this a proof that γ(S(K
(2)
s )) >

(1− 1
s−1)(1− 2

s−1).

Remark 26. Since γ(S(K
(2)
3 )) = γ(K−4 ) = 1

4
, we know this bound on γ(S(K

(2)
s )) fails to

be sharp for s = 3, 4. Given this, it seems unlikely that this construction is sharp for
s > 5.

We note that the analogue of Problem 22 for Turán density is also open.

Problem 27. Give bounds for π(S(K
(2)
s )).

The Turán density of S(K
(2)
3 ) = K−4 and S(K

(2)
4 ) are conjectured to be 2/7 and 1/2

respectively, with the lower-bounds coming from recursive constructions due to Frankl
and Füredi [8] and Bollobás, Leader and Malvenuto [1] respectively. Close to matching
upper bounds were obtained using flag algebras by Vaughan and the author [7], suggesting
the lower bounds are best possible.

Below we give a generalisation of Bollobás, Leader and Malvenuto’s construction for
all integers s > 4 which are not divisible by 3, which we conjecture is best possible.

Construction 28 (Iterated complements of Steiner triple systems). Let s > 2 be an
integer congruent to 1 or 2 modulo 3. Then 2s− 1 is congruent to 1 or 3 modulo 6. Let
S be a Steiner triple system on [2s− 1] — such a system is known to always exist, subject
to the aforementioned modulo 6 condition [12].

Given n ∈ N, we construct a 3-graph GS in an iterated fashion as follows. First of
all, take a balance partition of [n] into 2s − 1 parts V1, V2 . . . V2s−1. Now take as 3-edges
all triples of the form ViVjVk with 1 6 i < j < k 6 2s − 1 and ijk /∈ E(S). (This is
equivalent to taking a blow-up of the complement of S.) Finally, repeat this construction
inside each of the 2s− 1 parts V1, V2 . . . V2s−1.

Proposition 29. The 3-graph Gs is S(K
(2)
s )-free and contains

(
1− 2

s

) (
n
3

)
+ O(n2) 3-

edges.
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Proof. Suppose for contradiction that we have an (s+ 1)-set of vertices v0, v1 . . . vs in GS

such that v1, . . . vs span a copy of K
(2)
s in the link-graph of v0.

Without loss of generality we may assume that v0 ∈ V2s−1. We may also assume
that at least one vertex vi, 1 6 i 6 s, lies in a different part from v0 — without loss of
generality let us say we have v1 ∈ V1.

Since S is a Steiner triple system, for every i ∈ [2s−2], we have a unique j ∈ [2s−2]\{j}
such that ij(2s− 1) is a 3-edge of S. This defines a matching on [2s− 2]; by relabelling
the parts if necessary, we may assume that this matching is i(s− 1 + i) : i ∈ [s− 1].

Thus if u ∈ Vi and u′ ∈ Vs−1+i then uu′v0 it not a 3-edge of GS. By construction, if
u ∈ V2s−1 then uv0v1 is not a 3-edge of GS; also, if u, u′ lie in the same part Vi, i ∈ [2s−2],
then uu′v0 is not a 3-edge of GS.

We must thus have v1, v2 . . . vs lie in s distinct parts from V1, V2, . . . V2s−2 (or else we do

not have a copy of S(K
(2)
s ). But placing a vertex inside part Vi for some 1 6 i 6 (s− 1)

forbids us from placing any vertex in part Vs−1+i, and vice-versa. Since 2 × s − 1 >
|[2s− 2]| = 2s − 2, this contradicts the pigeon-hole principle. The 3-graph GS is thus

S(K
(2)
s )-free, as claimed.

Now the number of 3-edges contained in GS is

|E(GS)| =
((

2s− 1

3

)
− |E(S)|

)(
n

2s− 1

)3

×
(

1 + (2s− 1)× 1

(2s− 1)3

+(2s− 1)2 × 1

(2s− 1)6
+ · · ·

)
+O(n2)

=

(
2s− 4

2s
+ o(1)

)(
n

3

)
,

as required.

Corollary 30. Let s ∈ N be congruent to 1 or 2 modulo 3. Then

π(S(K(2)
s )) > 1− 2

s
.

Conjecture 31. The lower bound given above in Corollary 30 is sharp.

By Turán’s theorem and averaging, we have that

π(S(K(2)
s )) 6 1− 1

s− 1

for all s > 2. On the other hand Construction 28 shows that π(S(K
(2)
s )) > 1− 1

2s
+O

(
1
s2

)
.

It seems likely that π(S(K
(2)
s )) = 1− C

s
+ O

(
1
s2

)
for some constant C ∈ [1, 2]. As a first

step towards a general result, it would be interesting to identify the correct value of C
(or indeed prove that such a constant exists!).
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Conjecture 32 (Weakening of Conjecture 31). For every ε > 0 there exists s0 = s0(ε)
such that for all s > s0 we have

π(S(K(2)
s )) 6 1− 2− ε

s
.

Similarly, we would like to know if

γ(S(K(2)
s )) = 1− C ′

s
+O

(
1

s2

)
for some constant C ′ ∈ [1, 3], and to know the value of C ′ (if it does exist).

4 Co-spanned complete 3-graphs

In this section we give bounds on the codegree densities of another family of 3-graphs.

Definition 33. Given a 3-graph H, let F (H) denote the co-spanned H, that is, the
3-graph with vertex set V (H) t {x?, y?} and 3-edges

{x?y?v : v ∈ V (H)} t E(H).

So for example the 3-graph F3,2 = ([5], {123, 124, 125, 345}) may be thought of as the
co-spanned K3.

As mentioned in the Introduction Marchant, Pikhurko, Vaughan and the author [5]
showed γ(F3,2) = 1/3 and determined the extremal configurations, which are obtained by
taking an almost balanced tripartition of the vertex set t3i=1Vi, putting in all triples of the
form ViViVi+1 (winding round modulo 3) and adding a small number (O(n2)) of 3-edges
of the form V1V2V3.

Problem 34. Find a good lower bound construction for γ(F (Kt)).

Clearly for any 3-graph H we must have γ(F (H)) > γ(H). We also have the following
upper-bound.

Proposition 35.

γ(F (H)) 6
1

2− γ(H)
.

Proof. Assume that γ(H) < 1, for otherwise we have nothing to prove. Let γ be a
real number with 1

2−γ(H)
< γ < 1. Suppose G is a 3-graph on [n] with δ2(G) > γn.

Consider any pair xy ∈ [n](2), and let Γ(x, y) = {z ∈ [n] : xyz ∈ E(G)} be their joint
neighbourhood.

Set α = |Γ(x, y)|/n By our codegree assumption, we have α > γ. Also by the codegree
assumption, every pair of vertices z, z′ ∈ Γ(x, y) must have at least γn−(1−α)n neighbours
inside Γ(x, y).
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Thus the restriction G′ = G[Γ(x, y)] of the 3-graph G to the vertices in Γ(x, y) has
codegree

δ2(G
′)

|V (G′)|
> 1− 1− γ

α

> 1− 1− γ
γ

since α > γ.

Since γ > 1
2−γ(H)

, we have 1− 1−γ
γ
> γ(H). In particular if n is large enough, G′ contains

a copy of H, which, when taken with x, y in G gives rise to a copy of F (H).
It follows that γ(F (H)) 6 1

2−γ(H)
as claimed.

Thus if the answer to Question 18 is positive (as we believe) and γ(Kt) = 1−1/(s−2)
for all s > 4, then

1− 1

s− 2
6 γ(F (Ks)) 6 1− 1

s− 1

for all s > 3.

Question 36. Is γ(F (Ks)) = 1− 1
s

+O
(

1
s2

)
?

Let us finish by noting that the Turán density analogue of Problem 34 is also open.
The Turán number and extremal configurations (’one-way’ bipartite 3-graphs) for F3,2 are
known [9], but we do not know of any constructions or conjectures for π(F (Ks)) besides
the ones showing π(Ks) > 1− 4

(s−1)2 .
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Appendix

Here we give for completeness a proof of the claim we used in the proof of Theorem 10.

Claim 37. Fix i < j. Then {Xij,k : k ∈ [n] \ {ij}} forms a family of independent
identically distributed Bernoulli random variables with parameter 1− 1

s
.

Proof. Let K tK ′ be a partitition of [n] \ {ij}. Then,

P (Xij,k = 1 ∀k ∈ K, Xij,k′ = 0 ∀k′ ∈ K ′)

=
s∑
c=1

P(c(ij) = c)P (Xij,k = 1 ∀k ∈ K, Xij,k′ = 0 ∀k′ ∈ K ′| c(ij) = c)

=
s∑
c=1

1

s

∏
k∈K

P(Xij,k = 1|c(ij) = c)
∏
k′∈K′

P(Xij,k′ = 0|c(ij) = c)

=
∏
k∈K

P(Xij,k = 1|c(ij) = 1)
∏
k′∈K′

P(Xij,k′ = 0|c(ij) = 1).

Here in the second equality above we used the fact that conditional on the value of
c(ij), the random variable Xij,k depends only on the random variables c(ik), c(jk).
Since each edge is coloured independently, we have that the conditional random vari-
ables Xij,k|c(ij) = c are independent. In the third equality, we use the fact that the
problem is symmetric with respect to our s colours.

Now for any k ∈ K,

P(Xij,k = 1) =
s∑
c=1

P(c(ij) = c)P(Xij,k = 1|c(ij) = c)

= s× 1

s
P(Xij,k = 1|c(ij) = 1),

again using the symmetry in the colours, and similarly for any k′ ∈ K ′

P(Xij,k′ = 0) = P(Xij,k′ = 0|c(ij) = 1).

Thus we have

P (Xij,k = 1 ∀k ∈ K, Xij,k′ = 0 ∀k′ ∈ K ′) =
∏
k∈K

P(Xij,k = 1)
∏
k′∈K′

P(Xij,k′ = 0),

for any K tK ′ = [n] \ {ij}, proving that {Xij,k : k ∈ [n] \ {ij}} forms a family of inde-
pendent random variables as claimed. By construction, they are identically distributed
Bernoulli random variables with parameter (1− 1

s
), concluding the proof of our claim.
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