
Enumeration of generalized
BCI lambda-terms

Olivier Bodini∗

Institut Galilée
Univ. Paris 13

Villetaneuse, France

olivier.bodini@lipn.univ-paris13.fr

Danièle Gardy†

PRiSM
Université de Versailles Saint-Quentin

78035 Versailles, France

daniele.gardy@uvsq.fr

Bernhard Gittenberger‡

Institute for Discrete Mathematics
and Geometry

Vienna University of Technology
A-1040 Wien, Austria

gittenberger@dmg.tuwien.ac.at

Alice Jacquot∗

Institut Galilée
Univ. Paris 13

Villetaneuse, France

alice.jacquot@lipn.univ-paris13.fr

Submitted: Jan 11, 2013; Accepted: Dec 11, 2013; Published: Dec 17, 2013

Mathematics Subject Classifications: 05A16, 05A99, 05C20, 03B40

Abstract

We investigate the asymptotic number of elements of size n in a particular class of
closed lambda-terms (so-called BCI(p)-terms) which are generalizations of lambda-
terms related to axiom systems of combinatory logic. By deriving a differential
equation for the generating function of the counting sequence we obtain a recurrence
relation which can be solved asymptotically. We derive differential equations for
the generating functions of the counting sequences of other more general classes of
terms as well: the class of BCK(p)-terms and that of closed lambda-terms. Using
elementary arguments we obtain upper and lower estimates for the number of closed
lambda-terms of size n. Moreover, a recurrence relation is derived which allows an
efficient computation of the counting sequence. BCK(p)-terms are discussed briefly.

∗Supported by ANR Magnum project (France)
†Supported by ANR Boole project (France). This author’s work was partially carried out during her

sabbatical leave at the Institute for Discrete Mathematics and Geometry, TU Wien, Austria.
‡Supported by FWF grant SFB F50-03 and ÖAD, grant F04/2012.

the electronic journal of combinatorics 20(4) (2013), #P30 1

1 Introduction

Lambda-terms play a prominent role in the theory of computer programming. In order to
investigate properties of randomly generated lambda-terms we have to know how many
terms of a given size there are. This paper is devoted to the asymptotic counting of
particular classes of lambda-terms.

Lambda-terms were invented by Church and Kleene in the 30ies (see [5, 18, 19])
together with a set of rules for manipulating them, the so-called lambda-calculus. This
is a very powerful formal language which can be used to describe computer programs,
analyze programming languages or investigate decision problems. Moreover, it is the
basis of the programming language LISP.

A lambda-term is a formal expression built of variables and a quantifier λ which in
general occurs more than once and acts on one of the free variables. It can be described
by the context-free grammar T ::= a | (T ∗ T) | λa.T where a is a variable. The
concatenation of terms is called application and adding the prefix λa to a term is called
abstraction. Each abstraction binds a variable in the whole term following it and each
variable can only be bound by at most one abstraction. A term where all the variables
are bound is called a closed lambda-term, otherwise an open lambda-term. For example,
(λx.(x ∗ x) ∗ λy.y) is a closed lambda-term whereas (λx.(x ∗ z) ∗ λy.y) is an open one.

Our aim is to study the asymptotic number of closed lambda-terms of a given size
when the size is tending to infinity. We define the size of a lambda-term recursively by

|x| = 1, |λx.T | = 1 + |T |, |(S ∗ T)| = 1 + |S|+ |T |. (1)

Moreover, note that we will count lambda-terms up to isomorphism: Only the struc-
ture of the bindings is important whereas variable names are unimportant. For closed
lambda-terms this is precisely α-conversion (see [1, Ch. 2]). For instance, the terms
λy.(λx.x∗λz.y), λy.(λx.x∗λx.y), λx.(λy.y ∗λz.x) are considered to be identical. Observe
that the second term is obtained from the first one by replacing z by x, which is “by
coincidence” the same variable as that in the sub-term λx.x just left to it. But as stated
above the important issue is that the last quantifier does not bind the variable following
it; therefore the name must only be different from y.

Since the determination of the asymptotic number of lambda-terms seems to be a hard
problem (cf. the discussion of this issue in [3] and for a similar problem in [13, end of
Sec. 3]) we confine ourselves with the asymptotic analysis of a simpler subclass of lambda-
terms and give an outlook to the analysis of a larger and more complicated subclass. The
classes considered are BCI(p)- and BCK(p)-terms and unless explicitly stated we mean
closed terms. The names stem from the correspondence of BCI(1)- and BCK(1)-terms to
the logical systems BCI and BCK, respectively, which are studied in combinatory logic
(see [16, 15, 17]). BCI(1)-terms are also known as linear lambda-terms, BCK(1)-terms
as affine lambda-terms. Due to the Curry-Howard isomorphism [8, 20] BCI(1)-terms
constitute proofs of intuitionistic tautologies in which every propositional variable occurs
exactly twice. One might be tempted to think that an analogous statement holds for
p > 1. However, this is false since such terms have to be typable and already for p = 2
we easily find non-typable BCI(2)-terms, e.g. (λx.x ∗ x) ∗ (λx.x ∗ x).

the electronic journal of combinatorics 20(4) (2013), #P30 2

The plan of the paper is as follows: In the next section we state our notations, defini-
tions and some immediate observations. In Section 3 we derive the functional equations
for the generating functions corresponding to BCI(p)-terms, BCK(p)-terms as well as
general closed lambda-terms. Then we derive the asymptotic order of the number of
BCI(p)-terms (Section 4). Section 5 is devoted to an upper and a lower estimate for the
number λn of closed lambda-terms of size n. This is done using rather elementary argu-
ments, but it is still sufficient to obtain the asymptotic main term of log λn. Moreover,
we derive a recurrence relation which allows an efficient computation of the numbers λn.
In the final section, we briefly discuss BCK(p)-terms.

The enumeration of BCI(1)-terms was carried out by Bodini et al. [2] by constructing
a nice bijection to certain diagrams. They showed that the number of BCI(1)-terms of
size n is asymptotically

C

n1/6

(
2n

e

)n/3
(2)

if n ≡ 2 mod 3 and zero otherwise. They obtained also the asymptotic number ofBCK(1)-

terms which differs from (2) by a multiplicative factor e
1
2

(2n)2/3− 1
6

(2n)1/3 . A quantitative
comparison of provable formulas between BCI(1) and BCK(1) was done in [12].

Models with a different notion of size (leaves do not contribute to the size, i.e. they
have weight zero) were studied in [7, 13]. In [7] upper and lower bounds for the counting
sequence were derived and questions like typability were discussed. The paper [13] ap-
proaches the counting problem by representations of terms using de Bruijn indices. They
derive recurrence relations for the number of terms with or without constraints on the
number of free variables and discuss the issue of random generation of terms as well.
This allows an efficient computation and experimental analysis of term properties like
typability or some shape characteristics.

2 Notation and basic facts

A lambda-term can be regarded as a so-called enriched tree which is a particular directed
acyclic graph. In fact, consider a Motzkin tree (i.e., a rooted unary-binary tree) and
add directed edges connecting a unary node and a leaf such that each leaf is “bound”
by a directed edge from exactly one of the unary nodes that are its ancestors in the
tree. The correspondence is obvious (see Figure 1): leaves correspond to variables, unary
nodes to abstractions, binary nodes to applications and the additional directed edges to
the binding relations between abstractions and variables. Clearly, since all leaves are
bound, the lambda-term is closed. Of course, open lambda-terms can be represented in
an analogous manner by a directed acyclic graph where some leaves have in-degree zero
(that means that they have no ingoing directed edge).

We will not distinguish between a lambda-term and its enriched tree representation.
In addition, when speaking of lambda-terms, we will utilize the following abuse of the
wording: A unary node of a lambda-term is a unary node (i.e. node of out-degree one)
of the underlying Motzkin tree (i.e. a node becoming unary if all directed edges are

the electronic journal of combinatorics 20(4) (2013), #P30 3

(λx.(x ∗ x) ∗ λy.y) λy.(λx.x ∗ λz.y)

x x
y

x y

Figure 1: Two enriched trees and the closed lambda-terms corresponding to them. Note that
the node labels can be omitted, since (λx.(x∗x)∗λy.y) and (λa.(a∗a)∗λb.b) are the same term.

removed). These are precisely the nodes corresponding to abstractions. Analogously, we
call the nodes corresponding to applications binary nodes and nodes corresponding to
variables leaves of the lambda-term. In a strict sense, leaves have always degree one and
in-degree one as well (i.e. each leaf x is incident with exactly one undirected and exactly
one directed edge pointing towards x).

Moreover, we distinguish between edges, i.e. edges of the underlying Motzkin tree,
and pointers, i.e. directed edges from a unary node to a leaf.

Definition 1. • BCI(p) is the set of (non-empty) closed lambda-terms where each
unary node has exactly p pointers, i.e. binds exactly p occurrences of its variable.

• BCK(p) is the set of closed lambda-terms where each unary node binds at most p
leaves.

Figure 2: Left: a closed λ-term of size 17. Center: a term in BCI(2) of size 14. Right: a term
in BCK(1) of size 15.

A lambda-term from BCI(p) has three types of nodes: unary nodes (which are actually
of arity p + 1, as there are p pointers going from this node to leaves), binary nodes, and
leaves. The size of such a lambda-term is the total number of its nodes. We start with
some obvious observations:

the electronic journal of combinatorics 20(4) (2013), #P30 4

Fact 2. The smallest terms of BCI(p) have one unary node at the root and p leaves.
There are p pointers from the root to all the leaves. Obviously, if we remove the root and
all its pointers, we are left with a binary tree. Thus the number of such terms is equal
to the number of binary trees with p − 1 binary nodes and p leaves. This is precisely the
Catalan number Cp−1 =

(
2p−2
p−1

)
/p. And clearly, the size of all these terms is 2p.

Fact 3. A term of BCI(p) with j unary nodes has pj leaves and pj − 1 binary nodes; its
size is therefore equal to (2p+ 1)j − 1.

3 The generating functions for various classes of

closed lambda-terms

We will enumerate lambda-terms by means of generating functions. Let gn = g
(p)
n be the

number of BCI(p)-terms of size n and Gp(z) be the generating function of this sequence.
By Fact 2 we have actually

Gp(z) =
∑
j>1

gj(2p+1)−1z
j(2p+1)−1.

Analogously, define Fp(z) =
∑

n>1 fnz
n and Λ(z) =

∑
n>1 λnz

n where fn = f
(p)
n is the

number of BCK(p)-terms of size n and λn the number of closed lambda-terms of size n.
The next step is the setting up of functional equations for the generating functions.

This will be done by giving a formal specification of the combinatorial objects and then
using the symbolic method (see [9]). From [2] we already know that G1(z) satisfies the
equation

G1(z) = z2 + zG1(z)2 + ∆1G1(z),

where the differential operator ∆1 is 2z4D and D denotes the ordinary differential oper-
ator.

Proposition 4. The generating function of BCI(p)-terms satisfies the differential equa-
tion

Gp(z) = Cp−1z
2p + zGp(z)2 + ∆pGp(z) (3)

where

∆p =

p∑
l=1

αl,p
l!
zl+2p+1Dl (4)

with constants αl,p defined by

αl,p =
∑

∑
i si=l;

∑
i isi=p

(
l

s1, . . . , sp

) p∏
m=1

(
2m

m

)sm
. (5)

the electronic journal of combinatorics 20(4) (2013), #P30 5

Proof. A BCI(p)-term can be specified by the formal equation

T = S ∪ ({◦} × T × T) ∪ ({◦} × T̃), (6)

where the set S is the set of all smallest BCI(p)-terms (cf. Fact 1) and T̃ a certain set of
open BCI(p)-terms.1 This can be explained as follows: A BCI(p)-term falls into exactly
one of three categories: It is either

• a smallest term,

• or its root is a binary node and the two sub-terms attached to the root are themselves
BCI(p)-terms,

• or its root is a unary node and the sub-term attached to the root is an open BCI(p)-
term with exactly p free leaves.

In order to specify all BCI(p)-terms and avoid ambiguities, we have to take some care
in the choice of T̃ . Indeed, each BCI(p)-term will be generated exactly once by the
specification (6) if we generate T̃ by starting with a BCI(p)-term and then generating
p leaves and connecting them to the unary root node by a pointer in the following way.
To construct a term t̃ ∈ {◦} × T̃ , choose a BCI-term t and p nodes of t, where multiple
choices of a node are allowed. Each node v corresponds to an edge, namely the edge
leading to v if v is not the root and the edge connecting v with the new root (of the term
t̃ ∈ {◦}×T̃) otherwise. Thus the choice of the p nodes “hits” edges of the term t̃. Assume
that l edges are hit and si of them exactly i times.

If an edge is hit i times, then replace it by a path where at each node of the path a
binary tree is attached, either to the left or to the right of the path, and the number of
leaves of all these binary trees altogether is equal to i (see Figure 3 for an illustration of
this process). Thus the replacement creates i new leaves and i new internal nodes. The
whole replacement process creates exactly

∑p
i=1 isi = p new leaves and p new internal

nodes in t. Therefore t̃ has exactly 2p + 1 more nodes than t and obviously t̃ is an
open BCI(p)-term. Conversely, if we have a BCI(p)-term with a unary root node, then
removing it together with its pointers yields a term with p free leaves. These leaves must
be children of a binary node since otherwise the parent node must have pointers to p
descendants which is impossible. Thus the free leaves induce a set of subtrees of t which
are binary trees with free leaves only.

Now let us count in how many ways this can be done. Each edge which is hit i times
is actually replaced by a sequence of left or right binary trees. The generating function
associated to binary trees is T (u) =

∑
n>1Cn−1u

n = (1−
√

1− 4u)/2. Thus the number
of such sequences with exactly i leaves is

[ui]
1

1− 2T (u)
= [ui]

1√
1− 4u

=

(
2i

i

)
.

1Note the slight abuse of notation in (6): The last Cartesian product on the right-hand side is not a
Cartesian product in a strict sense, but only on the level of the underlying Motzkin trees, since we will
add pointers going from the new root to some leaves of T̃ .

the electronic journal of combinatorics 20(4) (2013), #P30 6

−→

Figure 3: To the left, a BCI(4) term with a node pointed once and another pointed 3 times
where pointing at a node is represented by encircling the dot representing it in the figure. So
the root on top is pointed at once, the right-most leaf three times. The corresponding hit edges
are the thick ones.

At the right, a possible BCI(4) obtained from the left term. Each thick edge has been
replaced by a thick path where binary trees have been attached; their leaves are linked to the
newly created unary node at the root. The root edge (on top of the left term) has been replaced
by a path of length two (having thus three nodes) and a size one tree has been attached to the
left at the middle node; the second thick edge of the left term has been replaced by a path of
length 3 with two attachments: a size one tree left from the second node and a size 3 tree to the
right of the third node of the path.

Note that si of the l edges are hit i times, i = 1, . . . , p. The number of ways to partition
the l edges w.r.t. the multiplicity of the hits is

(
l

s1,...,sp

)
. Then each of the si edges which

is hit i times is replaced by one of the
(

2i
i

)
possible sequences of binary trees. Therefore

there are
∏p

i=1

(
2i
i

)si
ways of doing the whole replacement. Finally, note that choosing

l distinct edges corresponds to applying the operator zlDl/l! on the level of generating
functions and the 2p+ 1 new nodes created during the replacement process yield a factor
z2p+1.

Proposition 5. Let F (z) denote a formal power series (with real coefficients), Du =
∂/∂u, the formal derivative, and U the operator G(u) 7→ G(0), G(u) being a formal power
series. Then

∆pF (z) =
z2p+1

p!
UDp

uF

(
z√

1− 4u

)
= z2p+1[up]F

(
z√

1− 4u

)
.

Proof. The second equation is obvious since UDp
u/p! = [up] is exactly Taylor’s theorem.

For proving the first equation set Dz = ∂/∂z and f(u) := 1/
√

1− 4u =
∑

i>0

(
2i
i

)
ui.

the electronic journal of combinatorics 20(4) (2013), #P30 7

Therefore by Faà di Bruno’s formula (see e.g. [6, p. 137])2 we obtain

z2p+1

p!
UDp

uF (zf(u)) =
z2p+1

p!

∑
∑p

i=1 isi=p

p!

s1! · · · sp!
(Ds1+···+spF)(zf(0))

×
p∏

m=1

(
1

m!
UDm

u (zf(u))

)sm
= z2p+1

∑
∑p

i=1 isi=p

1

s1! · · · sp!
(Ds1+···+spF)(zf(0))

p∏
m=1

(
z

(
2m

m

))sm

= z2p+1

p∑
l=1

1

l!

(
l

s1, . . . , sp

) p∏
m=1

(
2m

m

)sm
zlDlF (z)

=

p∑
l=1

αl,p
l!
zl+2p+1DlF (z) = ∆pF (z)

where we substituted s1 + · · · + sp = l in the second line and split the sum according to
the value of l and used f(0) = 1 in the third line.

Remark 6. More heuristically, we could argue in the following way: Regard F (z) as a
generating function of a tree-like structure where z marks the number of nodes. Then
F (z/

√
1− 4u) is the generating function where the nodes are substituted by a node

and a sequence of “left-or-right” binary trees where the number of leaves is marked by
u. Thus [up]F (z/

√
1− 4u) is the generating function of those objects where the binary

trees introduced by the substitution altogether contain exactly p leaves. The term z2p+1

accounts for introducing the 2p + 1 new nodes. This comes from counting the nodes of
the binary trees coming from the substitution, adding an extra root for each of these trees
and adding a new root to the total structure. This is precisely what ∆p does.

2Faà di Bruno’s formula is also stated in [9, p. 188, (III.24)], but unfortunately in the wrong form

hn
n!

=

n∑
k=1

fk
k!

∑
∑k

j=1 j`j=n,
∑k

j=1 `j=k

(
k

`1, . . . , `k

)(g1
1!

)`1
· · ·
(gk
k!

)`k

where hi = di

dxi f(g(x)), fi =
(

di

dxi f
)

(g(x)) and gi = di

dxi g(x). The correct form is

hn
n!

=

n∑
k=1

fk
k!

∑
∑n

j=1 j`j=n,
∑n

j=1 `j=k

(
k

`1, . . . , `n

)(g1
1!

)`1
· · ·
(gn
n!

)`n
.

or (in “non-exponential” form)

hn =

n∑
k=1

fk
∑

∑n
j=1 j`j=n,

∑n
j=1 `j=k

n!

`1! . . . `n!

(g1
1!

)`1
· · ·
(gn
n!

)`n
.

the electronic journal of combinatorics 20(4) (2013), #P30 8

The derivation of the differential equation of the generating function for BCK(p)-
terms is a little more involved. Note that the differential operator ∆p corresponds to p
pointers from the root to some leaves. One is tempted to replace ∆p in (3) by a sum of
∆l’s to take into account less than p pointers. But this is not entirely correct.

Proposition 7. Let Fp(z) be the generating function associated to BCK(p)-terms. Then
Fp(z) = Y (z/(1 − z)) where Y (z) is the unique power series Y (z) =

∑
n>0 Ynz

n with
nonnegative coefficients which satisfies

Y (z) =

p∑
l=1

Cl−1z
2l + zY (z)2 +

(
p∑
l=1

∆l

)
Y (z). (7)

Proof. The (in some sense) minimal BCK(p)-terms are binary trees with at most p leaves
and a unary root node pointing at all the leaves. This gives the first term on the right-hand
side of (7).

Note that a unary node may also have zero pointers. A unary node with zero pointers
which is not on top of the tree cannot be generated directly by a specification similar to
(6). Therefore we first construct terms where each unary node has at least one pointer.
Similar arguments as in the BCI case then lead directly to (7). Finally, we replace the
edges by paths which exactly corresponds to the substitution z → z/(1− z).

An alternative approach is to start with Motzkin trees with an additional root having
pointers to all leaves as minimal structures. The terms with a unary root node can then be
generated in the following way: Fix the number l of pointers we want to have at the root
and then do an edge hitting process as in the BCI case. But instead of substituting the
hit edges by sequences of left-or-right binary trees, use sequences of left-or-right Motzkin
trees with an additional unary root node (corresponding to the nodes in the paths which
substitute the hit edges) such that these trees have altogether l leaves. Recalling that
on the level of generating functions edge hitting corresponds to applying a differential
operator, we get in that way a differential equation for Fp(z).

Proposition 8. Let M(z, u) denote the generating function of Motzkin trees where z
marks the size (i.e. the total number of nodes) and u marks the number of leaves. This
function is given by the unique power series solution of M(z, u) = uz + zM(z, u) +
zM(z, u)2, that is

M(z, u) =
1− z −

√
(1− z)2 − 4uz2

2z
. (8)

Then Fp(z) is given as the solution of

Fp(z) = z[up]
M(z, u)

1− u
+ zFp(z)2 + z[up]

1

1− u
Fp

(
z

1− 2zM(z, u)

)
. (9)

Proof. This is a direct consequence of the remarks above and Proposition 5.

Let λn denote the number of closed lambda-terms and Λ(z) =
∑

n>1 λnz
n. Then we

can use the two approaches presented above to find functional equations for Λ(z).

the electronic journal of combinatorics 20(4) (2013), #P30 9

Proposition 9. Let C(z) = (1 −
√

1− 4z2)/2 be the generating function associated to
binary trees with an extra unary root node and counted by the number of nodes. Further-
more, let Λ̃(z) be the power series solution of

Λ̃(z) = C(z) + zΛ̃(z)2 + zΛ̃

(
z

1− 2C(z)

)
− zΛ̃(z). (10)

Then Λ(z) = Λ̃(z/(1− z)). Moreover, we have

Λ(z) = zM(z, 1) + zΛ(z)2 + zΛ

(
z

1− 2zM(z, 1)

)
. (11)

Proof. To prove (10) we can proceed as in the proofs of Propositions 4 and 7 but allowing
an unbounded number of edge hits instead. Thus, if Λ̃(z) is the generating function
associated to closed lambda-terms where each unary node carries at least one pointer,
then

Λ̃(z) =
∑
p>1

Cp−1z
2p + zΛ̃(z)2 +DΛ̃(z)

where D =
∑

p>1 ∆p. Now applying Proposition 5 yields (10). As in the BCK case, in
order to create unary nodes carrying no pointers we replace the edges by paths which
yields Λ(z) = Λ̃(z/(1− z)) and completes the proof of (10).

−→

, ,

,

, ,

−→

Figure 4: A step of the grafting expansion of a lambda-term

Alternatively, the lambda-terms with a unary root node can be created by starting with
Motzkin trees with a unary node on top pointing to all leaves. These initial configurations
are then expanded iteratively by substituting the edges by paths and attaching nodes,
either left or right, which are (unary) roots of Motzkin trees, each binding all the leaves
of its subtree. For an illustration of the expansion process, Figure 4 shows one step in

the electronic journal of combinatorics 20(4) (2013), #P30 10

this expansion process (not the initial one). Figure 5 presents one step of the reverse
process.

−→ −→ −→ −→

−→ −→

Figure 5: Finding the original closed lambda-term: first, the unary root node and all the
leaves bound by the root are coloured white. Then delete the white nodes and colour all their
neighbours white. Now continue recursively, where deletion of white unary nodes is done by
removal and gluing the incident edges together.

4 The asymptotic number of BCI(p)-terms

Recall that Gp(z) =
∑

n>1 gn(2p+1)−1z
n(2p+1)−1 is the generating function of the counting

sequence of BCI(p) terms. The function Gp(z) satisfies the functional equation (3) which
involves the differential operator ∆p given by (4). Our goal is now to get a recurrence
relation for the coefficients of Gp(z).

Proposition 10. The coefficients gn(2p+1)−1 satisfy the recurrence relation

gn(2p+1)−1 =
n−1∑
l=1

gl(2p+1)−1g(n−1−l)(2p+1)−1 +Qp(n− 1)g(n−1)(2p+1)−1, for n > 2, (12)

with initial condition g(2p+1)−1 = Cp−1 and where

Qp(n) =

p∑
m=1

αm,p

(
n(2p+ 1)− 1

m

)
(13)

with αm,p defined in (5).

the electronic journal of combinatorics 20(4) (2013), #P30 11

Proof. Obvious, since the first term on the right-hand side of (3) only affects the case
n = 1, the quadratic term is a Cauchy product and ∆p is a linear combination of powers of
the ordinary differential operator which acts on the coefficients of the power series exactly
as shifting and multiplication by Qp(n− 1) do.

Lemma 11. The polynomials Qp(n) can be represented more explicitly as

Qp(n) = 4p
((
p+ 1

2

)
n+ p− 3

2

p

)
.

Proof. Set f(u) = 1/
√

1− 4u. It is easy to see that αm,p = [up](f(u)− 1)m and that the
coefficient on the right-hand side is zero if m > p. Thus we obtain

Qp(n) =

p∑
m=1

(
(2p+ 1)n− 1

m

)
αm,p

= [up]
∑
m>1

(
(2p+ 1)n− 1

m

)
(f(u)− 1)m = [up]f(u)(2p+1)n−1

= 4p
((
p+ 1

2

)
n+ p− 3

2

p

)
and we are done.

The key to the asymptotic analysis is a linearization of the differential equation which
is possible due to the fast growth of the coefficients of Gp(z). We start with an auxiliary
result for fast growing sequences saying that in the Cauchy product only the extremal
terms are asymptotically relevant:

Lemma 12. Let n0 ∈ N and A(z) =
∑

n>n0
anz

n be a power series with positive coef-
ficients (from index n0 on). Assume that there exists σ > 1 with an+1/an = Ω(nσ) as
n → ∞. Then [zn]A(z)2 = 2an0an−n0(1 + O(n−σ)) as n → ∞. If we want the second
order term, we take the next two terms, and so on.

Proof. Define qn = an+1/an; then 1/qn = O(n−σ). W.l.o.g. assume that n is odd. Then
the coefficient of zn in A(z)2 is

n−n0∑
l=n0

alan−l = 2an0an−n0 + 2

bn/2c−n0∑
l=1

an0+lan−n0−l

= 2an0an−n0

1 +

bn/2c−n0∑
l=1

qn0qn0+1 · · · qn0+l−1

qn−n0−1qn−n0−2 · · · qn−n0−l

 .

In the case where n is even we have to subtract 1{n/2∈N}a
2
n/2 on the r.-h. side.

The first term of the sum in the last line is qn0/qn−n0−1 = O((n−n0−1)−σ) = O(n−σ)
(recall that n0 is a constant). The further terms are of order O(n−2σ) and there are not
more than bn/2c of them. Thus the sum is of order O(n1−2σ) = O(n−σ). Hence

[zn]A2(z) = 2an0an−n0(1 +O(n−σ)) ∼ [zn]2an0z
n0A(z).

the electronic journal of combinatorics 20(4) (2013), #P30 12

We are now ready to derive bounds for the coefficients of Gp(z).

Lemma 13. Define φn = gn(2p+1)−1, n > 1. Then we have φn+1/φn = Ω(np) as n→∞.

Proof. By (12) we have φ0 = 0, φ1 = Cp−1 and, for n > 2,

φn =
n−2∑
l=1

φlφn−1−l +Qp(n− 1)φn−1. (14)

Thus φn > Qp(n − 1)φn−1. By Lemma 11 it is obvious that Qp(n) is a polynomial in n

with leading term 2p(2p+1)p

p!
np which implies the result.

Corollary 14. For fixed p > 1 and n → ∞, the sum
∑n−2

l=1 φlφn−l−1 is asymptotically
equal to 2φ1φn−2(1 +O(1/np)).

Remark 15. The intuition behind the considerations above is as follows. From our
study of BCI(1) and from bounds already obtained (although for a different model) [7],
we already know that the asymptotic behaviour of the number of lambda-terms widely
differs from that of the number of trees: the significant increase in the number of lambda-
terms of a given size when compared to Motzkin trees, i.e. the trees forming the underlying
structure of lambda-terms, comes from the large number of ways of binding a leaf to unary
nodes; indeed we are dealing here with directed acyclic graphs. Hence the rôle of the
term G2

p, which corresponds to the “purely binary tree-like” structure, is asymptotically
negligible when compared to that of the differential term which captures the binding of
leaves.

Remark 16. The exact differential equation for Gp(z) is (3) whereas the arguments in
Remark 15 show that we may work with the linearized3 equation

Lp(z) = Cp−1z
2p + ∆pLp(z). (15)

The linearized equation has a combinatorial interpretation as well; indeed, it counts the
number of structures S defined as follows: The smallest possible structures of S are
precisely the smallest BCI(p)-terms, i.e., a unary root followed by a binary tree with
2p− 1 nodes (and pointing to all leaves of this binary tree). All terms in S have a unary
node as their root. To construct larger terms, we add a new root and expand the sub-term
below using the same edge hitting and expansion process as for BCI(p)-terms. Thus these
terms may have binary nodes, but never as root.

Lemma 17. For p > 1, the sequence (φn)n>1 satisfies

2φ1φn−2 6
n−2∑
l=1

φlφn−1−l 6 2φ1φn−2 + (n− 3)φ2φn−3.

3This is not a linearization in a strict sense; we did not replace the quadratic term by a linear one,
but only omitted it.

the electronic journal of combinatorics 20(4) (2013), #P30 13

Proof. The lower bound is obvious: we just keep the first and the last term. Set qn =
φn+1/φn. To prove the upper bound, note that (φn)n>1 is monotonically increasing and
that for any 1 6 i 6 b(n− 3)/2c we have

φ2+iφn−3−i = φ2φn−3
q2q3 · · · q1+i

qn−2qn−3 · · · qn−1−i
> φ2φn−3.

Next we turn to the linearized equation (15).

Theorem 18. Set `p,n = [zn]Lp(z) where Lp is given by (15). Then, for fixed p and
n→∞,

`p,n ∼ Bpβ
n−1
p nγp(n− 1)!p

where

Bp = Cp−1

p∏
k=1

1

Γ
(

1 + 2(p−k)−1
2p+1

) (16)

= Cp−1 exp

(
−2p+ 1

2

∫ 2

1

log(Γ(x)) dx

)(
1 +O

(
1

p

))
, as p→∞, (17)

≈ Cp−1(1.0844375142 . . .)(2p+1)/2

(
1 +O

(
1

p

))
and

βp =
(4p+ 2)p

p!
, γp =

p(p− 2)

2p+ 1
. (18)

Proof. Equation (15) implies `p,2p = Cp−1 and `p,n = Qp(n− 1)`p,n−2p−1 for n > 2p. Thus

`p,(2p+1)n−1 = Cp−1

n−1∏
j=1

Qp(j)

= Cp−1

(
(4p+ 2)p

p!

)n−1 p∏
k=1

Γ
(
n+ 2(p−k)−1

2p+1

)
Γ
(

1 + 2(p−k)−1
2p+1

)
= Cp−1β

n−1
p (n− 1)!p

n−1∏
j=1

p∏
k=1

(
1 +

2(p− k)− 1

2p+ 1
· 1

j

)
. (19)

Finally, note that, as n→∞,

Cp−1

n−1∏
j=1

p∏
k=1

(
1 +

2(p− k)− 1

2p+ 1
· 1

j

)
∼ Bpn

γp

which completes the proof. The asymptotic form of the constant Bp, given in (17), can
be derived from Euler-McLaurin’s formula.

the electronic journal of combinatorics 20(4) (2013), #P30 14

p ap Ap
2 1.048668. . . 0.981017. . .
3 1.0046726194. . . 2.19232485. . .
4 1.0006911656. . . 6.17349476. . .
5 1.0001221936. . . 19.2515312. . .

Table 1: The first few values of ap.

Theorem 19. For p > 2, the number of BCI(p)-terms of size (2p+ 1)n− 1 is asymptot-
ically

Ap β
n−1
p nγp(n− 1)!p

where βp and γp are as in (18) and Ap = apBp with Bp as in (16) and ap = 1+O(1/(pep)),
as p→∞.

Remark 20. The first few values of the constants ap and Ap appear in Table 1.

Remark 21. Applying Stirling’s formula we get the alternative form

Āpβ̄
n−1
p nγ̄pnnp

where

β̄p =
βp
ep
, γ̄p =

−5p

4p+ 2

and Āp = (2π/e2)p/2Ap.

Proof. From the recurrence relation for φn, Equation (14), we have

φn = φn−1Qp(n− 1) +
n−2∑
l=1

φlφn−1−l

= φn−1 (Qp(n− 1) + Γn−1),

with Γn−1 =
∑n−2

l=1 φlφn−1−l/φn−1 and Qp(n) defined in (13). Thus

φn = φ1

n−1∏
j=1

(Qp(j) + Γj) = Kp(n)φ1

n−1∏
j=1

Qp(j)

where Kp(n) =
∏n−1

j=1

(
1 +

Γj

Qp(j)

)
. For p > 2 we have Qp(n) = Ω(np) and further-

more Corollary 14 gives Γn−1 = 2φ1 + O(1/np) = 2Cp−1 + O(1/np). Hence the sequence
(Kp(n))n>1 is convergent and we get

φn = apCp−1

(
n−1∏
j=1

Qp(j)

)(
1 +O

(
1

n

))

the electronic journal of combinatorics 20(4) (2013), #P30 15

where ap = limn→∞Kp(n). The product Cp−1

∏n−1
j=1 Qp(j) is already evaluated in (19),

yielding the asymptotic behaviour of the solution of the linearized equation given in
Theorem 18.

The difference between the linearization and the φn is hidden in the constant ap. Thus
we are left with the determination of ap. We will confine ourselves with an asymptotic
evaluation for p→∞.

First note that Lemma 11 immediately implies the inequality

Qp(n) >
2p(2p+ 1)p

p!
np. (20)

Now observe that Γ1 = 0 and that by Lemma 17 we have Γj 6 2φ1+(j−2)φ2φj−1/φj. The
quotient in the last term was already estimated in the proof of Lemma 13 by φj−1/φj 6
1/Qp(j − 1). Using this estimate as well as the inequality (20) we obtain (for j > 1)

Γj 6 2φ1 + j
φ2p!

2p(2p+ 1)p(j − 1)p
= 2Cp−1 + j

φ2p!

2p(2p+ 1)p(j − 1)p
.

Hence we get

ap =
∏
j>2

(
1 +

Γj
Qp(j)

)
6
∏
j>2

(
1 +

2Cp−1p!

2p(2p+ 1)pjp
+

φ2(p!)2

22p(2p+ 1)2pj2p−1

)
6
∏
j>2

(
1 +

2Cp−1p!

2p(2p+ 1)pjp

)∏
j>2

(
1 +

φ2(p!)2

22p(2p+ 1)2p(j − 1)pjp−1

)
. (21)

The two products above are of the form
∏

j>2

(
1 + εp

jp

)
and

∏
j>2

(
1 +

ε′p
(j−1)pjp−1

)
, resp.,

with εp, ε
′
p → 0 as p→∞. Thus we can easily estimate the first one by

log
∏
j>1

(
1 +

εp
jp

)
=
∑
j>1

∑
k>1

(−1)k−1

k

εkp
jpk

=
∑
k>1

(−1)k−1

k
εkpζ(pk). (22)

Since ζ(x) = 1 + O(2−x) as x → ∞, we obtain
∏

j>1

(
1 + εp

jp

)
= 1 + O(εp). Moreover,

observe that
∏

j>2

(
1 +

ε′p
(j−1)pjp−1

)
6
∏

j>1

(
1 +

ε′′p
jp

)
with ε′′p = ε′p/2

p−1 which allows us to

use (22) again.
Now turning to (21) we have, using Cp−1 ∼ 4p−1/

√
πp3,

εp =
2Cp−1p!

2p(2p+ 1)p
∼ 1

pep
√

2e
.

To estimate the second product in (21), observe that

φ2 = φ1Qp(1) = Cp−14p
(

2p− 1

p

)
= 4p(2p− 1)C2

p−1.

the electronic journal of combinatorics 20(4) (2013), #P30 16

Thus we obtain

ε′′p =
φ2(p!)2

22p(2p+ 1)2p2p−1
=

(2p− 1)2p−1

p

(
2Cp−1p!

2p(2p+ 1)p

)2

∼ 2p

pe2p
= o

(
1

pep

)
.

This implies ap = 1 +O(1/(pep)) which completes the proof.

5 Closed lambda-terms

So far, we are unable to determine the asymptotic behaviour of λn. We will derive upper
and lower estimates and a recurrence relation which allows an efficient computation of λn.

5.1 Estimates for λn

The number of BCI(p)-terms is certainly a lower bound, but using rather crude and
elementary estimates a better bound can be obtained.

Theorem 22. The number λn of closed lambda-terms of size n satisfies for every ε > 0
and for sufficiently large n the inequalities

c1

(
4n

e log n

)n/2 √
log n

n
6 λn 6 c2

(
9(1 + ε)n

e log n

)n/2
(log n)n/(2 logn)

n3/2

where c1, c2 are some positive constants.

Proof. We determine the lower bound by counting particular lambda-terms of size n.
Take a binary tree with nf leaves and attach to its root a string of nu unary nodes.
Then connect the leaves to the unary nodes by pointers. Each such object is a closed
lambda-term and there are Cnf

n
nf
u such terms. Note that nu = n + 1 − 2nf . Hence we

obtain

λn >
n−1∑
nu=1

Cnf
n(n+1−nu)/2
u > Cñf

ñ(n+1−ñu)/2
u

where ñu and ñf are those values of nu and nf , respectively, where n
nf
u attains its maxi-

mum. The maximum is attained at ñu = n/W (en) where W (n) is Lambert’s W -function
defined implicitly by W (n)eW (n) = n. It is easy to show that

W (en) = log n− log log n+ 1 +O

(
log log n

log n

)
.

This implies
n

log n
6 ñu 6

n

log n− log log n
. (23)

the electronic journal of combinatorics 20(4) (2013), #P30 17

Hence we obtain

ñ
ñf
u >

(
n

log n

)ñf

=

(
n

log n

)(n+1−ñu)/2

>

(
n

log n

)(n/2)·(1−1/(logn−log logn))+1/2

=

(
n

log n

)n/2√
n

log n
exp

(
− n

2(log n− log log n)
(log n− log log n)

)
=

(
n

e log n

)n/2√
n

log n
.

The lower estimate now follows from Cr ∼ k14r/r3/2 (r → ∞) where k1 is some positive
constant.

For the upper estimate we construct a set of objects such that a proper subset cor-
responds to the set of all lambda-terms of size n. Take a Motzkin tree and add pointers
such that each leaf is connected to an arbitrary unary node. Clearly, each lambda-term
is generated in that way. But since leaf x might be bound to a unary node which is not
on the path from x to the root, we generate also enriched trees which do not represent
a lambda-term. Therefore we get the upper bound λn 6 Mn maxn

nf
u where Mn is the

number of Motzkin trees with n vertices. As above we have nu = n/W (en). Now (23)
implies that for sufficiently large n we have

n
nf
u 6

(
n

log n− log log n

)n
2 (1− 1

logn)

6

(
(1 + ε)n

log n

)n
2
(

n

log n

)− n
2 logn

=

(
(1 + ε)n

e log n

)n
2

exp

(
n log log n

2 log n

)
where we used log n/(1 + ε) 6 log n − log log n for sufficiently large n. Finally, the well
known fact Mr ∼ k23r/r3/2 (as r → ∞ and with some constant k2 > 0) completes the
proof.

Remark 23. If λ̄n is the number of closed lambda-terms where the sum of the number of
unary nodes and the number of binary nodes equals n (so leaves do not contribute to the
size), then David et al. [7] showed the following result for the growth rate of the counting
sequence: (

(4− ε)n
log n

)n−n/ logn

6 λ̄n 6

(
(12 + ε)n

log n

)n−n/3 logn

.

The underlying model is rather different from ours and so is the growth of the sequences.
However, there is a relation: the exponential growth rates of of λn and λ̃2

n appear to be
similar.

the electronic journal of combinatorics 20(4) (2013), #P30 18

5.2 A recurrence relation

Equation (11) immediately implies that λn satisfies the recurrence relation

λn = Mn−1 +
∑

`+q=n−1

λ`λq +
∑

16`6n−1

δn,`λ` (24)

where Mn = [zn]M(z, 1) is the number of Motzkin trees of size n and

δn,` = [zn−1−`]
1

(1− 2zM(z))`
=
∑
r>0

(
`− 1 + r

`− 1

)
ζn−`−1,r

with ζs,r := [zs](2zM(z))r. Note that ζs,r = 0 unless s > 2r and thus

δn,` =

b(n−`−1)/2c∑
r=0

(
`− 1 + r

`− 1

)
ζn−`−1,r.

By Lagrange inversion we obtain

ζs,r = 2r[zs−r]M(z)r = 2r
r

s− r
∑

a,b,c: b+2c=s−2r

(
s− r
a, b, c

)
which gives after a few computations

δn,` =


bn−`−1

2 c∑
t=0

t∑
r=0

r2r
(
`−1+r
r

)
(n− `− 2− r)!

t! (t− r)! (n− `− 1− 2 t)!
if 1 6 ` < n− 1,

1 if ` = n− 1.

(25)

Now, consider the inner sum and set bn,`,t :=
∑t

r=0

r2r(`−1+r
r)(n−`−2−r)!

t! (t−r)! (n−`−1−2 t)!
. This sum is

amenable to creative telescoping (see [21]) which yields a system of two recurrences of
order one for the multi-index sequence (bn,`,t)n,`,t>0:(

−`2 − 2nt− 2`t− `− n+ n2
)
bn,`,t +

(
2`t− 2n`+ 2`2 + 4`

)
bn,`+1,t

+
(
−4t2 − 2t+ 4nt− 4`t− n2 + 2n`− `+ n− `2

)
bn+1,`,t = 0

and

(2n− t− 2) (n− `− 2t− 2) (n− `− 2t− 1) b`,n,t − t (t+ 1) (n− `− t− 2) b`,n,t+1

− (n− `− 2t− 2)(n− `− 2t− 1) (n− `− 2t) b`,n+1,t = 0.

with the initial conditions given by the sum representation of bn,`,t. This system can be
solved explicitly and we get

bn,`,t =
2`

t
· Γ (n− `− 2) 2F1(−t+ 1, `+ 1;−n+ `+ 3; 2)

Γ (t)2 Γ (n− `− 2t)

the electronic journal of combinatorics 20(4) (2013), #P30 19

where 2F1 denotes the Gauss hypergeometric function defined by

2F1(a, b; c; z) =
∑
k>0

(a)k(b)kz
k

(c)kk!
if |z| < 1 or |z| = 1 and <(c− a− b) > 0,

where (a)k denotes the falling factorial (a)k = a(a− 1) · · · (a− k + 1). There are several
continuation formulas to other domains of the complex plane. In our case one could for
instance use

2F1(a, b; c; z) =
Γ(b− a)Γ(c)(−z)−a

Γ(b)Γ(c− a)

∑
k>0

(a)k(a− c+ 1)kz
−k

(a− b+ 1)kk!

+
Γ(a− b)Γ(c)(−z)−b

Γ(a)Γ(c− b)
∑
k>0

(b)k(b− c+ 1)kz
−k

(b− a+ 1)kk!
if |z| > 1 and a− b /∈ Z,

but the important issue here is not the particular representation but rather the recurrence
relations satisfied by 2F1(a, b; c; z) (see e.g. [10] for further reading). Indeed these prop-
erties make it useful in computer algebra systems. Now, using creative telescoping again,

this time for δn,` =
∑bn−`−1

2 c
t=0 bn,`,t, we can also obtain a system of two D-finite recurrences

for δn,` (fully automatically with computer algebra packages):

(n− `) (n+ 1− `) (n− 2`− 2) δn+2,` − (n− `)
(
2n2 − 6n`− 5n+ 2`2 + 3`+ 1

)
δn+1,`

− (n− 1)
(
3n2 − 2n`+ n− `2 − 9`− 8

)
δn,` + 20 (n− 1) ` (`+ 1) δn,`+2

+ 2 (n− 1) (5n− 9`− 12) `δn,`+1 = 0

and

(n− `) (`− n− 1) δn+2,` + (n− `) (2n− `) δn+1,` − ` (n− 1) δn+1,`+1

− 4` (n− 1) δn,`+1 (n− 1) + (3n− 2`+ 1) δn,` = 0 (26)

with initial conditions δn,n = 0, δn,n−1 = 1, δn,n−2 = 0 for n > 2. Unfortunately, this equa-
tion seems not to admit an explicit solution in terms of classical special functions. Nev-
ertheless, there exist powerful computer algebra methods for D-finite recurrences which
are implemented in standard Maple packages, for instance. By means of these methods
it is possible to use such (at first sight complicated looking) expressions like (26) for a
very efficient computation of the values δn,` (see e.g. [4]). Experiments on a 1.5 GHz
notebook using Maple showed that the first 1000 terms of (λn)n>1 can be computed in
a few seconds. This was not possible with other approaches like for instance using the
functional equation of the generating function which was given in [3].

6 Conclusion and outlook

The motivation for our analysis was the enumeration of closed lambda-terms. Since
the problem seems hard, we treated the subclass of BCI(p)-terms which imposes quite

the electronic journal of combinatorics 20(4) (2013), #P30 20

a restriction on the degrees of freedom in binding variables by quantifiers. Thus we
expected the set of BCI(p)-terms to be small in comparison to the set of closed lambda-
terms. Our results verify and quantify this. Moreover, they show that the restriction
is weaker than bounding the unary height, i.e., the maximal number of unary nodes on
a root-to-leaf path. Indeed, if the unary height is bounded by L, then the asymptotic
number of terms of size n is in general Cn−3/2ρn; i.e. the asymptotic behaviour is like
that of the number of Motzkin trees. Only for particular values of L, the asymptotic
behaviour becomes Cn−5/4ρn (see [3]). This behaviour changes if the condition on the
unary height is replaced by a condition on the number of pointers per unary node (as in
the BCI(p) case) or dropped completely (closed lambda-terms). So these structures are
indeed different from tree-like structures; their counting sequences grow much faster than
that of Motzkin trees. So we can conclude that the enumeration of BCI(p)-terms is not
only of interest in its own right, but also more closely related to the original counting
problem than to tree enumeration.

Since the union of all the sets of BCK(p)-terms, p = 1, 2, . . . , is precisely the set of
closed lambda-terms, one might be tempted to approach the problem of determining the
asymptotic behaviour of λn via the number of BCK(p)-terms and letting p → ∞. For
performing such a limit we needed precise and uniform asymptotics for the number of
BCK(p)-terms. Unfortunately, the asymptotic computation of the number of BCK(p)-
terms turns out to be much more involved than that of the number of BCI(p)-terms. A
precise analysis of the BCK case is beyond the scope of this paper and will be the topic
of a forthcoming paper. Here we discuss only briefly how to attack this problem.

The differential equation (9) implies a recurrence relation for the coefficients of Fp(z).
This can be linearized in a similar fashion as we did in the BCI case (essentially Lem-
mas 12-17). The next step will be showing upper and lower estimates for fn := [zn]Fp(z).
This enables us to identify the asymptotically dominant term in the recursion which yields
a rough information on the growth of fn.

The task is now to find the asymptotic behaviour of the correct solution. The growth
rate of the coefficients tells us that the Borel transform F̂p(z) of the generating function

Fp(z) must grow exponentially in z. This indicates that F̂p(z) is Hayman-admissible (cf.
[14]) and therefore a saddle point analysis applies and eventually yields the asymptotic
number of BCK(p)-terms.

When studying not only the size but further properties of BCK(p)-terms by means of
multivariate generating functions, the above remarks suggest that these functions will be
(multivariate) Hayman-admissible such that a multivariate saddle point method applies
(cf. [11]).

As in the case of closed lambda-terms, the functional equation (9) corresponds to a
recurrence relation of the form (24). The only difference is that δn,l in (25) has to be
replaced by

δn,l =


min(p,bn−l−1

2 c)∑
t=0

t∑
r=0

r2r
(
l−1+r
r

)
(n− l − 2− r)!

t! (t− r)! (n− l − 1− 2 t)!
if 1 6 l < n− 1,

1 if l = n− 1.

the electronic journal of combinatorics 20(4) (2013), #P30 21

Similarly as before, this gives rise to a system of D-finite recursions.

Acknowledgement. We thank Marek Zaionc for triggering our interest in the subject
and for numerous fruitful discussions about it. Furthermore we thank an anonymous
referee for the careful reading of the manuscript and pointing out several imprecisions.

References

[1] Henk P. Barendregt. The lambda calculus. Its syntax and semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, revised edition, 1984.

[2] O. Bodini, D. Gardy, and A. Jacquot. Asymptotics and random sampling for BCI and
BCK lambda terms. Theor. Comput. Sci., 2013. doi:10.1016/j.tcs.2013.01.008.

[3] Olivier Bodini, Danièle Gardy, and Bernhard Gittenberger. Lambda-terms of
bounded unary height. In ANALCO, workshop on ANALytic COmbinatorics, San
Francisco (USA), January 2011.

[4] Alin Bostan, Frédéric Chyzak, Bruno Salvy, Grégoire Lecerf, and Éric Schost. Dif-
ferential equations for algebraic functions. In ISSAC 2007, pages 25–32. ACM, New
York, 2007.

[5] Alonzo Church. An Unsolvable Problem of Elementary Number Theory. Amer. J.
Math., 58(2):345–363, 1936.

[6] Louis Comtet. Advanced combinatorics. D. Reidel Publishing Co., Dordrecht, en-
larged edition, 1974.

[7] René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume
Theyssier, and Marek Zaionc. Asymptotically almost all λ-terms are strongly nor-
malizing. Log. Methods Comput. Sci., 9(1):1:02, 30, 2013.

[8] Ph. de Groote, editor. The Curry-Howard isomorphism, volume 8 of Cahiers du
Centre de Logique [Reports of the Center of Logic]. Academia-Erasme, Louvain,
1995.

[9] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Uni-
versity Press, Cambridge, 2009.

[10] George Gasper and Mizan Rahman. Basic hypergeometric series, volume 96 of En-
cyclopedia of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, second edition, 2004. With a foreword by Richard Askey.

[11] Bernhard Gittenberger and Johannes Mandlburger. Hayman admissible functions in
several variables. Electron. J. Combin., 13(1):Research Paper 106, 29 pp. (electronic),
2006.

[12] Katarzyna Grygiel, Pawe lIdziak, and Marek Zaionc. How big is BCI fragment of
BCK logic. J. Logic Comput., 23(3):673–691, 2013.

the electronic journal of combinatorics 20(4) (2013), #P30 22

http://dx.doi.org/10.1016/j.tcs.2013.01.008

[13] Katarzyna Grygiel and Pierre Lescanne. Counting and generating lambda terms. J.
Functional Programming, 23(5): 594–628, 2013.

[14] Walter K. Hayman. A generalisation of Stirling’s formula. J. Reine Angew. Math.,
196:67–95, 1956.

[15] Yasuyuki Imai and Kiyoshi Iséki. Corrections to: “On axiom systems of propositional
calculi. I”. Proc. Japan Acad., 41:669, 1965.

[16] Yasuyuki Imai and Kiyoshi Iséki. On axiom systems of propositional calculi I. Proc.
Japan Acad., 41:436–439, 1965.

[17] Kiyoshi Iséki and Shôtarô Tanaka. An introduction to the theory of BCK-algebras.
Math. Japon., 23(1):1–26, 1978/79.

[18] Stephen C. Kleene. A Theory of Positive Integers in Formal Logic. Part I. Amer. J.
Math., 57(1):153–173, 1935.

[19] Stephen C. Kleene. A Theory of Positive Integers in Formal Logic. Part II. Amer.
J. Math., 57(2):219–244, 1935.

[20] Morten Heine Sørensen and Pawe l Urzyczyn. Lectures on the Curry-Howard isomor-
phism. Amsterdam: Elsevier, 2006.

[21] Doron Zeilberger. The method of creative telescoping. J. Symbolic Comput.,
11(3):195–204, 1991.

the electronic journal of combinatorics 20(4) (2013), #P30 23

	Introduction
	Notation and basic facts
	The generating functions for various classes of closed lambda-terms
	The asymptotic number of BCI(p)-terms
	Closed lambda-terms
	Estimates for n
	A recurrence relation

	Conclusion and outlook

