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Abstract

In 2003, Ciucu presented a unified way to enumerate tilings of lattice regions
by using a certain Reduction Theorem (J. Algebraic Combin., 2003). In this paper
we continue this line of work by investigating new families of lattice regions whose
tilings are enumerated by perfect powers or products of several perfect powers.
We prove a multi-parameter generalization of Bo-Yin Yang’s theorem on fortresses
(Ph.D. thesis, MIT, 1991). On the square lattice with zigzag paths, we consider
two particular families of regions whose numbers of tilings are always a power of 3
or twice a power of 3. The latter result provides a new proof for a conjecture of
Matt Blum first proved by Ciucu. We also consider several new lattices obtained by
periodically applying two simple subgraph replacement rules to the square lattice.
On some of those lattices, we get new families of regions whose numbers of tilings
are given by products of several perfect powers. In addition, we prove a simple
product formula for the number of tilings of a certain family of regions on a variant
of the triangular lattice.

Keywords: Aztec diamonds; fortresses; lattice regions; perfect matchings; tilings

1 Introduction

Given a lattice in the plane, a (lattice) region is a finite connected union of elementary
regions of that lattice. A tile is the union of any two elementary regions sharing an edge.
A tiling of the region R is a covering of R by tiles so that there are no gaps or overlaps.
We denote by T(R) the number of tilings of region R. The dual graph of a region R is
the graph whose vertices are the elementary regions of R, and whose edges connect two
elementary regions precisely when they share an edge.
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We consider only undirected finite graphs without loops, however, multiple edges are
allowed. A perfect matching of a graph G is a collection of edges such that each vertex
of G is incident to precisely one edge in the collection. If the edges of G have weights
on them, M(G) denotes the sum of the weights of all perfect matchings of GG, where the
weight of a perfect matching is the product of the weights on its constituent edges. We
call M(G) the matching generating function of G. One easily sees that when G has all
edges weighted by 1, M(G) is exactly the number of perfect matchings of G.

By a well-known bijection between the tilings of a region R and the perfect matchings
of its dual graph G, we have T(R) = M(G). In the early 1990’s, Elkies, Kuperberg,

Figure 1: The Aztec diamond region of order 4 (left) and its dual graph (after rotated
45°), the Aztec diamond graph of order 4.

Larsen and Propp [5] considered a family of simple regions on the square lattice called
Aztec diamonds (see Figure 1 for an example), and proved that the number of domino
tilings of the Aztec diamond of order n is 27(*+1/2,

A large body of related work followed (see for example [2], [4], [6], [8]), centered on
families of lattice regions whose tilings are enumerated by perfect powers or near per-
fect powers. In 2003, Ciucu [2] presented an approach that allows finding the number of
tilings of such families of regions in a unified way. In particular, to find the number of
tilings of a region, we find the number of perfect matchings of its dual graph. Then we
deform the dual graph into a weighted Aztec diamond graph by using some simple sub-
graph replacement rules, and find matching generating function of the resulting weighted
graph. We encode the weights of edges in the weighted Aztec diamond graph by a certain
matrix, and then apply repeatedly a naturally arising operator d to this matrix. Finally,
after several applications of d, we get a new matrix of a same type as the original one.
This together with Reduction Theorem (called Generalized Domino-Shuffling in [7]) yield
simple recurrences that determine the matching generating function.

In Section 3, we use this approach to prove a new multi-parameter generalization of
Bo-Yin Yang’s theorem [8] on fortress regions. We show that the number tilings of a
generalized fortress is always a product of a power of 2 and a power of 5 (see Theorem
6). We also prove a new counterpart of Stanley’s multi-parameter generalization (see [1])
of Aztec diamond theorem [5].

Section 4 investigates two new families of regions on the square lattice with every
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second zigzag path drawn in. We prove that the numbers of tilings in this case are either
a power of 3 or twice a power of 3. Ciucu [2] also proved a conjecture of Blum that the
number of perfect matchings of a certain family of subgraphs of the square lattice is a
power of 3 or twice a power of 3. The two formulas are nearly identical. It turns out that
one can establish a direct connection between them. This provides an unexpected new
proof for the conjecture.

We give a unified way to create new lattices from the square lattice in Section 5.
We consider two special subgraph replacement rules for the nodes of the square lattice.
Periodically applying these rules gives us a large number of new lattices. On those lattices,
we investigate several families of regions that are similar to Aztec diamonds or fortresses.
In some cases, their numbers of tilings are given by products of several perfect powers.

Finally in Section 6, we create a simple variant of the standard triangular lattice by
periodically removing some lattice segments. We consider a “rhombus-shaped” region on
the resulting lattice that has the number of tilings given by a product of a power of 2 and
a power of 3.

2 Preliminary results and Reduction Theorem

Before going to the statement of Reduction Theorem, we employ several basic preliminary
results stated below.

A forced edge of a graph is an edge contained in every perfect matching of G. Assume
that G is a weighted graph with weight function wt on its edges, and G’ is obtained from
G by removing forced edges e, ..., e,, and removing the vertices incident to these forced
edges. Then one clearly has

n

M(G) = M(G") [ ] wt(es). (1)

i=1

From now on, whenever we remove some forced edges, we remove also the vertices incident

to them.
v v’ v’
——
X
H K H K

Figure 2: Vertex splitting.

Lemma 1 (Vertex-splitting Lemma). Let G be a graph, v be a vertex of it, and denote the
set of neighbors of v by N(v). For an arbitrary partition N(v) = HUK, let G’ be the graph
obtained from G\ v by including three new vertices v', v” and x so that N(v') = HU{x},
N@”) =K U{z}, and N(x) = {v',v"} (see Figure 2). Then M(G) = M(G").
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Lemma 2 (Edge-replacing Lemma). Let G be a weighted graph with weight function wt
on its edges, u and v be two distinct vertices of G. Assume that e; and es are two edges
connecting u and v. Let G’ be the graph obtained from G by replacing two edges ey and
ea by a new edge of weight wt(ey) + wt(ez) that connects u and v. Then M(G) = M(G").

Lemma 3 (Star Lemma). Let G be a weighted graph, and let v be a vertex of G. Let G’
be the graph obtained from G by multiplying the weights of all edges that are incident to
v byt>0. Then M(G") =t M(G).

Part (a) of the following result is a generalization due to Propp of the “urban renewal”
trick first observed by Kuperberg. Parts (b) and (c¢) are due to Ciucu (see Lemma 2.6 in

[5])-

D
o
e o€
NN
_ .'."
A = XzHyt B

Figure 3: Urban renewal.

Lemma 4 (Spider Lemma). (a) Let G' be a weighted graph containing the subgraph K
shown on the left in Figure 3 (the labels indicate weights, unlabeled edges have weight 1).
Suppose in addition that the four inner black vertices in the subgraph K, different from
A, B,C, D, have no neighbors outside K. Let G’ be the graph obtained from G by replacing
K by the graph K shown on right in Figure 3, where the dashed lines indicate new edges,
weighted as shown. Then M(G) = (xz + yt) M(G').

D D
yi2. s w2 V2 s x2
e M *cC . N
A « y . Ao | »C — A, » C
B 1/(2X) “--.A.A./ﬂ:"‘ lj(zy) B ]-/(ZX) .A.‘u.‘..",,,"' jJ2
B B
(@ (b)

Figure 4: Two variants of urban renewal.
(b) Consider the above local replacement operation when K and K are graphs shown

in Figure 4(a) with the indicated weights (in particular, K’ has a new vertex D that is
incident only to A and C'). Then M(G) = 2M(G").
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(c) The statement of part (b) is also true when K and K are the graphs indicated in
Figure 4(b) (in this case G' has two new vertices C and D that are adjacent only to one
another and to B and A, respectively).

The centers of the edges of the Aztec diamond graph of order n, denoted by AD,,, form
an 2n X 2n array. The entries of this array are the weights of these edges. We call this
2n x 2n array the weight matriz of the weighted Aztec diamond AD,,. We are interested
in the case of periodic weight matrix.

Let A be an k x [ matrix with & and [ even. Place a copy of A in the upper left
corner of the weight matrix and fill in the rest of the array periodically with period A (i.e.
translate A to the right [ units at a time and down k units at a time; if the size of the
weight matrix is not a multiple of £ or [, some of these translates will fit only partially
in the array). Define the weight wt, on the edges of AD, by assigning each edge the
corresponding entry of A in the array described above. In this case, A is called the weight
pattern of the weighted Aztec diamond. Denote by AD,,(wt4) the Aztec diamond graph
of order n with the weight pattern A.

The following useful lemma was first proved by Ciucu.

Lemma 5. (a) (Lemma 4.4 in [2]) Consider the Aztec Diamond graph of order n with
2n x 2n weight matriz D. We divide D into n + 1 parts: the first column (resp., row),
the last column (resp., row), and 2k-th and (2k + 1)-th columns (resp., rows), for k =
1,...,n—1. D" is the matriz obtained from D by multiplying all entries of some part by
a positive number t > 0, then

M(AD,(wtp)) = " M(AD, (wtp)). (2)

(b) (Lemma 6.2 in [2]) We now divide matriz D above into n parts, so that the i-th
part consists of the (2i — 1)-th and 2i-th columns (resp., rows), fori=1,2,...,n. D" is
the matriz obtained from D by multiplying all entries of some part by a positive number
t, then

M(AD, (wtp)) =t " M(AD, (wtpr)). (3)

We consider a consequence of the Star Lemma 3.

Lemma 6. Consider the Aztec diamond graph of order n with 2n x 2n weight matrix
D = (mij)i1<ij<on- We divide the matriz D into (n + 1) - n blocks M;; defined as follows.

1. Ml:j = [ml,Zj—l ml,zj} 5 fOT’j = 17 Lo, ny

Mmoi—225j—1 12;—22; . .
2. M;; = e TEA fori=2,...,nand j=1,2,...,n;
Mmoi—1,25—1 M2i—1.25

3. Mn+1,j = [mgn’gj_l mgn’gj}, fO’l"j = 1, Lo, n.

Let D" be the matriz obtained from D by multiplying all entries of some block M, ; by
t >0, then
M(AD, (wtp)) =t M(AD,,(wtp)). (4)
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Figure 5: The edges of AD, are partitioned into 42 cells.

For a k x [ matrix A with k£ and [ even we define a new k x [ matrix d(A) as follows.
Divide matrix A into 2 x 2 blocks
T w
L/ Z} ’

and assume zz + yw # 0 for all such blocks. Replace each such block by the following
block

z/(xz +yw) y/(xz + yw)

{w/(:cz +yw) z/(zz+ yw)}

We get a new k£ x [ matrix, denoted by B. Define d(A) to be the k x | matrix obtained
from B by cyclically shifting its columns one unit up and cyclically shifting the rows of
resulting matrix one unit left.

The edges of the Aztec diamond graph AD,, can be partitioned into n? 4-cycles, which
we call the cells' of the graph, such that each vertex is contained in at most two cells
(see the shaded diamonds in Figure 5). The Aztec diamond graph AD,, has n rows and
n columns of cells. If the cell ¢ has edges weighted by z, y, z, t (in cyclic order), then the
cell-factor A(c) of ¢ is defined by setting A(c) := zz + yt.

Assume that the Aztec diamond graph of order 0 has matching generating function 1.
We have the following Reduction Theorem due to Propp. [7]

Theorem 7 (Reduction Theorem). Assume that the cells of AD,(wta) have nonzero
cell-factors. Then

M(ADn(WtA)) = M(Aanl(Wtd(A))) H A(C)> (5)

where the product is taken over all cells ¢ of AD, (wta).

'The definition of cells and cell-factors above has been used for a more general family of graphs, named
cellular graphs. One can see [1], [2] and [3] for more details.
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Figure 6: The fortress of order 7 on two different lattices.

With the assumption that all cell-factors are nonzero in ADn_i(Wtd(i)( A)), for i =
0,1,2,...,n, we can apply Theorem 7 consecutively until we get down the Aztec dia-
mond of order 0. In particular cases, the weight pattern repeats or changes in a simple
predictable way after a small number of successive applications. This provides some re-
currences, and the matching generating function of the original weighted Aztec diamond
can be obtained recursively.

3 Generalization of fortress regions

Yang [8] showed that the number of tilings of a fortress (called Penta-Aztec-Diamond in
8]; see the left picture in Figure 6 for an example) on the square lattice with all diagonals
drawn in is always a power of 5 or twice a power of 5. In particular, the number of tilings
of the fortress of order n, denoted by Fj,, is obtained by the following theorem.

Theorem 8 (Theorem 3.1. in [8]).

5~ ifn = 2k;
T(F,) =  52kk+1) if n =4k + 1;
2. 52REE=1)if i =4k — 1.

A fortress (after rotated 45°) can be viewed also as a region on the square lattice with
all second diagonals drawn in. The vertices of the fortress of order n are now the vertices
of a diamond of side-length nv/2 (see the right picture in Figure 6).

We consider next a generalization of the fortresses defined as follows. Assume d, ds,

., d,, are positive integers. Draw in all second southwest-to-northeast diagonals. Then
draw in m + 1 southeast-to-northwest diagonals, with the distances between successive
ones, starting from bottom, being div/2, dov/2, ..., dnV/2. Assume in addition that each
of the m + 1 southeast-to-northwest diagonals intersects each of the second southwest-to-
northeast diagonals at a lattice point of the square lattice.
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Pick two lattice points A and B on the bottom southeast-to-northwest diagonal drawn
in, and pick two lattice points C' and D on the top southeast-to-northwest diagonal drawn
in, so that A, B, C, D are four vertices of a diamond of side-length (d; +ds+ ...+ dm)\/§
in cyclic order.

Color the resulting dissection of the square lattice black and white so that any two
elementary regions that share an edge have opposite color. Without loss of generality,
we assume that the triangular elementary region, which has two edges resting on the
segments AD and AC, is white.

Start from A and take unit steps south, east or southeast so that for each step the
color of the elementary region on the left is white. This path ends when reaching B.
The described path from A to B is the southwestern boundary of the region. We get
the southeastern boundary by going from B to C' in similar fashion with unit steps
north, east or northeast so that the elementary region on the left is black for each step.
The northeastern boundary is obtained by reflecting the southeastern boundary about
the line passing A and C; and the northwestern boundary is obtained by reflecting the
southwestern boundary about the line passing A and C' (see Figure 7 for examples).

@ (b)

Figure 7: Two regions F'(2,3,2) (a) and F(2,1,3,2) (b).

Denote by F(dy,ds,...,dy,) the region bordered by four lattice paths above; we call it
a generalized fortress. When dy = dy = ... = d,, = 1, we get the original fortress of order
m.

We are also interested in a variant of the generalized fortress F'(dy, ..., d,,) defined as
follows. Repeat the whole process in the definition of F(dy,...,d,,) above, with the one
change that on the southwestern boundary we make the switch from the rule “white on
left” to “black on left”; and on the southeastern boundary we make the switch from the
rule “black on left” to “white on left”. Denote by F(dy,ds,...,d,) the resulting region
(see Figure 8 for examples).

The number of tilings of the generalized fortresses is given by the following theorem.
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@ (b)

Figure 8: Two regions F/(2,3,2) (a) and F(2,1,3,2) (b).

Theorem 9. Let dy, ..., d,, be positive integers. Let s; :=dy+da+...+d; (so:=0) and
S= 370 min(sy, s, — 85), for j=1,2,...,m.
(a) If dy + - -+ + d,, = 2k, then
T(F(dy,ds, ... dw)) = T(F(dy, dy, ... dy)) = 222555 (6)

(b) If dy + -+ -+ dy, = 2k + 1, then

T(F(dy,dy, ... dy)) =2°57%, (7)
T(F(dy,ds, . .., dy)) = 23k —45-a 58 (8)
where
k(2K +2) —28 if 595 < k +1 < 89541 for some j;
| k(2k4+2)+1—-2S  otherwise.

Before going to the proof of Theorem 9, we present a number of results about weighted
Aztec diamonds with multi-parameter weight pattern, which we will employ in the proof
of Theorem 9.

Stanley found that some periodic weights of the Aztec diamond give a simple product
formula for the matching generating function (see [1] or Section 2.3 in [8]). Recall that
we denote by AD, (wtg) the Aztec diamond graph of order n with weight pattern S.

Theorem 10 (Stanley).

M(AD,(wts)) = [ (zaw; +wity), (9)

I<igysn
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where
S — Ty Y1 X2 Y2 ... Tp-1 Yn-1 Tn Yn
tl w1 tQ wo ... tn,1 Wp—1 tn W,

There are several related results due to B.-Y. Yang [8], and due to Ciucu (Corollary
4.3 and 5.5 in [2]).

In the spirit of Stanley’s formula (9), we prove next a simple product formula for the
matching generating function of the Aztec diamond with weight pattern

aq bl (05} b2 0 s | bn,1 Qp, bn
A bl (05} bg o s | bn,1 Qp, bn
A - ’
C1 d1 Co dg .. Cp— dn—l Cp, dn
C1 d1 Co dg ... Cp—1 dn—l Cp dn
where a;, b;, ¢; and d; are positive numbers, for i = 1,2...,n.

Theorem 11. (a) If n = 2k, then

M(AD,,(wt,)) =2F¢+D) H(aibn—i—l-lcidn—i-&-l)k_i_‘—l

(b) If n =2k + 1, then

M(AD,(wta)) =0+ 1_[(Clz‘bn—i-s-1)k_H_2 (Cidy_ipr)*!

k
X H (diaiﬂ + bici-i-l)' (11)

Proof. One easily sees that

(2h) 1/2a) 1/@2h) 1/(2a) ... 1/(2b) 1/(2a)
ao — [1RD) 1/(2e) 1(2d) V(2e)) .. 1/2d,) 1)
1/(2dy) 1/(2¢2) 1/(2dy) 1/(2a3) 1/(2d,) 1/(2¢1)|’
1/(2b1) 1/(2a2) 1/(2by) 1/(2a3) 1/(2b,) 1/(2a1)
and
201 209 209 o 20, 20, 201
dP(A) = |48 482 %57 Yo ser %6 |
A1 czly deAa T i An dpAn oA
26, 36, 36, 26, 36, 26,
di1Aq c3Ao doAo T c1Ay, dnAn coAq
where A; = a;11d; + biciv1 and ©; = a;1b;ci1d;, for i = 1,2, ... n (the subscripts here

are interpreted modulo n).
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(a) Suppose that n = 2k, for some positive integer k. The cells in the i-th column
of the weighted Aztec diamond AD,(wt4) have cell-factors either 2a;b; or 2¢;d;, for i =
1,2,...,n. Apply Reduction Theorem 7, we have

n

M(AD,(wta)) = M(AD,_1(wtqa))) | [ (2aibi)*(2c:d;)*. (12)
i=1
The cells in the i-th column of the weighted Aztec diamond AD,,_;(wty4)) have cell-
factors 4% ,fort=1,2,...,n — 1. Thus, by the Reduction Theorem again, we obtain
n—1 A n—1
M(AD,,_1(wtqca))) = M(ADn_Q(Wtd(z)(A))) g (4_6)2) . (13)

Divide the weight matrix of the Aztec diamond AD,, o(wt 40 A)) into n—1 parts consisting
of columns as in Lemma 5(a). Multiply all entries in the ¢-th part (from left to right)

by 2 T ,n — 1. We get the weight matrix of AD,,_o(wtp), where B is the
4x2(n— 2) matrlx deﬁned by
]./b1 ]./CL3 ]./bQ ]./CL4 ]./bn_g ]./Cln
B — 1/b1 1/(13 1/b2 1/&4 1/bn—2 1/6Ln
T 1/d1 ]_/03 1/d2 ]_/64 1/dn—2 1/Cn
1/d1 1/63 1/d2 1/C4 1/dn—2 1/Cn
Therefore, Lemma 5(a) implies
n—1 2@ n—2
M(ADy—2(Wtge(4y)) = M(ADp_2(Wtp)) 11 ( A, ) (14)
We get the following recurrence by applying three equalities (12), (13) and (14)
(AD WtA kypk k gk _lAi
2" by cld; —. 1

Next, we apply the recurrence (15) to the weighted Aztec diamond AD,,_o(wtp) and

obtain
n—2 1 n-3 1 1
M<ADn—2(WtB)) _ 2n—2 H ( 1 >k ' ) H Citabit1 + it2dit1
M(AD,_4(wtc)) L2\ biaisadiciis T

i=1 bivi1ai42diticite

n—2 1 k—1 n—2
— o2 S 71 A 1
H (biai+2dici+2> Zl_! 7 ( 6)

where
a3 by as by ... an_o b,_a
_|as bg ay b4 B ¢ ) ) bn72
C - )
C3 d3 Cy d4 Ce Cn—9 dn_g
C3 d3 Cyq d4 oo Cp—9 dn_g
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i.e. C' is obtained from the matrix A by removing the first and the last four columns.
Two equalities (15) and (16) imply

M(AD,,(wta))

=22""2(qyb,c1d,,)* (agh,_1cad, 1)t

n—1 n—2
X HA’HAZ (17)
i=1 1=2

We now consider an operator ¢ defined as follows. Let N be an m x n matrix with
n > 8, then ¢(N) is the m x (n — 8) matrix obtained from N by removing its first four
columns and its last four columns. In particular, p(A) = C.

If k = 2q, we apply the recurrence (17) ¢ times and obtain

e

n—j
A (18)

i=j

k

2q(2q+1) i1
M(ADy,(wtn)) = 2240 H Aibp—i+1Cidn—it1) H
j=1

i=1

In the case k = 2¢q + 1, we apply also the recurrence (17) ¢ times and get

k—1 k—1n—j
M(ADygr2(Wta)) o
=2 9(2+3) (azbn i lcz n—i 1 k B AZ) (19)
M(AD; (Wt (a)) Hl a a JHl ZH

where
ar by a1 bp
$D(A) = | % b k1 brtr
ke dr Cryr drya
ek dr cry1 dipga

Moreover, by Reduction Theorem, we get easily that

M(ADQ(Wt¢(q)(A))) = 22(akbk+1ckdk+1)(ak+1dk + bkckJrl). (20)
Therefore,
k k n—j
M<AD4Q+2<WtA)) = 22q(2q+3)+ H(albn z+1cz n— z+1 k " H A (21>
Jj=11i=j

Finally, the equalities (18) and (21) yield (10).

(b) Suppose that n = 2k + 1, for some nonnegative integer k. This case can be treated
similarly to the case of even n. Two equations (13) and (14) are also true in this case.
The exponents of 2a;b; and 2¢;d; in (12) are now k + 1 and k, respectively (as opposed to
both being k when n = 2k). Thus, we have

M(AD,(w64)) = M(ADy - (whaay)) [ ]2+ 2eidi)* (22)
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By (22), (13) and (14), we get the following equation (instead of (15) when n = 2k)

M(AD,( th y A,
2n +1bk+1 kdkz . _l 2

We apply (23) twice and obtain an equality (instead of (17) when n = 2k) as follows.

M(AD,,(wta))
M(ADy—4(Wtg(a))

:22n—2(albn)k+l (agbn_l)k(cldn)k(@dn—l)k_l

n—1 n—2
i=1 i=2
Finally, we get (11) by applying repeatedly (24). O

Remark 12. Ciucu [2]| considered a similar multi-parameter weight pattern

Ty T2 ... Top-1 T2
A — Yr Y2 .. Yoan—-1 Yon ’

i Y2 oo Yon—1 Yon

Ty Tz ... Top-1 T2

and got two recurrences similar to (15) and (23) (see Theorem 5.1 in [2]). However, he did
not give an explicit product formula for the matching generating function of AD, (wt /).

Suppose di, ds, ..., dy, are positive integers, whose sum is » ", d; = n. Consider a
4 x 2n weight pattern Dg,p := Dgy(ds, ..., d,,) consisting of m blocks D; of size 4 x 2d;
from left to right, for ¢ = 1,...,m, where blocks D;’s are defined by setting

a a a a a a bbb ... bbb
a a a a a a b b b b b b
Daj1:= b b b b b b’ and Dy; = a a a a a a
b b b b b b a a a a a a

Corollary 13. Assume that S is defined as in Theorem 9.
(a) If n = 2k, then

M(AD,(wtp,,)) = (2ab)* D=5 (a2 + p?)3. (25)
(b) If n =2k + 1, then
M(ADn(WtDM)) — 3. o(2k+1)(k+1)—8 ; 2k(k+1)+0-5
« b2k(k+1)+(2k+1)7975<a2 + b2)S, (26)

where 0 =" .. d;, taken over all odd indices i € {1,2,...,m},
and where

= {a if s95 < k+1 < 89541 for some j;

b otherwise.
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Proof. This is a special case of Theorem 11 when a; = b; = a and ¢; = d; = b if
Soj < i < Sgj41, for some 0 < j < (m —1)/2; and a; = b; = b and ¢; = d; = a otherwise.

(a) If n = 2k, then from Theorem 11(a)

k n—j
M(ADn(WtD , k(k+1) H 2b2 k—i+1 HHAH (27)
Jj=11i=j
because a;c; = b;d; = ab, for t = 1,2, ..., n. One can check that

_Ja®+0* ifi=s,, for some 1 <t < m;
") 2ab otherwise.

Therefore, we get

k n—j
[TI]A: = ab)¥ 2= Y0 (a? 4+ 1) Zim V), (28)

Jj=li=j
where W(7) is the number of indices i so that j < s; < n — j. Moreover,

k

m k
Z\Ij Zzl{ﬂ& <n—j) (i Zzl ti<si<n=} (1)

j=1 7=1 =1 =1 j=1
= Z min(si, n — Sz’) - S, (29>
=1

where 1«5, <n—j}(¢) is the indicator function of the event {j < s; <n — j}; ie. it is 1 if
Jj < s;<n—j,and is 0 otherwise. This implies (25).

(b) Assume that n = 2k+1. We can get (26) from Theorem 11(b) by arguing similarly
to part (a). O

R e

R O AR O VIR VO 0.0,

(@ (b) (© (d)

Figure 9: Cities of order 1, 2, 3 and 4 (from the left). The extended cities are on the
upper row, and normal cities are on the lower row.

The next two families of graphs will play the key role in investigating the structure of
the dual graph of a generalized fortress.
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A regular city of order k is a row of k adjacent diamonds. An extended city of order k
is a regular city of order k with two horizontal and 2k vertical extended edges (see Figure
9 for examples).

Denote by G(dy,...,d,,) the dual graph of F(dy,...,d,). The graph G(di,...,dy)
(after rotated 45°) consists of mn cities. Precisely, it consists of n rows, and each row has
m cities. Regular and extended cities of orders dy, ds, . . ., d,, appear alternatively on each
row from left to right. All odd rows (ordered from the top) start with an extended city on
the left, and all even rows start with a regular city (illustrated by the left picture in Figure
10). Denote by G(dy, ..., d,,) the dual graph of the region F(dy,...,d,,). The structures
of G(di,...,dy) and G(di,...,d,) are (almost) the same, the only difference is that the
odd rows now start by a regular city, and the even rows now start by an extended city.

O
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Figure 10: The graph G(2, 3, 2) after rotated 45° (left), and the graph AD(2,3,2) (right).
The dotted edges have weight 1/2.

We have the following subgraph replacement similar to urban renewal (see Lemma

A(a)).

A A A,
AL A, A,

— > O & & 0

C - “ D
¢ D o o o
B B
B, B, B = ? 3

Figure 11: The replacement in Lemma 14 for the cities of order 3. Dotted edges have
weight 1/(2x).
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Lemma 14. If graph G has a subgraph K isomorphic to an extended city of order k whose
edges have weight x > 0. Assume that only the 2k + 2 endpoints of extended edges of K
may have neighbors outside K (illustrated by white vertices of the left graph in Figure 11,
for k = 3). Let G' be the graph obtained from G by replacing the extended city K by a
reqular city of order k whose edges are weighted by 1/(2x) (see the right graph in Figure
11; G' has k — 1 new black vertices that were not in G). Then M(G) = (222)* M(G").

Proof. First, apply Vertex-splitting Lemma 1 at k — 1 vertices of K that belong to two
diamonds, see the left picture in Figure 12. Apply Spider Lemma 4 to k diamond cells in
the resulting graph, we get G’. By Lemmas 1 and 4, M(G) = (22%)* M(G"). O

Figure 12: Illustrating the proof of Lemma 14. The weights of dotted edges are equal to

1/(22).

Proof of Theorem 9. Apply the replacement in Lemma 14 to each extended city in the
graph G(dy,...,d,,), we replace each of them by a regular city of the same order whose
edges are weighted by 1/2. The resulting graph is isomorphic to the weighted Aztec
diamond

AD(dy, ..., dy) == ADy(wtp, ),

where Dy, := D 1(dy,...,dy) is defined as in Corollary 13 (see the right picture in

Figure 10), and

M(G(dy, ... dy)) =2° M(AD(d,, ..., dy)) (30)

where C is the sum of the sizes of all extended cities in the graph G(dy,...,d,,). One
readily sees that C is also the number of cells of AD(dy, . ..,d,,) whose edges are weighted
by 1/2. Enumerate explicitly these cells we get

M(G(dy,...,dn)) on*/2 if n is even; (31)
M(AD(dy, ... dp)) | 20-0/24S8 7 2 daiin iy s 0dd.
Similarly,
M(G(dy, ..., dy)) B on*/2 if n is even; (32)
M(AD(dy,...,dy)) | 200024507 dai if gy is odd,
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where AD(dy, ..., dy) == AD,(wtp ,) and where D,y i= Dlé(dl, ..., dy,) is defined as
in the Corollary 13. ’

We get (6) from Corollary 13(a) (for @ = 1/2 and b = 1) and (31). We also get (7)
from Corollary 13(b) (for @ = 1/2 and b = 1) and (31). Finally, we deduce (8) from
Corollary 13(b) (for a = 1 and b = 1/2) and (32). O

A VN4

am” mPwva
Arvv aodr v o

Figure 13: All possible types of tiles in a generalized fortress.

Similarly to perfect matchings, tilings are allowed to carry weights, in which the weight
of a tiling is defined to be the product of the weights on its constituent tiles. The tiling
generating function of a region R, denoted by T(R), is the sum of the weights of all its
tilings. For example, consider the following weight assignment to the tiles of the region
F(dy,ds,...,dy). All the tiles on the top row of Figure 13 are weighted by 1, all tiles on
the middle row are weighted by 1/(2a), and all the tiles on the bottom row are weighted
by b, for some positive numbers a and b. Then apply the replacement in Lemma 14 to all
extended cities in the dual graph of the region (an edge in the dual graph has the same
weight as its corresponding tile in the region). We get a graph isomorphic to the weighted
Aztec diamond AD,,(wtp, ,), where D, is defined as in Corollary 13. Thus,

T(F(dy, da, ..., dyy)) (L) M(AD,(wip, ).

2a?

where C is the sum of the sizes of extended cities in the dual graph of F(dy,ds, ..., d,,)
(as in (30)). It implies that the tiling generating function of F'(dy, ds, ..., d,,) is a product
of several perfect powers.

4 The square lattice with zigzag paths

Consider the square lattice with horizontal zigzag paths drawn in (i.e., the bi-infinite paths
consist of unit steps going alternatively southeast and northeast), so that the distances
between any two consecutive ones are 2 (i.e., we draw them in every second horizontal
strip of unit squares). We define next a new family of regions on that lattice as follows.
Let A be a down-pointing vertex of some zigzag path. Let ¢ be the vertical line on the
right of A so that the distance from A to £ is n € Z*. Start from A we go periodically
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by unit steps with the period (1, —,7T,—, 7, —, 1) until reaching the line ¢, denote by
B the reaching point. The described path is the northwestern boundary of the region.
In the same fashion, we go from A by unit steps with the period (—, |, ], —, 1, —,\)
until reaching ¢, denote by D the new reaching point. The latter path is the southwestern
boundary of our region. The northeastern and southeastern boundaries are obtained by
reflecting the northwestern and southwestern boundaries about the line ¢, respectively.
Denote by Z,, the region bordered by four paths above (Z; is shown by the left picture in
Figure 14).

D
Figure 14: Two regions: Z; (left) and Zg (right).

Consider a variant Z,, of Z, defined as follows. We still pick the vertex A and the
vertical line ¢ as in the definition of the region Z,,. The northwestern and southwestern
boundaries go from A to B € ¢ and from A to D € ¢ with the periods (%, —, 1, —, T
, T, —) and (|, —, N\, —, 1, —, ), respectively. Again, the northeastern and southeastern
boundaries are obtained from the previous boundaries by reflecting them about ¢. The
four described lattice paths complete the boundary of region Z, (see the region on the

right in Figure 14 for Zg). The numbers of tilings of Z, and Z,, are obtained by the
theorem below.

Theorem 15. (a) Form >0

48m? 48m?+8
(212m) 3 ) T(212m+1) =3 m)
48m24+16m+1 _ 948m2424m+3
T(Ziomy2) = 3757 707 T(Ziom4s) = 3 7250,
48m2+32m~+5 _ 48m2+40m~+8
T(Ziomya) = 2- 3772500 T(Zigmgs) = 2- 370 7078,

—

8m2+72m+27

—

2
— 348m +64m+21’ T

( )=

( ) 2.

(212m+6) 348m2+48m+12’ T(Z12m+7) _ 3 8m2+56m+16’
(Z12m+s) = ( ) = 3¢

( 2.

348m +88m—+440

T(Zioms1o) = 2 - 388 H80m433 P 7000001) =
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(b) For nonnegative m

T(Zsm) = T(Zsm),
T(76m+1) - QT(ZGerl)v
T(Zsm2) = 2T (Zom+2),
— 1
T(ZGm+4> = 5 T(Z6m+4)7
— 1
T( 6m+5) = 5 T(ZGm-‘,-S)-
We will prove Theorem 15 by using Lemma 16 below. Consider two weight patterns
(a a b b b b a a (b b a a a a b b]
a a b b b b a a b b aa a a b b
a a a a b b b b b bbb aa a a
a a a a b b b b — (b b b b a a a a
B:bbaaaabbandB:aabbbbaa’
b b aa a a b b a a b b b b a a
b bbb aa a a a a a a b b b b
_bbbbaaaa_ _aaaabbbb_
where a and b are two positive numbers.
Lemma 16. Forn > 3
(a)
M(AD, (wtg)) = 2"a" b (a + b)* M(AD,,_3(wtg)), (33)

where xg, = 8k — 1, xypy1 = 8k + 2, Typ10 = 8k + 4, x4p3 = 8k + 5, yguo = 8k — 2,
Yakr1 = 8k — 1, Ygpro = 8k + 1, yypys = 8k + 4, and z, = 2n — 3.
(b)
M(AD, (wtz)) = 2"a" b (a + b)*» M(AD,,_3(wtg)), (34)

where T, = Yn, Y,, = Tpn, and Z, = zy.

Proof. The cell-factors of the cells in AD, (wtg) are either 2a? or 20?, thus by Reduction
Theorem
M(AD,(wtp)) = 2" a" 6" M(AD,_1 (wtas))), (35)

where ki, ko are integers given in (39) and (40), and where

[1/2a 1/2b 1/2b 1/2b 1/2b 1/2a 1/2a 1/2a)
1/2a 1/2a 1/2a 1/2b 1/2b 1/b 1/2b 1/2a
1/2a 1/2a 1/2a 1/2b 1/2b 1/b 1/2b 1/2a
1/2b 1/2a 1/2a 1/2a 1/2a 1/2b 1/2b 1/2b
1/2b 1/2a 1/2a 1/2a 1/2a 1/2b 1/2b 1/2b
1/2b 1/2b 1/2b 1/2a 1/2a 1/2a 1/2a 1/2b
1/2b 1/2b 1/2b 1/2a 1/2a 1/2a 1/2a 1/2b
1/2a 1/2b 1/2b 1/2b 1/2b 1/2a 1/2a 1/2a]
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at+b a+b

Since the cell-factors of the cells in ADn,l(Wtd( B)) are either 12D or Tl the Reduction
a a
Theorem yields
a+b\* fa+b\™
M(ADn_l(Wtd(B))) = ( 1a%h ) ( Aab? ) M(ADn—Q(Wtd@)(B)))v (36)

where k3 and ky are integers given in (41) and (42), and where

C2ab 2ab  2ab 26> 2ab  2ab  2ab 247
b+a b+a b+a b+a b+a b+a b+a bta
20 2ab  20b  2ab 20> 2ab  2ab  2ab
b+a b+a b+a b+a b+a b+a b+a bta
20b 20 2ab 2ab  2ab  2°  2ab  2ab
b+a b+a b+a b+a b+a b+a b+a bta
20b  2ab  20®  2ab  20b  2ab  20*  2ab
d(2)(A) _ |b+ta bta bfa bfa bta bta bta bta

20b  2ab  20b 22 2ab  2ab  2ab  2b°
b+a b+a b+a b4+a b+a b+a b+a bta
20*  2ab  20b 2ab  20®  2ab  2ab  2ab
b+a b+a b+a b4+a b+a b+a b+a bta
2ab 26 2ab 2ab  2ab  2a® 2ab  2ab
b+a b+a b+a b+a b+a b+a b+a bta
20b  2ab  20* 2ab  20b  2ab 20> 2ab
 b+a b+a b+a b+a b+a b+a bt+a  b+ad

. . , 4a?b  4ab?
One readily sees that a cell in AD,,_o(wt 40 A)) has cell-factor either " or e Apply
a a
the Reduction Theorem again, we obtain
4a20 \ " [ dab® \ "
M(ADn_Q(Wtd(z)(B))) = (a n b) (a n b) M(ADn_3<Wtd(3)(B))), (37)

where ks and kg are integers given in (43) and (44), and where d®(B) = 5 B. Thus, we
get from Lemma 5

n—2)(n—3
M(ADn-s(Wtao(z))) = (ﬁy " M(AD,_3(wtg)). (38)
We get by calculating explicitly
(8K if n =4k;
b — 8k% 4+ 4k +1 if n =4k + 1; (30)

8k? + 8k +3 if n =4k + 2;
(8k? + 8k +5 ifn=4k+3,

(8k? if n = 4k;

k% 4 4k if n =4k +1;

ky = 8k* + 1n + 1; (40)
8k +8k+1 if n=4k+2;

(8k* + 8k +4 if n =4k + 3,
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and

By (35)—(44), we obtain the recurrence in part (a). Part (b) is absolutely analogous.

ky =

ke =

(8(k—1)?+12(k—1)+5
8k?

8k? + 4k + 1

| 8k% + 8k + 3

(8(k—1)?+12(k—1)+4
8k?

8k? + 4k

| 8K% + 8k + 1

(8(k—1)2+8(k—1)+3
8(k—1)*+12(k—1)+5
8k?

(8K + 4k + 1

(8(k — 1) +8(k—1)+1
8(k—1)*+12(k—1) +4
8k?

[ 8Kk? + 4k

if n = 4k;

if n =4k +1;
if n =4k + 2;
if n =4k + 3,
if n = 4k;

if n =4k +1;
if = 4k 4 2;
if n =4k + 3,
if n = 4k;

if n =4k +1;
if n =4k + 2;
if n =4k + 3,
if n = 4k;

if n =4k +1;
if n =4k + 2;
if n =4k + 3.

(41)

(43)

(44)

]

Proof of Theorem 15. Apply the Vertex-splitting Lemma 1 to all circled vertices in the
dual graph of Z, as in Figure 15, for n = 7 (the general case can be treated similarly).
Apply suitable replacements in Spider Lemma 4 to all shaded cells and shaded partial

Figure 15: The dual graph of Z;.
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cells in the resulting graph (illustrated by Figure 16; the dotted edges have weight 1/2,
and all shaded cells and partial cells inside the dotted contours will be removed). We get
a graph isomorphic to the weighted Aztec diamond of order n with weight pattern

Figure 16: The graph obtained from the dual graph of Z; by applying Vertex-splitting
Lemma.

1/2 1/2 1 1 1 1 1/2 1/2]
12 1/2 1 1 1 1 1/2 1/2
12 1/2 1/2 12 1 1 1 1

/2 1/2 1/2 12 1 1 1 1
11 1/2 1/2 1/2 1/2 1 1
11 1/2 1/2 1/2 1/2 1 1
11 1 1 1/2 1/2 1/2 1/2
11 11 1/2 1/2 1/2 1/2]

By Lemmas 1 and 4, we deduce that
T(Z,) = 2" M(AD,,(wt4)), (45)

where a1, = 8k?, Yapr1 = Sk? + 4k + 1, Yapro = Sk? + 8k + 3, and Yupp3 = 8k% + 12k + 5,
for k > 0.

Do similarly for the dual graph of Z,, (shown in Figures 17 and 18, for n = 9). The
resulting graph is isomorphic to the weighted Aztec diamond of order n with the weight
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Figure 17: The dual graph of Z.

pattern
11 1/2 1/2 1/2 1/2 1 1]
11 1/2 1/2 1/2 1/2 1 1
11 1 1 1/2 1/2 1/2 1/2
S_ |1 1 1 1 1/21/21/2 12
T2 012 01 11 1 1/2 1/2|°
/2 12 1 1 1 1 1/2 1/2
/2 1/2 1/2 12 1 1 1 1
1/2 1/2 1/2 1/2 1 1 1 1|
and
T(Z,) = 27" M(AD, (wt%)), (46)

k> 0.
By Reduction Theorem, we get that the three initial values of M(AD,,(wt,4)), and that
the three initial values of M(AD, (wt)) are

For n > 3 the values of M(AD,,(wt4)) and M(AD, (wt3)) are obtained from Lemma 16
by specializing a = 1/2 and b = 1. Thus, the theorem follows from (45) and (46). O

In previous work, Blum has considered a different family of subgraphs of the square
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Figure 18: The graph obtained from the dual graph of Zy by applying Vertex-splitting
Lemma.

grid for which he noticed that the number of perfect matching seems to be always a power
of 3 or twice a power of 3. Consider the sublattice of the square lattice showed in Figure
19 and view it as an infinite graph G. In particular, each row in this lattice consists of
1 x 2 and 1 x 3 bricks, that occur alternatively. All the odd rows are the same, and the
even rows are obtained from the left rows by shifting them one unit to the right. Draw a
boundary of the Aztec diamond graph of order n on this lattice so that the easternmost
edge has an embedded hexagon east of it. Let B, be the induced subgraph of G spanned
by the vertices lying inside or on the boundary of the Aztec diamond graph. Ciucu proved
the Blum’s conjecture by applying the Reduction Theorem 30 times (!). In particular,
we have the following theorem.

Theorem 17 (Ciucu [2]). For n > 31 we have
M(B,) = 3ten M(B,,—30),
where x5py = 4k — 12, x50 = 4k — 10 and w513 = Tspaa = Tspys = 4k — 8, kK > 6.

One can realize that the number of tilings of Z, (Z,) and the number of perfect
matchings of B,, are similar. They are both a power of 3 or twice a power of 3. Is there
any relationship between these values? We have the answer for the latter question in the
next part of this section. Moreover, the answer provides a new proof for the conjecture
of Blum above.

Consider a new lattice that is obtained from the lattice in the Blum’s conjecture by
replacing all 1 x 3 bricks by 1 x 1 bricks. Draw also the boundary of the Aztec diamond
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Figure 19: The graph B3.

of order n on the new lattice, so that the easternmost edge has an embedded hexagon
east of it. Again, let C,, be the induced subgraph spanned by the vertices lying inside or
on the boundary of the Aztec diamond (see the right picture of Figure 20).

Apply Vertex-splitting Lemma (in reverse) to identify all three consecutive circled
vertices in a row of Bsyo as in the left picture of Figure 20, for £ = 2 (the general case
can be obtained similarly). Deform the resulting graph into a subgraph of the new lattice
above. After removing some horizontal forced edges we get the graph Csjyq (illustrated
by the right picture in Figure 20; the forced edges are circled). Thus,

M(Bsk12) = M(Cspt1)- (47)
Apply the same process to graph Bsp_o we get graph Csp_1, so
1\/1(85]6,2> - M(Cgk,1>. (48)

Rotate 45° the dual graph of Z,, and deform the resulting graph into a subgraph of
the new lattice. One can see that the dual graph of Zy; 3 is obtained from Cggiq by
removing some horizontal forced edges (see Figure 21 for an example).

Therefore, we imply that

T(Zar+3) = M(Céya)- (49)

In the same fashion, we have

T<Z4k) = M(C6k71)7 T(?4k+1) = M(Cﬁk+1), and T(74k+2) = M(06k+2)~ (50)
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Figure 20: Illustrating the transformation the graph Bjy (left) into the graph C7 (inside
the dotted diamond contour on the right).

We get the following equalities by applying (47)—(50):

T(Zk43) = M(Biok+7), (51)

T(Za) = M(Bior—2), (52)
T(Zu+1) = M(Biok+2), (53)
T(74k+2) = M(Biok+3)- (54)

Moreover, by considering horizontal forced edges in graph B,,, we can verify easily that
M(Bs—2) = M(Bsg—1) = M(Bs) = M(Bs41), (55)

for £ > 1. Thus, Theorem 15 and equalities (51)—(55) yield a new proof for the Blum’s
ex-conjecture.

5 Variants of the square lattice

The square lattice has the set of nodes Z? = {(x,y)|z,y € Z}. The two subgraph
replacement rules in Figure 22 will play the key roles in this section. In particular, the
local subgraph around a node, i.e. the cross on the left of Figures 22(a) and (b), is replaced
by the one on the right with corresponding black vertices and two new white vertices.
The graph replacement in Figure 22(a) (resp. Figure 22(b)) is called the first (resp. the
second) node replacement. We will get a large number of variants of the square lattice by
periodically applying these node replacements (together with some simple modifications).
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Figure 21: The deformed version of the dual graph of Z7 (left), and the graph Cg (right).

A A A A
D B D D B b
B B S
C C C C
@ (b)

Figure 22: Two node replacements.

We will go over several examples in the next part of this section. In those examples, certain
families of regions have the numbers of tilings given by products of perfect powers.

Denote by Dy, (a, b) the diamond of side-length m+/2 whose western vertex is the node
(a,b), where a and b are some integers. Apply the first node replacement to all nodes
(4k,41 £ 1), and apply the second node replacement to all nodes (4k + 2,4[ £ 1), for any
integers k and [. Consider a region on the resulting lattice that consists of all elementary
regions lying completely or partially inside the diamond D,,(—1,1) (see the left picture
in Figure 23 for an example). Denote by S this region. The number of tilings of S s
given by the following theorem.

Theorem 18. For anyn > 0
T(Sii)) = 7"(2n_1)37n(2”+1)7 T(SSL)+1> =5. 7277,237271(71—1—1)7
T(‘SEL:L)JrQ) — 7n(2n+1)37(n+1)(2n+1)7 T<S£:L)Jr3) —9. 72n(n+1)372n(n+2)+2'

Before presenting the proof of Theorem 18, we consider the following weight pattern

a b ¢ d
b a d ¢

b= d ¢ b al’ (56)
¢c d a b
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Figure 23: The region S§1) (left) and its dual graph (right).

where a,b,c and d are four positive numbers. The matching generating function of
AD, (wtp) is obtained by the theorem below.

Theorem 19. For any nonnegative integer k

M(ADu(wts)) = PHAD(ab + cd) ),
M(ADyi1 (wtg)) = (a® + b%) PP+ (ab 4 cd)?*”,
M(ADggs0(whp)) = PHEEF+ (qh 1 cg) 2+,
M(ADup 5(wtg)) = PHEEFO+2(qp 4 cq)kh+2),

where P = ab(c* + d*)? + cd(a® + b*).

Proof. Assume that m = 2n, for some positive integer n. The cell-factors (of cells) in
ADs,, (wtp) are either (a® + b%) or (¢* + d?), so Reduction Theorem implies

M(ADa(wtp)) = (% + 62" (¢ + d*)*" M(ADay 1 (Whas)), (57)
where
a/(a® + b?) /(c +d?) c/(E+d*) b/(b*+ a?)
By = |YE+@) @+ of(@+5) d/(+d)
d/(?+d*) a/(a®+ b?) b/(a +0?) /(P + d?)
b/(a®>+0?) c/(P+d*) d/(+d?) a/(a®+V?)

(a
Since the cell-factors in ADs,_1(Wtyp)) are all Ay := (ab/(a® + b*)* + cd/(* + d*)?), we
apply the Reduction Theorem again and obtain

M(ADs, 1 (whaeg))) = AP M(ADy, o (wtye) 5))). (58)
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where d® (B) = A% C with

a/(@*>+0v*) b/(a*>+b*) c/(F+d*) d/(P+d?)
oo (V@) a/(a®+ %) df(¢+d) cf(? +d)
/(S +d) o/(+d) bf(a+1) af(a®+b)
c/(+d*) d/(+d*) af(a®>+b*) b/(a*+1?)
Therefore, the following equality follows from Lemma 5
M(ADs(Wye) ) = Ay VD M(AD,, (wtc)). (59)

We define an operator r on the space of 4 x 4 matrices by setting

a b c a/(a®> +0%) b/(a*>+b*) /(2 +d?*) d/(*+ d?)
e doc _ | /(@ +0%) af(a®+ %) d/(+d%) cf(¢+dP) (60)
d c b a d/(F+d?*) c/(F+d*) b/(a*>+b*) af(a®+ b?)
c da b c/(+d?) d/(F+d?*) af(a®>+V*) b/(a®+b?)
One readily sees r(B) = C and r®(B) = B. By (57), (58) and (59)
M(ADy, (wtp)) = (a® 4+ b?)*" (2 4 d?)*" A2 "L M(ADy, _o(Wt,(s)))- (61)

We apply the recurrence (61) to ADs,_s(Wt,(p)) and obtain
M(ADyy (W) = (a® + ) 2D (2 + d2) 2D A S M(ADy,4(wtp)),  (62)
where Ay := ab + cd. Two equalities (61) and (62) imply

M(AD,(wtp)) 2 | 712\2(2n— - - -
= (a2 +b (2n—1) C2 + d2 2(2n 1)A2n 1 ab + cd 2n—3
M(ADQn,z;(WtB)) ( ) ( ) 1 ( )

= P Yab + cd)* > (63)

Do similarly for the case m = 2n + 1, we get

M(ADa,41(Wtp))

M(ADay 5(wig)) P¥(ab + ed)*" 2, (64)

The theorem follows from the two recurrences (63) and (64). O

Proof of Theorem 18. Apply the replacement in Spider Lemma 4(a) to all shaded cells in
the dual graph of st (see the right picture in Figure 23). Then apply Edge-replacing
Lemma 2 to all multiple edges arising from the previous step. This process gives us a
graph isomorphic to the weighted Aztec diamond of order m with weight pattern

3/2 1/2 1 1

12 3/2 1 1
11 1/2 3/2
11 3/2 1/2

B, =
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One readily sees that the number of shaded cells is 2n? if m = 2n, and is (n+ 1)* 4 n?
if m =2n + 1. Thus, by Lemmas 2 and 4, we get

M(AD,,(wtg,)) | 20tD* 0 if gy — 9 4 1.

The theorem follows from Theorem 19 (for a =3/2,b=1/2 and c =d = 1) and (65). O

AW BN
a P Ay

'L
AV <E

%&v

Figure 24: All possible types of tiles in S

Similarly to what we did for the generalized fortress F'(dy,ds,...,d,,), we can assign
weights to the tiles of the region S as follows. All tiles on the first row in F igure 24 are
weighted by ¢, all tiles on the second row are weighted by d, the tiles on the third row
have weight 1, the tiles on the fourth row have weight m, finally all tiles on the
last row are weighted by ﬁ’ where a,b,c,d > 0. After applying Spider Lemma to
all shaded cells as in the proof of Theorem 18, we get a graph isomorphic to AD,,(wtp),

where B is defined by (56). Thus, we have the following equality instead of (65)

2n2
T(Sw) (@) m =2 (66)
= (n+1)24n?
M(AD,,(wtp)) ((a71)2+b2) if m=2n+1.

By Theorem 19 and (66), the tiling generating function of st (with the new weight
assignment to its tiles) is given by a product of several perfect powers.

Start with the square lattice with every second diagonal drawn in (see the right picture
in Figure 6). Apply the first node replacement to all nodes (4k+3,4l) and (4k+ 1,41+ 2),
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and apply the the second node replacement to all nodes (4k + 1,41) and (4k + 3,41 + 2),
for any integers k and [. The elementary regions in the resulting lattice are all triangles.
Consider two families of the variants of the fortresses on this lattice as in Figure 25. In
particular, the region of order n in the first family consists of all elementary regions lying
completely inside the diamond I, (0,0), together with all elementary regions that are
obtuse triangles having an edge on the boundary of D,,(0,0). This region is denoted by
S (see the left picture in Figure 25). The region of order n in the second family consists
of all elementary regions lying completely inside D, (0,0), together with all elementary
regions that are right isosceles triangles having hypothenuse on the boundary of D, (0, 0).
Denote by S the latter region (the region Ség) is illustrated by the right picture in Figure
25).

Figure 25: The region SéQ) (left) and the region Ség) (right).

We get the following formulas for the numbers tilings of S and SY by applying
Theorem 19.

Corollary 20. (a) For any nonnegative integer n

T(sii)) _ 7n(2n+1)212n2—2n’ T(Sz(li)-&-l) =5. 7n(2n+2)212n2+4n’

T(Szii)+2) _ 7n(2n+3)+1212n2+10n+2’ T(Sii)+3> _ 7n(2n+4)+2912n° +16n+5

(b) For any n >0

T(Sii)) _ 7n(2n71)2n(12n+2)’ T(Sii)H) _ 72n22n(12n+8)+1

Y

T(Sﬁ)w) _ 7n(2n+1)2n(12n+14)+4, T(Sﬁ)m) _ 5. 72n(nt1)gn(12n+20)+8
Proof. (a) Consider the dual graph of S (see the left picture in Figure 26). We do again
the process in the proof of Theorem 18. In particular, we apply the replacement in Spider

Lemma 4(a) to all n? shaded cells, and replace all multiple edges by corresponding single

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(4) (2013), #P31 31



Figure 26: The dual graph of S\ (left) and the dual graph of S (right).

edges in the resulting graph using Lemma 2. We get a graph isomorphic to the weighted
Aztec diamond graph AD,,(wtg,), where

1/2 3/2 1/2 1/2
3/2 1/2 1/2 1/2
1/2 1/2 3/2 1/2
1/2 1/2 1/2 3/2

By =

By Lemmas 2 and 4, we obtain

T(SP) = 2" M(AD,(wtp,)). (67)
We get the statement by applying Theorem 19 (for a = 1/2, b = 3/2 and ¢ = d = 1/2)
and (67).

(b) Consider the dual graph of S (illustrated by the right picture in Figure 26).
Each of the shaded cells gives us a chance to apply Spider Lemma 4(a). After replacing
all multiple edges (arising from the replacement of the Spider Lemma) by single edges as
in Lemma 2, we have another chance to apply the Spider Lemma 4(a) to a new cell. The
cell in the first application of Spider Lemma has cell-factor 2 (it has all edges weighted
by 1), the cell in the second application of Spider Lemma has cell-factor 5/2 (it has edges
with weights 1/2, 3/2, 1/2, 3/2 in cyclic order). The resulting graph is exactly a version
of the weighted Aztec diamond AD, (wtp,), and

TS [2 /P if = 2k; )
M(AD,(wtp,)) | 20048 (5/2) R+ K2 if pp — 9f 4 1,
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where

Finally, Theorem 19 (for a = 1/5, b =3/5 and ¢ = d = 1) and (68) imply part (b).

NP

NIV 1V

1/5 3/5 1 1

3/5 1/5 1 1
1 1 3/5 1/5
1 1 1/5 3/5

Bs =

P

rak
P

L ira

ra

41’7

‘1‘l7
e
‘1‘t7
PS

bk dnak 4

4
ra

FIVNY VY VTN VT N
inak Dnak i ok g

A |

Figure 27: The region S§4) (left) and its dual graph (right).

We modify the lattice in the definition of 52 and S by removing the boundaries of

Tnak inak dnak I ok o

A |

ok i ok Zoah Dok 4
A LA oA A ]

-
‘1‘b7
T

<
41’7
|

PN

]

all unit diamonds Dy (4k, 4]+ 1) and Dy (4k + 2,41+ 3), for any two integer numbers k& and
[. We are interested in a new family of regions on the resulting lattice defined as follows.
The region of order n consists of all elementary regions lying entirely or partially inside
the diamond D, (1, 1) together with all elementary regions that have an edge resting on
the boundary of I, (1, 1) (the region of order 7 is shown by the left picture in Figure 27).

Denote by S the region of order n. The number tilings of S can be obtained by the
following theorem.

Theorem 21. For any nonnegative integer n

T(S§,)) = 2n@n-Dgren-tgyn@nsl)
T(Sinsr) = 2753120040,
T(Sﬁlrz) _ 211(2n+1)5n(2n+1)31(n+1)(2n+1),
T(Sﬁlrg) _ 22n(n+1)52n(n+1)312(n+1)2'
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Proof. Apply the replacement in Spider Lemma 4(a) to all shaded cells in the dual graph
of 5’7(14) (see the right picture in Figure 27), and apply Lemma 2 to all multiple edges. We

get
T(5:") _{?W it n = 2k;

ifn=2k+1,

M(AD, (wtg,)) | 20+DEk+D) (69)

where

1/2
1/2
3/2
1/2

1/2 1/2 3/2
1/2 3/2 1/2
12 1 1
3/2 1 1

B,

One verifies easily that

1 3/5
1/5 1/2
3/5 1/2

1 1/5

1/5 1
1/2 3/5
1/2 1/5|°
3/5 1

d(By) =

50/31
50/31
30/31
10/31

50/31
50/31
10/31
30/31

10/31
30,31
25/31
25/31

30/31
10/31
25/31|
25/31

d(2)(B4)

d®(B,) =

d®(B,) =

and

[31/100
31,100
93,100

131/100

[31/100
31,100
93/100

31/100

d9(B,) =

93/100
31/50
31/50

31/100

93/100
31/50
31/50

31/100

31/100
31/50
31/50
93/100

31/100
31/50
31/50
93/100

40
~B..
31 ¢

31/100]
93/100
31/100|°
31/100

31/100]
93/100
31/100|°
31/100

(70)

By counting the cell-factors and applying Reduction Theorem 7, we get the following

four equalities:

M(ADQn(WtB4)) 2 2 on2
=(1/2)" 2" (5/2)" 71
M(ADQn—l(Wtd(B4))) ( / ) ( / ) ) ( )
M(ADg, 1 (wt 2
( 2 1(W d(B4))) _ (31/50)(2n71) ’ (72)
M ADQn_g(Wtd(z)(B4)))
M(ADan2(Wtyen () [ 502 \ "7V 12502\ (DT 19502 201 73
M(ADy, s(Wtye(g,)))  \2-312 312 312 ’
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M(ADQn 3(Wtd(3 (34))>

31/100)%)@n=3)", 74
M(ADs (Wi ) = (5-(31/100)) (74)

Lemma 5 and equality (70) imply
M(ADsp-a(Wtyw (,))) = (40/31)@r=3)@n—4), (75)

M(ADQn_4 (WtB4))

By the five equalities (71)-(75) above, we obtain the following recurrence

M(ADQn (WtB4))
M(ADQTL_4 (WtB4>>

In the same fashion, we get a similar recurrence for the odd-order Aztec diamond graphs

— 2710n+952n73312n71' (76)

M(ADyy41(Wts,))
M(ADQn_g(WtB4))

Finally, the theorem follows from two recurrences (76) and (77) together with (69). [

— 2—1077,—1—25271—231271. (77)

Our next target is to create a new lattice by periodically applying the node replace-
ments with a more complicated period. We start with the square lattice with all second
diagonals drawn in (see the right picture in Figure 6). Apply the first node replacement to
all nodes (8k+5,41), (8k+7,41), (8k,4l+1), (8k+2,41+1), (8k+3,41+2), (8k+5,41+2),
(8k 46,41+ 3) and (8k, 41+ 3), for any two integer numbers k and [/; and apply the second
node replacement to all remaining nodes which have the z- and y-coordinates of different
parity. Next, we consider a variant of fortress on the resulting lattice. The region of order
n is defined similarly to the regions F;, and St based on the diamond D »(0,0) (illustrated
by Figure 28). Denote by @,, the region of order n. We will show in the following theorem
that the number tilings of @), is (or nearly is) the product of a perfect power of 3 and a
perfect power of 29.

Theorem 22. For any q > 0

T(Quq) = 34°9094”
T(Qsqra) = 3275+ 29(461+1)
T(Qsq46) = 3 8(g+1)( 2q+1)+229(4q+3)2
T(Qug+1) = - 32a(2a+1) 992a(29+1)
T(Qugrs) = 5 - 3Gt NCa+2)99(20H+1)(20+2)

Before presenting the proof of Theorem 22, we consider a 4 x 2n weight pattern

aq by as b o an, by,
c— dq c1 do Co o d, Ch,
N dl/Al Cl/Al dQ/AQ CQ/AQ dn/An Cn/An ’
al/Al bl/Al CLQ/AQ bQ/AQ an/An bn/An
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Figure 28: The region QJg.

where a;, b;, ¢;, d; are positive numbers and where A; = a;¢; + b;d;, fori =1,2,...,n. One
can write C as a block matrix as follows.
C = [Al Ay .. An],
where
a; b;
A, = d; Ci

di/Ai Ci/Ai
ai/Ai bi/Ai

The matching generating function of AD,, (wt¢) is given by the theorem below.
Theorem 23. (a) For any positive integer k

k—i+11k+1—1 k i k—i
M(ADoy(wtc)) Ha bok+1-iCorr1—iti

k-1 k
X H AF H (A + Ajyr)" - H(AQk—i + Aok—i1)". (78)
=1 =1

(b) For nonnegative integer k

k+1

k—i+1pk+1—i k+1 —i gk+1—1
M(ADgy41(wtc)) H Dok o iCorraidi

% k k
X Api1 H AT H(Az +Ai)" H(A%Hﬂ' + Aggyo ). (79)
i=1 i—1 i=1
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Proof. (a) One can verify that d(C), d®(C), d®(C) and d¥(C) are four block matrices

of size 4 x 2n presented as below.

where

fori=1,2,...,n

d?0) = [ Cy Cy]
d®(C) = [D: D, D,]
d9(C) = [B, E E,],
ai/Az bi+1/Ai+1
o a; bit1
Bi d; Cit1
di/A Cz'-i—l/Ai-i-l
Ai+1 A2+1
bit1(Ai+Air1)  air1(Djr1+Ai42)
it1 JAVESY
Ci: Cit1 Agiz-ﬁwrl) di+1£?£;rlA‘:'+A21+2) ’
cz+lgAz+Az+l) dig1(Air1+Aq42)
7,+1 i+18342
bit1(Ai+Air1)  air1(Aip1+Ai42)

[aip1cipidipi(Dip1+Ai12)
2

bitocitadita(Air1+Ai12)]
2

i1
aiy1cir1dip1(Aip1+Ai42)

it2
biyacitadita(Air1+Ai42)

A?+1Ai+2 A1Jr1Az+2
aip1bip1dip1 (Dip1+Div2)  aipabipocipo(Dip1+Di2)
A?—!—IAH'Q A1+1Az+2
aip1bip1dip1 (Dip1+Diy2)  aipabipocipa(Dip1+Ai2)
A2 A2
L i+1 i+2 .
A¢+1A?+2 A1+2A'L+3
bivocivadipa(Ajr1+0i42)?  aipacitad; gz ANjpo+Aiy3)?
i+1Az‘+2 1+2 i+3
ai+2bi+2ci+2(Ai2+1+Ai+2)2 ai+2bi+2dz§t2 Njpo+Aiy3)?
i+1 1‘+2Ai+3
bitabitacita(Aip1+Ai42)2 ai+2bi+2d¢§uz(ﬁi+z+Ai+3)2
Ait1874, AfioBits

| bitocitodiva(Aip1+Ai42)2

ait2Citodiya(Diro+Ditr3)? |

(the subscripts here are interpreted modulo n).

Apply Reduction Theorem 7, we have four recurrences below.

M(ADQk (Wtc)) =

M (ADQk 1 (Wtd(c

2k

i=1

= M(ADy 1 (wta(c))).

M(ADyy,_1(wtac))) [ AF AT

M (ADQk 2 (Wtd(Q)

M(ADsgg_a(Wtye (C)))

M (AD2k73 (Wtd(3) ©) ) )

=1

H aibiv1 (A + Aig1) g Cir1di (A + Aig1)
A Al+1 AiAi-‘rl

2k—2
- H ( AAT L Ay
i=1 a?+1b12+1c?+1dz2+1<A¢ + A1)
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M(ADQk—:S(Wtd(?’)(C))) o 2ﬁ3 (ai+lci+1di+lbi+2ci+2di+2(Ai—i-l + Ai+2)3) i

M(AD2k74(Wtd(4>(c))) i—1 A?—HA?—F?
Ait1bii1dis1airobipocipo (N + Ai+2>3 b
. ()
AZ+1A

Divide the weight matrix of ADQk,4(Wtd<4>(C)) into 2k — 3 parts (by columns) as
(Aji1 4+ Ajja)?

AVERVAVER’
1,2,...,2k — 3. Divide the resulting matrix into 2k — 4 parts (by columns) as in Lemma

in Lemma 5(a), and multiply all entries of the i-th part by

, for i =

airabiraCiadive g oy gp gy
A2
J+2
We get the weight matrix of the Aztec diamond ADgy_4(Wty(cy), where

5(b), and multiply all entries of the j-th part by

G(C)=[As Ay ... A, (84)

and where the operator ¢ is defined as in the proof of Theorem 11. Therefore, Lemma 5
implies

M(ADoj—a(Why) C) ﬁ ( i1+ Agyo)? >(2k Y 2ﬁ4 (ai+2bi+2ci+2di+2)_(2k_3)
M(Ang 4(Wt¢ e H_lAH_Q ey Azz+2 ’
(85)
By (80)—(85), we obtain
M(ADqy(wt(c))) kgh—lpk—l ph ok2 okl gh—1gk—2 Ak A~k ESd -2
bg, b A" AETPATRFASFALE  ASF A;
M(ADo_s(Whac))) = 2k—1Y2kCok—1Cok 2%k—12k L 3( i)
2%k—3
X (A 4 Ag)(Agr—1 + Agy) H (Ajy1 + Aiga). (86)
i=1
Repeated application of (86) yields (78).
(b) Assume that n = 2k + 1. In the same fashion, we get
M(ADgj41(whic))) k—1pk k-1 k k k=1 A —k A —k A —k A —k
b dids T ATEASEALTA,
M(Ang—s(Wtqs(C))) Aha1tr ot 2
-1 2%—2
< (A7) (A1 + Do) (Agk + Agir) [ ] (Aigr + Aiga). (87)
i=3 =1
Again, (79) is obtained by applying the recurrence (87) repeatedly. O

We are now ready to present the proof of Theorem 22 by using Theorem 23.

Proof of Theorem 22. Consider the dual graph of @, (see Figure 29). Apply Spider
Lemma 4(a) twice to all shaded cells inside the dotted squares (and apply Lemma 2
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Figure 29: The dual graph of Q.

to all multiple edges if needed) by the same way as we did in the proof of Corollary 20(b).
The cell-factors in the first application of the Spider Lemma are 2, and the cell-factors
in the second application of the Spider Lemma are 5/2. Then apply the Spider Lemma
4(a) to all other shaded cells (the cell-factors are all 2). The process gives us a graph
isomorphic to AD,,(wt¢,), where

1/5 3/5 3/2 1/2 3/5 1/5 1/2 3/2
3/5 1/5 1/2 3/2 1/5 3/5 3/2 1/2
3/2 1/2 1/5 3/5 1/2 3/2 3/5 1/5
1/2 3/2 3/5 1/5 3/2 1/2 1/5 3/5

Co =

By enumerating the shaded cells in each type above, we have

T(Q.) {2%"’(5/2)%22%2 if n = 2k; (58)
M(AD, (wte,)) | 20+ 4K (5 /) (kD)2 4k 92k(k+1) i p — 9f 4 1.
Therefore, the theorem follows (88) and Theorem 23 by specializing
A454+1 = C454+1 = 1/5 and b4i+1 = d4i+1 = 3/5, for i = O, 1, ey LnT—IJ’
A4542 = C4542 = 3/2 and b4i+2 = d4i+2 = 1/2, for i = O, 1, Cey I_%J,
A4543 = C4543 = 3/5 and b4i+3 = d4i+3 = 1/5, for i = O, 1, Ce LanZSL
A4i+4 = Chjyq = ]./2 and b4i+4 = d4i+4 = 3/2, for i = 0, ]., ceey L%J ]

One readily sees that the weight pattern C' in Theorem 23 is also a generalization
of the weight patterns of AD(dy,...,d,) and AD(dy,...,d,,) in the proof of Theorem
9. Therefore, Theorem 23 can be viewed as a common multi-parameter generalization of
Theorems 9 and 22.
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We conclude this section by presenting one more multi-parameter generalization of 22.
Let us consider a new weight pattern

: (89)

+ 8 QU Q
N e o o
o2 =+ 8
QU SN
e o o
+ 8 QU R
[S IR S SN
QUL+ 8

for any positive numbers a, b, ¢, d, z, y, z, t. We get the weight pattern C in the proof
of Theorem 22 by specializing a =c=1/5,b=d=3/5,x =2=3/2and y =t =1/2.

Theorem 24. The values of M(AD,,(wty)) are given by the following recurrences for
n =2

M(ADy,(wty))
M (AD4n_8 (WtN))

=AY"%(ad + xt)* % (be + y2)*" OOy 2

2n71b2n7362n73d2n71 2n—1 2n73z2n73t2n71
)

X a x Y

M<AD4n+1(WtN)) :Agn—ﬁ

2n—2 2n—3 2n 2n—1
M(ADs 7 (win)) (ad 4+ xt)™ = (bc + yz)*" > C{"C3

2n71b2n7262n72d2n71 2n—1 2n72z2n72t2n71

a "y

)

M(AD 4y 2(wWty)) 8n—4 2n—2 2M—2 21 12
=A" d )" (b e oS
M(ADg,_g(wty))  ° (ad +xt)™ " (be + y2) b2

% a2n—162n—1c2n—1d2n—1x2n—1y2n—122n—1t2n—1

Y

M(ADyy, 3(Wtw)) 8n—2 on—1 2M—2 ~2n41 42
=A3"2(ad + x2t)*" Ybe + yz) 2O O
M(AD4n_5(WtN)) 0 ( ) ( y ) ! 2

a2nb2n—1c2n—1d2n 2n, 2n—1 2n 1t2n’

Y

and the initial values
M(ADy(wty)) =1,

M(AD:(wty)) = Ay,

M(AD;(wty)) = Cs,

M( 3(WtN)) = adAoAQOh
M(ADy(wty)) = adztAZCE,
M(ADs(wty)) = abedat ASCECl,
M(ADg(wty)) = abedryzt AfACEC3,
M(AD;(wty)) = a?bed*x?y2t2 ASA,C3C3,

where Ay = ac+bd, Ay = xz+yt, Ag = A1+ Ay, C) = 2tA} +adA3, Cy = yzA3 +bcA3,
Cs = acA3 + ytA?, and Cy = bdA3 + xzA? .
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Sketch of proof. We prove only the first recurrence, the other ones can be treated similarly.
By the Reduction Theorem and the definition of the operator d we have four recur-
rences as below.

M(ADy, (wty))
M(ADy,—1(wtaew)))

M(ADs1 (Wha)) _( o )<>( Cs )<4n—1><n—1>
M<AD4H*2(Wtd(2)(N)>> - \AAS ATA

(4n—1)n (4n—1)n
X Cs Ca : (91)
ATA3 ATA3

M(ADun—2(Wtao w))) _ (AOAi’AQad)“n‘”” (AOA?Agxt)(4n_Q)n

=AY AR (90)

M(AD4n,3<Wtd(3)(N))) 010304 010304
4n—2)(n—1) (4n—2)(n—1
AgA3AZhe\ WD A AT Ay U2 ) (92)
020304 C(26136’4 '
4n—3 4n—3)(n—1
M(AD.gy—5(Wtgs) () ( C3C4C3 >< e ( 302 )< n=8)n-1)
- 2 A6 A6 2 A6 A6
M(AD g a(Whyea () AZATASadaxt AFAYASacyt
—3)(n— 4n—3)(n—1
< C§Cj’ )(4n 3)(n—1) ( 030405 )( n—3)(n—1) 3)
X\ 5 S A .
2 A6 A6 2 A6 A6
AFAYASbdz = AFAYASbey =
Moreover, we can verify that matrix d (V) is given by
AD(N) =
_A0A4A3azt A0A4A3ayt A0A3A4acy A0A3A4bcy A0A4A3byz A0A4A3bxz A0A3A4bda: A0A3A4adx_

C C3 C’ Cy C Cy CgC C Cy CgC CgC 6'4021
A0A4A3dzt A0A4A3dxz A0A3A4bdz A0A3A4bcz A0A4A3cyz A0A4A3cyt A0A3A4act A0A3A adt

C3Cy Cg,C'i C‘gCé C4C§ Cg,Cgi C§C4 C3Cy 0302
A0A3A4ada: AOASA bdx A0A4A brz A0A4A byz AOAsA bey AgAy A4acy A0A4A2ayt A0A4A3aast

C4C C’3Ci é C4C CgC’Z C Cy C Cy %
AOASAgadt AgA3ASact A0A4A20yt A0A4Agwyz AgA3ATbez A0A3A4bdz A0A4A3dm A0A4A dxt

C3C’2 0204 0204 6’302 6‘46’2 6’302 0302 0402

Divide the weight matrix of ADy, 4(Wtya ) into 4n — 3 parts (by columns) as in
Lemma 5(a). Multiply all entries in the (4k + 1)-th part by %}2%4, for k=0,...,n—1;
multiply all entries in the (4k + 2)-th and (4k + 4)-th parts by %, and multiply all
entries in the (4k+ 3)-th part by AOZ—?;A%, for k =0,1,...,n—2. We get the weight matrix
of the weighted Aztec diamond ADy, _4(wtx), where

adg ayt acy bey byz brz bdx adx

C3As C3Ao C3Aq C3Aq CyAo CyAo C4Ao CyAo

ceg [? bdz l?cz cyz cyt act adt

N _ | C4As  CslAs  CsA;  Cy4Ay C3As  Cs3As  C3As  C3Ag
- ace bdx bz byz (;3 acy ayt axt
CyA1  CyA1 Cilhos  Ciho  C Al C3A1  C3As  Csls

acg act cyt cyz cz bdz Tz xt

C3Aq C3Aq C3As C3As CiAq CiAq [GFVAN) C1As
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Thus, we get from Lemma 5

M(ADyy,—4 (Wtd(4) (N) )
M(ADyy—4(wt))

4 o (dn—d)dn—3) [ 1 \Un—Hn

e

1 (4n—4)2(n—1) 1 (4n—4)2(n—1)
X — : (94)
0304 02

Next, we divide the weight matrix of ADy,,_4(wty) into (4n — 3) x (4n — 4) blocks M,;,
fori=1,2,...,4n—3,and j = 1,2,...,4n—4, as in the Lemma 6. Multiply all entries of

blocks Mopi1.4g+1 and Mopyo 4944 by a—:;; multiply all entries of Moy 4942 and Maopyo 4g+3
C C

by —; multiply all entries of My ag1+3 and Mopyo 4042 by b—4; and multiply all entries
cy z

of Mapi1ag1a and Mopio 4941 by %. We get the weight matrix of the weighted Aztec
T
diamond ADy,_4(wt5), where
v/Dy y/Dy a/Ay b/AL y/Ay /Ay b/AL a/A
~ t/AQ Z/AQ d/Al C/Al Z/AQ t/AQ C/Al d/Al
a/Ar b/AL w/Ay y/Ay b/AL a/Ay y/As x]/A
d/Al C/Al t/AQ Z/AQ C/Al d/Al Z/AQ t/AQ

We apply Lemma 6 and obtain

M(AD4n_4(Wtﬁ)) B a_t 4n—3 d_l’ 4n—3 ﬂ 4n—3 b_Z 4n—3 (95>
M(ADy, 4(wtg))  \Cs Cy Cs Cy '
Using the equations (90)—(95) above, we imply
M(AD4TZ(WtN))

_ Agnf2A?(n*1)gAg(nfl)Q012n022n72anbnflcnfldnxnynflanltn. (96)

M (AD4n_4 (Wtﬁ))

Moreover, by applying the recurrence (96) to ADy,_4(Wty), we get

M(AD4nf4(Wtﬁ)) B AO 4(n—1)-2 1 8(n—2)* 1 8(n—2)2 ad + t 2(n—1)
M(ADy,—s(Wtw)) B A1 A Ay Ay A%A%

be + yz U n—1 n—2 n—2
“\ Azaz (/D)™ (y/A2)" " (2/ As)
X (t/D2)"Ha/A)"7H(b/Ar)" P e/ Ar)" 2 (d/Ay)" (97)
Finally, the first recurrence of the theorem follows from (96) and (97). O

6 A variant of the triangular lattice

We consider a new lattice obtained from the triangular lattice as follows. The triangular
lattice can be partitioned into equilateral triangles of side-length 3, which we call basic
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triangles. Fach of these basic triangles consists of 9 unit equilateral triangles. Remove all
six lattice segments forming a unit hexagon around each vertex of these basic triangles.
An elementary region in the new lattice is either a unit equilateral triangle or a unit
rhombus (see Figure 30). Each basic triangle on the new lattice is covered by three unit
equilateral triangles and three unit rhombi.

VAN
XIS IPNS KN
\ A

\WVAVAY A
ARSNA
\/

/ y /
Y%A\A/\/ V’A‘AV V’ A\/

AVA
N NN\
/NNNN NN NN

Figure 30: The region Rs.

AV’VA‘AV‘V’A’AV \VAVAN
VA

Consider a vertical rhombus R of side-lengths 3n+2 whose four vertices are four lattice
points and whose horizontal symmetry axis passing a vertex of some basic triangle. We
consider a region that consists of all elementary regions lying completely or partly inside
R, together with all unit triangles which have an edge resting on the boundary of R.
Denote by R, the resulting region (see the region restricted by the bold contour in Figure
30, for the case n = 3). The number of tilings of R,, is given by the following theorem.
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Theorem 25. For any positive integer n

T(Rn) _ 3n(n+1)2(n+1)2‘ (98)

Figure 31: Ilustrating the transforming in the proof of Theorem 25.

Proof. Remove all edges incident to a vertex of degree 1 in the dual graph of R,,, which
are forced edges (illustrated in the left picture in Figure 31 by the dotted edges, for
n = 3). Then apply Vertex-splitting Lemma 1 to the top and bottom vertices of all
regular hexagons in the resulting graph (illustrated by the circled vertices in left picture
in Figure 31).

Deform the resulting graph into a subgraph of the square lattice (see the right picture
in Figure 31). Apply the vertex splitting Lemma 1 again to vertices of shaded cells which
have even degree. Then apply Spider Lemma 4(a) to all 3n® + 4n + 1 shaded cells in the
resulting graph (shown by the left picture in Figure 32). Again, we remove all forced edges
that are incident to a vertex of degree 1. Finally, apply Edge-replacing Lemma 2 to all
multiple edges arising from the previous steps (see the right picture in Figure 32). We get
an isomorphic version of the weighted Aztec diamond ADs,(wt4) (ADg,(wt,) is obtained
from the final graph by rotating 45° clockwise and reflecting it about a horizontal line),
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where

/2 1/2 1/2 1/2
/2 1 0 1/2
3/2 0 1 1/2
3/2 3/2 1/2 1/2

A:

By Lemmas 1, 2 and 4, we get
T(R,) = 2>+ M(ADy, (Wt a, ). (99)

<o
>

[ 3
.-

Figure 32: Illustrating the transforming in the proof of Theorem 25 (cont.). The dotted
edges are weighted by 1/2, and the solid edges are weighted by 1.

Next, we calculate the values of M(ADs,(wt4)) by using Reduction Theorem. It is
easy to check that
2/3 2 2 2/3
2/3 2/3 2/3 2/3

A =193 9/3 43 0 |
2/3 2 0 4/3
3/8 3/8 9/8 9/8
oo |3/8 3/4 0 98
A2 =138 0 a4 38|
3/3 3/8 3/8 3/8
8/9 8/9 8/9 8/9
a3 89 89 /3|

8/3 8/3 16/9 0
8/9 8/9 0 16/9

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(4) (2013), #P31 45



and

9

A (4) = = . A.
The cell-factors of cells in ADs,(wt4) are either %, % or 71;» so by the Reduction Theorem

M(ADy, (wt4)) = (2) (%) (i) M(ADs (). (100

All cells in ADs,,_1(Wtgca)) have the same cell-factor %, from the Reduction Theorem
again, we have

(2n—1)2
16
The cells of the Aztec diamond ADs, 5(Wty2)(4y) have cell-factors either 2 S or 2 By

the Reduction Theorem one more time, we obtain

97 2(n—1)2 81 (n—1)2 9 (n—1)2
(102)

Since the cell-factors of the cells in ADgn_g(Wtd(s)( A)) are all 19%2, the Reduction Theorem
implies

162
92
From the fact d¥(A) = A, Lemma 5(a) implies

(2n—3)2
M(ADQn_g(Wtd(S)(A))) = ( ) M(ADQn_4(Wtd(4)(A))). (103)

9\ Cn=H(n—1)
M(AD2p—a(Wty (4y)) = (1_6) M(ADy,—4(wta)). (104)
By (100)—(104), we get
M(ADs, (wt4)) = 2784342 N[(ADy,_4(wt4)). (105)
Repeated application of (105) implies
M(ADy, (wt4)) = 3n(rrhg=2n(ntl), (106)
Finally, the equality (98) is obtained from (99) and (106). O
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