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Abstract

The random Fibonacci sequence is defined by t1 = t2 = 1 and tn = ±tn−1 +
tn−2, for n > 3, where each ± sign is chosen at random with probability P (+) =
P (−) = 1

2 . Viswanath has shown that almost all random Fibonacci sequences
grow exponentially at the rate 1.13198824 . . . . We will consider what happens to
random Fibonacci sequences when we remove the randomness; specifically, we will
choose coefficients which belong to the set {1,−1} and form periodic cycles. By
rewriting our recurrences using matrix products, we will analyze sequence growth
and develop criteria based on eigenvalue, trace and order for determining whether a
given sequence is bounded, grows linearly or grows exponentially. Further, we will
introduce an equivalence relation on the coefficient cycles such that each equivalence
class has a common growth rate, and consider the number of such classes for a given
cycle length.

Keywords: random Fibonacci sequence, growth rate, periodic, matrix trace

1 Introduction

In 1999, Viswanath [19] introduced a random component to the Fibonacci sequence, such
that instead of adding consecutive terms, we either add or subtract with equal probability.
He was able to prove some remarkable results about this new sequence.

Definition 1. The random Fibonacci sequence {tn} has initial terms t1 = t2 = 1 and is
given by the recurrence

tn = ±tn−1 ± tn−2, (1)

for n > 3, where each ± sign is chosen independently with probability P (+) = P (−) = 1
2
.
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Viswanath instead used the sequence

tn = ±tn−1 + tn−2, (2)

which because of symmetry in the probabilities, is equivalent to that defined in (1). (We
could equally well have placed the ± sign before the latter term.)

Theorem 2 (Viswanath). For almost all random Fibonacci sequences, the growth rate is
given by

lim
n→∞

|tn|
1

n = 1.13198824 . . . .

Viswanath’s result is counterintuitive because we might expect that with an equal
number of additions and subtractions (on average), the terms would eventually balance
out to zero. Or, it could be possible that they jump around so chaotically that no limit
in the growth rate is reached.

Viswanath was only able to calculate eight decimal places of this constant (see [20,
A078416]) through extensive computations of upper and lower bounds. In 2007, Bai [1]
extended the constant by five decimal places to 1.1319882487943 . . . . There is no known
closed form or analytic expression for Viswanath’s constant and nothing else is known
about its nature, although it is reasonable to conjecture that it is irrational and also
transcendental.

Viswanath’s problem was considered in greater generality by Furstenberg [7] in 1963,
when he studied the asymptotic behaviour of the sequence defined by the recurrence
xn = αnxn−1 + βnxn−2, where (αn, βn) form a sequence of i.i.d. random vectors. From
Furstenberg’s work, Viswanath was able to conclude that almost all random Fibonacci
sequences {tn} grow exponentially. Many after Viswanath have varied and generalized
his ideas. Embree and Trefethen [6] introduced a parameter to the recurrence and found
the critical value at which growth turns to decay, and Janvresse, Rittaud and de la Rue
(see [10] and [11]) also introduced a parameter, as well as let 0 < p 6 1.

Random matrix products and random Fibonacci-type sequences arise in a wide range
of fields, in particular, those involving one-dimensional disordered systems. For exam-
ple, applications include randomly coupled harmonic oscillators, quantum mechanics of
an electron in one dimension, population evolution (Bai [2]), resistance in an electrical
network (Colman and Rodgers [4]), and materials with irregular atomic structure (De-
vlin [5]).

The aim of this paper is to remove the randomness from Viswanath’s work. In-
stead of tackling the growth of a random Fibonacci sequence using random matrix theory
or other stochastic methods, we use matrix products obtained from periodic sequences.
McGuire [13] independently had the idea to study deterministic matrix products and to
observe the behaviour of the corresponding sequences. He gave necessary conditions for
such a sequence to be periodic, as well as the possible periods of the sequences.

In Section 2 we introduce the framework for the main results of this paper, including
product matrices, and periodic coefficient sequences and their growth rates, along with
several examples. To do this we must first consider the growth of a general second order
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linear recurrence. In Section 3 we study the trace and determinant of a product matrix,
and determine how these criteria can be used to classify periodic coefficient sequences
according to growth type. We also look at the connection between growth type and order
of a product matrix, an idea which was considered by McGuire [13]. In Section 4 we
examine some methods used to approximate Viswanath’s constant, and further, consider
an equivalence relation on coefficient cycles which allows us to reduce the computations
required for such an approximation.

2 Growth Types of Periodic Coefficient Sequences

Our aim in this section is to remove the randomness from Viswanath’s random Fibonacci
sequence by forming sequences according to a fixed pattern. These sequences will have
growth rates that differ from the almost sure value 1.13198824 . . . . We begin this task
by introducing some definitions, which allow us to formulate the “non-random Fibonacci
sequence”.

Definition 3. (a) A coefficient cycle of length n is an n-tuple σn = (s1, . . . , sn), where
sj ∈ {+,−} for 1 6 j 6 n.
(b) The periodic coefficient sequence for σn is given by the recursion in Equation (2) for
i > 3, where t1 = t2 = 1 and each ± sign is chosen according to σn as follows:

ti = s1+(i−3)modn ti−1 + ti−2. (3)

The index j of sj takes on the values 1, . . . , n, and then cycles back through as i in-
creases. The following motivating example demonstrates the different types of behaviours
of a periodic coefficient sequence. (For simplicity of notation, we will remove the commas.)

Example 4. Let σ3 = (+ +−). Generating the periodic coefficient sequences gives

+ + − + + − + . . .

ti = 1 1 2 3 − 1 2 | 1 1 . . . ,

where the bar denotes repetition. The period of repetition is 6, which is a multiple of
n = 3. If we let σ4 = (+ +−−), the corresponding sequence is

+ + − − + + − − + + − − +

ti = 1 1 2 3 − 1 4 3 7 − 4 11 7 18 − 11

+ − − . . .

29 18 47 − 29 76 . . . .

and it appears as if the sequence is unbounded in absolute value. Also, the coefficient
cycle σ6 = (+ + +−−−) generates the periodic coefficient sequence

+ + + − − − + + + − −
ti = 1 1 2 3 5 − 2 7 − 9 − 2 − 11 − 13

− + + + − − − . . .

2 − 15 17 2 19 21 − 2 23 − 25 . . . ,
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which appears to be growing linearly in absolute value, with every third term equal to 2.

Upon inspection, there is no obvious connection between the coefficient cycles σn

and the growth type. In order to understand the behaviour of our periodic coefficient
sequences, we can represent the recurrence given in Equation (3) as a matrix equation for
i > 3 as follows:

(

ti−1

ti

)

=

(

0 1
1 ±1

)(

ti−2

ti−1

)

, (4)

where the vector (ti−2, ti−1)
T is multiplied by a member of
{

A =

(

0 1
1 1

)

, B =

(

0 1
1 −1

)}

,

according to the value of the term s1+(i−3)modn in the coefficient cycle σn: A for + and B
for −. Note that for Viswanath’s random Fibonacci sequence given by Equation (2), the
matrix equation is the same, but we choose one of A or B with probability 1

2
. Janvresse et

al. [10] study the random Fibonacci sequence ti = ti−1 ± ti−2, where the ± sign is shifted,
as mentioned in Section 1. This results in a matrix recurrence using A,B = ( 0 1

±1 1 ). Also,
for the regular Fibonacci sequence, we choose A at every step. Iterating Equation (4) for
i = n+ 2, and incorporating initial values, gives

(

tn+1

tn+2

)

= MnMn−1 · · ·M1

(

1
1

)

, (5)

where Mj ∈ {A,B} for 1 6 j 6 n, and is chosen by sj in σn = (s1, . . . , sn).

Definition 5. Given Mj for 1 6 j 6 n as in (5), we define the product matrix Pn

associated with the coefficient cycle σn to be Pn := M1 · · ·Mn.

We will later see that reversing the order of the matrices in Equation (5) to define Pn is
permissible when analyzing the growth of the associated sequence, so we write our product
matrix with increasing indices so that it better reflects the pattern in the corresponding
coefficient cycle. We will still need to use the form in Equation (5) when finding explicit
sequence terms, however.

Since det(A) = det(B) = −1, all matrices Pn are unimodular. For n even or odd we
have det(Pn) = 1 or −1, respectively. It is straightforward to show that the matrices A
and B form a multiplicative group

G := 〈A,B〉 6 S∗L(2,Z) = GL(2,Z),

where S∗L(2,Z) is the extension of the special linear group to unimodular matrices. This
is not a free group because various relations, such as AABAAB = I exist between the
matrices. We have the following characterization of elements Pn ∈ K, where K :=
G ∩ SL(2,Z).

Proposition 6. The group K < G is composed of exactly those elements Pn = ( a b
c d ) ∈

SL(2,Z) with Pn ≡ ( 1 0
0 1 ) , (

0 1
1 1 ), or ( 1 1

1 0 ) when we take a, b, c, d modulo 2.
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We will now take a closer look at the three types of growth demonstrated by the
periodic coefficient sequences. To do this, we will first need to consider the growth of a
general second order linear recurrence relation

an = uan−1 + van−2, (6)

for n > 3, where a1, a2, u, v ∈ Z.

Definition 7. We say a sequence {an} defined by a second order linear recurrence has
exponential growth if

lim
n→∞

|an|
1

n = c, (7)

with c > 1. We call c the growth rate of the sequence. We can similarly define the growth
rate as

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= c, (8)

when this limit exists. We say a sequence {an} defined by a second order linear recurrence
has linear growth if the terms can be written as

an = pn+ q,

for some p, q ∈ Z, p 6= 0. We say a sequence {an} defined by a second order linear
recurrence has bounded growth if for all n we have that |an| 6 q for some q ∈ Z.

Bajaj [3], for example, has shown that for a positive sequence {an}, if the limits in
Equations (7) and (8) both exist, then they are equal.

The growth type of a general second order linear recurrence can be determined by the
eigenvalues of the companion matrix, which is used to represent the recurrence as

(

an−1

an

)

=

(

0 1
v u

)(

an−2

an−1

)

.

From the characteristic equation x2−ux−v = 0 we find the eigenvalues λ1 and λ2 in terms
of u and v, where we assume |λ1| > |λ2|, i.e., λ1 is the dominant eigenvalue. Note that
the characteristic equation can also be obtained from the recurrence given in Equation
(6).

Using the well known facts (for example, see Vajda [17, p. 18]) that the closed-form
expression for the term an, with an > 1 is given as

an = αλn
1 + βλn

2

for λ1 6= λ2, where α and β rely on the initial values a1 and a2, and

an = (α + βn)λn
1

for λ1 = λ2, we can deduce that the growth of a general second order linear recurrence
must have one of the growth types bounded, linear or exponential. Further, we have the
following proposition.
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Proposition 8. The growth of a second order linear recurrence sequence, where λ1 and
λ2 are eigenvalues of the companion matrix, is

i. exponential if and only if |λ1| > 1,

ii. linear if and only if λ1 and λ2 are equal roots of unity,

iii. bounded if and only if |λ1|, |λ2| 6 1 where the eigenvalues are not equal roots of unity,

with the exception of the following cases. The growth is also bounded if a1 = a2 with λ1

or λ2 = 1; a1 = −a2 with λ1 or λ2 = −1; a2 = 0 with λ1 or λ2 = 0; or a1 = a2 = 0. The
growth rate of an exponentially growing sequence given by |λ1|.

Proofs of the preceding results and further details can be found in McLellan [16].
We now want to apply this information to our periodic coefficient sequences. The key

is to think of a periodic coefficient sequence for σn as being composed of n subsequences.
An example here will be helpful.

Example 9. The periodic coefficient sequence for σ4 = (+ + −−) is listed vertically to
create four subsequences which appear to be growing exponentially.

1, −1, −4, −11, −29, . . .
1, 4, 11, 29, 76, . . .
2, 3, 7, 18, 47, . . .
3, 7, 18, 47, 123, . . .

We can see that each is growing according to the recurrence relation

tn = 3tn−1 − tn−2. (9)

The product matrix in this example is P4 = AABB = ( 0 1
−1 3 ). The characteristic equation

is x2 − 3x + 1 = 0, which is also what we get from Equation (9). The eigenvalues are
3±

√
5

2
, which indicate exponential growth by Proposition 8.

In this example, P4 is in the form of a companion matrix, which, however, is not
always the case. The characteristic equation obtained from a product matrix Pn = ( a b

c d )
is x2 − (a+ d)x+ (ad− bc) = 0. Comparing with the form of the characteristic equation
x2 − ux− v = 0, we see that

u = a+ d = tr(Pn), (10)

v = −(ad− bc) = −det(Pn),

where u, v ∈ Z because we have seen the matrices Pn belong to S∗L(2,Z). Note also that
this tells us that v = ±1, which we have seen. Using this together with the fact that the
product of eigenvalues is the determinant of a matrix, we can rewrite Proposition 8 as
follows.
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Theorem 10. Given a product matrix Pn with eigenvalues λ1 and λ2, the growth of a
given subsequence is

i. exponential if and only if |λ1| > 1,

ii. linear if and only if Pn 6= ±I and the eigenvalues λ1, λ2 are both 1 or both −1,

iii. bounded if and only if Pn = ±I or λ1, λ2 are distinct roots of unity,

with the following exceptions. The growth is also bounded if λ1 = 1 with a1 = a2; λ1 = −1
with a1 = −a2; or a1 = a2 = 0. The growth rate of an exponentially growing subsequence
is |λ1|.

In order to generate the first two subsequences in Example 9, we can use the matrix
BBAA (the reverse product of P4) multiplied by the initial value vector, as given in Equa-
tion (5) and mentioned in the remark after Definition 5. In order to generate the other
subsequences, we must rotate the terms in our product matrix and use the corresponding
initial value vector.

Proposition 11. Given a coefficient cycle σn = (s1, . . . , sn), with n > 1, rotating the
entries (to the right) by k, where 0 6 k 6 n− 1, gives a new cycle
σ′
n = (sn−k+1, . . . , sn, s1, . . . , sn−k) with corresponding product matrix having the same

characteristic equation as the original product matrix.

It is a straightforward calculation to show that the trace and determinant, and hence
characteristic equation are unchanged by such a rotation.

Corollary 12. Given a coefficient cycle σn = (s1, . . . , sn), with n > 1, the corresponding
periodic coefficient sequence can be broken down into n subsequences, each of which grows
according to the same second order linear recurrence relation.

Example 13. The periodic coefficient sequence for σ6 = (+++−−−) (see Example 4)
can be broken down into the following six subsequences:

1, 7, −15, 23, . . .
1, −9, 17, −25, . . .
2, −2, 2, −2, . . .
3, −11, 19, 27, . . .
5, −13, 21, −29, . . .

−2, 2, −2, 2, . . .

In absolute value, it appears that four of the six subsequences are growing linearly with
difference 8, with the exception of the first two terms of the first subsequence, and the
other two subsequences are constant in absolute value and hence bounded. We have
P6 = A3B3 =

(

3 −4
4 −5

)

, which has characteristic equation x2 +2x+1 = 0. This implies the
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recurrence tn = −2tn−1 − tn−2, which fits our data, even the exception. Solving, we get
a double eigenvalue λ1 = −1, which by Proposition 8 implies linear growth, but we must
also consider the third and sixth subsequences. Here we have λ1 = −1 and a1 = −a2,
which again by Proposition 8 implies bounded growth.

The periodic sequence for the cycle σ3 = (+ + −) is broken down into three subse-
quences as follows:

1, 3, 1, 3, 1, 3, . . .
1, −1, 1, −1, 1, −1, . . .
2, 2, 2, 2, 2, 2, . . .

Each of these sequences is clearly bounded. The product matrix in this case is P3 =
A2B = ( 1 0

2 −1 ), which has characteristic equation x2 − 1 = 0. The corresponding recur-
rence is tn = tn−2, which is satisfied by all three subsequences. The eigenvalues of the
characteristic equation are λ1 = 1, λ2 = −1 and Theorem 10 tells us distinct roots of
unity imply bounded growth.

We can extend this example by considering what happens when we double the co-
efficient cycle. Let σ6 = (+ + − + +−). We know it must behave the same way as
σ3 = (+ + −) because it generates the same periodic coefficient sequence. This time we
obtain six subsequences, each of which is constant, and product matrix P6 = P 2

3 = I, with
characteristic equation x2−2x+1 = 0, recurrence tn = 2tn−1−tn−2 and double eigenvalue
λ1 = 1. The double eigenvalue would suggest linear growth, but again this falls into the
exceptional case because each of our subsequences has a1 = a2, ensuring bounded growth.

Linear growth requires a double eigenvalue of ±1, and so there are only two options
for the recurrence, namely

tn = ±2tn−1 − tn−2.

It is clear that if a1 = ±a2 (depending on the value of λ1), the sequence will remain
constant in absolute value.

The following known result characterizes sequences with bounded growth.

Proposition 14. A periodic coefficient sequence for σn has bounded growth if and only
if it is periodic with some finite period length l = nk.

Our proof in [16] uses the fact that any product matrix has one of three possible Jordan
normal forms over C, depending on its eigenvalues, to show that a periodic coefficient
sequence has bounded growth if and only if the associated product matrix has finite order
k. This is equivalent to repeating the coefficient cycle k times to create a new coefficient
cycle of length nk, which gives us a list of constant subsequences. McGuire [13] makes
use of the pigeonhole principle to prove this result.

We can now define the growth of a periodic coefficient sequence, and further, determine
the exact growth rate in the case of exponential growth.
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Definition 15. We say that a periodic coefficient sequence {ti} for σn grows exponentially
if all n subsequences grow exponentially, we say it grows linearly if at least one subsequence
grows linearly and it is bounded if all n subsequences are bounded.

Proposition 16. The growth rate of an exponentially growing periodic coefficient sequence
{ti} for σn is |λ1|

1

n , where λ1 is the dominant eigenvalue of the corresponding product
matrix Pn.

Proof. Theorem 10 and Corollary 12 together tell us that the dominant eigenvalue λ1

exists and gives us the growth rate of any of the n subsequences which are formed by
considering every nth term in the periodic coefficient sequence. Taking the nth root of this
growth rate allows us to determine the growth rate of the periodic coefficient sequence
term by term.

3 Classification of Periodic Coefficient Sequences

The following results relate the parity of the term u, given in Equation (10), with the
divisibility of n.

Theorem 17. For a product matrix Pn with trace u,

u even ⇐⇒ 3 | n,
u odd ⇐⇒ 3 ∤ n.

Proof. Applying the modulo 2 homomorphism

mod2 : SL(2,Z) → SL(2,Z/2Z),

we see that our matrices A and B have equivalent images. The images of powers of A
behave in a cyclical fashion, rotating through A, ( 1 1

1 0 ) and I, for n ≡ 1, 2, 0 (mod 3)
respectively. The trace value u therefore behaves as required.

Theorem 18. For a product matrix Pn with even trace u we have the further distinction

u ≡ 0 (mod 4) ⇐⇒ n ≡ 3 (mod 6),

u ≡ 2 (mod 4) ⇐⇒ n ≡ 0 (mod 6).

The proof is similar to that of Theorem 17, taking matrix entries modulo 4 instead. The
following theorem, which is one of our main results, gives the connection between trace
value and type of growth. We use the fact that the trace of a matrix is equal to the sum
of its eigenvalues, i.e., u = λ1 + λ2.

Theorem 19. Given a product matrix Pn with n odd and Pn 6= ±I, the growth of the
corresponding periodic coefficient sequence is

exponential ⇐⇒ u 6= 0,

bounded ⇐⇒ u = 0,
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and if n is even the sequence growth is

exponential ⇐⇒ |u| > 2,

linear ⇐⇒ |u| = 2,

bounded ⇐⇒ |u| = 1.

If Pn = ±I, growth is bounded.

Proof. We have seen in Theorem 10 that for Pn = ±I, growth is not linear but bounded,
despite the fact that u = ±2, and from here on we will exclude this case. Recall that the
characteristic equation of a product matrix has form x2 − ux± 1. If we first consider the
general n odd case, our characteristic equation has the form x2−ux−1, giving eigenvalues

λ1, λ2 =
u±

√
u2 + 4

2
. (11)

We know from Theorem 10 and Definition 15 that the growth of a periodic coefficient
sequence is bounded if and only if the eigenvalues are distinct roots of unity. Using
the fact that the discriminant is always positive (and hence the eigenvalues cannot be
complex), we have boundedness if and only if λ1 = 1, λ2 = −1. In turn, this occurs if
and only if u = λ1 + λ2 = 0. Since the radical is always positive, we can never have a
double root, i.e., growth is never linear, by Theorem 10. Therefore, since it is the only
other option, we must have exponential growth if and only if u 6= 0.

If we now consider the n even case, our characteristic equation has form x2 − ux+ 1,
giving eigenvalues

λ1, λ2 =
u±

√
u2 − 4

2
. (12)

We know from Theorem 10 that the growth of our sequence is linear if and only if the
eigenvalues are both equal to 1 or −1. In turn, this occurs if and only if u = λ1+λ2 = ±2.
For n even we have det(Pn) = 1, and therefore λ1λ2 = 1. If λ1, λ2 are distinct roots of
unity, they must be complex, in which case we need u2 − 4 < 0. Therefore the only
possibilities for bounded growth are for u = 0,±1. But we have seen in Theorem 18 that
u can take on the value 0 only when n ≡ 3 (mod 6), in which case n is odd. Therefore
bounded growth must occur only when u = ±1. Conversely, when u = 1,−1 we get
eigenvalues 1±

√
−3

2
and −1±

√
−3

2
respectively, which are pairs of distinct roots of unity and

hence growth is bounded by Theorem 10. The remaining u values, i.e., |u| > 2 therefore
correspond to sequences with remaining growth type, exponential growth.

Combining previous results we have the following corollary.

Corollary 20. Given a product matrix Pn 6= ±I we have the following results about the
growth of the corresponding periodic coefficient sequence:

linear ⇒ 6 | n,
n or u odd ⇒ bounded or exponential.
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If Pn = ±I, we have 6 | n. Further, if n is odd we have

bounded ⇒ 3 | n,
3 ∤ n ⇒ exponential.

Proof. By Theorem 19 linear growth occurs only when n is even and |u| = 2. Theorem
17 tells us that u is even if and only if 3 | n, hence 6 | n. Therefore, if 6 ∤ n then growth
is not linear. In other words if n or u is odd (i.e., 2 ∤ n or 3 ∤ n) then growth is bounded
or exponential. In the Pn = ±I case, the proof follows as above because det(±I) = 1,
implying n is even.

For n odd, Theorem 19 tells us that bounded growth implies u = 0. Theorem 17 then
tells us that for u even, 3 | n. The second statement is simply the contrapositive of the
first, where we have used the fact from Theorem 19 that when n is odd, if growth is not
bounded, it must be exponential.

We have looked at the connection between the trace of a product matrix and growth
type of the corresponding periodic coefficient sequence and now we will consider the con-
nection between the order of a product matrix and growth type. The following definition
can be found in Weinstein [18, p. 84].

Definition 21. The projective special linear group, PSL(2,F), for a field F is defined as
the quotient group

PSL(2, F ) := SL(2, F )/Z(SL(2,F)),

where SL(2, F ) is the special linear group and Z(SL(2, F )) is its center.

We can similarly define this group over a ring R.
The following result can be found in [18, p. 83]. We are interested in the group

G 6 S∗L(2,Z) of product matrices, where S∗L(2,Z) has corresponding projective group
PS∗L(2,Z) = S∗L(2,Z)/Z(S∗L(2,Z)).

Proposition 22. Let R be a commutative ring with identity. Then Z(SL(2, R)) = {±I}.

Therefore Z(SL(2,Z)) = {±I}, and similarly, Z(S∗L(2,Z)) = {±I}. Since G is a subgroup
of S∗L(2,Z), we can define the group PG which is a subgroup of PS∗L(2,Z) and has
elements [M ] = {±M}, where M ∈ G. The identity of all of these projective groups is
[I] = {±I} = 1.

The following results are taken from [18, p. 89].

Theorem 23. Let [M ] ∈ PS∗L(2,Z). Then ord([M ]) = 2 if and only if tr(M) = 0.

This result is proved in [18, p. 89] for matrices [M ] ∈ PSL(2, F ) with char(F ) 6= 2.
Since it is therefore true for matrices with entries in R, it must also be true for matrices
with strictly integer entries, and the result can be similarly proved for matrices with
determinant −1.
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Corollary 24. Let M ∈ S∗L(2,R) with tr(M) = 0. Then

det(M) = 1 ⇐⇒ M2 = −I ⇐⇒ ord(M) = 4,

det(M) = −1 ⇐⇒ M2 = I ⇐⇒ ord(M) = 2.

The majority of the proof follows from the proof of Theorem 23. We must also look at
the general form of the matrix M4, where tr(M) = 0.

The following theorem also comes from a result of Weinstein [18, p. 90], who proved
it for PSL(2, F ) for a field F with char(F ) 6= 3.

Theorem 25. Let [M ] ∈ PSL(2,Z). Then ord([M ]) = 3 if and only if tr(M) = ±1.

This theorem is not true in general for PS∗L(2,Z). Again we can distinguish between the
two possible orders, using the proof of Theorem 25.

Corollary 26. For a matrix M ∈ SL(2, F ) we have

tr(M) = 1 ⇐⇒ M3 = −I ⇒ ord(M) = 6,

tr(M) = −1 ⇐⇒ M3 = I ⇐⇒ ord(M) = 3.

If we consider our specific group G = 〈A,B〉 of product matrices Pn, we obtain the
following results.

Proposition 27. For a product matrix Pn, we have that tr(Pn) = 0 if and only if
ord(Pn) = 2.

Proof. If ord(Pn) = 2 we have by Theorem 23 that tr(Pn) = 0. Conversely, suppose that
tr(Pn) = 0. We want to discount the possibility in Theorem 23 of ord(Pn) = 4. By
Theorem 18, we have that if tr(Pn) = 0 then n ≡ 3 (mod 6). But by Corollary 24, since
n is odd (i.e., det(Pn) = −1), we must have ord(Pn) = 2.

Corollary 28. For a product matrix Pn 6= ±I with det(Pn) = 1:

ord([Pn]) = 3 ⇐⇒ bounded,

For a product matrix Pn 6= ±I with det(Pn) = −1:

ord(Pn) = 2 ⇐⇒ bounded.

Proof. Suppose [Pn] has order 2 or 3. The note after Proposition 14 tells us that a product
matrix with finite order corresponds to bounded growth. Now suppose growth is bounded.
Theorem 19, for the n even case (i.e., det(Pn) = 1), tells us that |u| = 1. By Theorem 25,
the order of [Pn] must be 3. If we have det(Pn) = −1, Theorem 19 tells us that growth
is bounded if and only if tr(M) = 0, but by Proposition 27, tr(Pn) = 0 if and only if
ord(Pn) = 2.

We can now completely characterize bounded sequences for any value of n.
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Corollary 29. For any product matrix Pn 6= ±I,

bounded ⇐⇒ ord(Pn) = 2, 3 or 6.

Proof. This follows directly from Corollary 28, using the fact that ord([Pn]) = 3 implies
ord(Pn) = 3 or 6.

Note that it is known that any element M ∈ GL(2,Z) of finite order (i.e., having bounded
growth for Pn) has order 1, 2, 3, 4 or 6. The proof can be found in [12], for example.

McGuire [13] gives a proof of Corollary 29 using eigenvalues in polar coordinates.
In his proof he uses the facts that if λ1, λ2 = ±1 then ord(Pn) = 2 (in which case we
have det(Pn) = −1 and tr(Pn) = 0), and if tr(Pn) = ±1 for Pn with finite order, then
ord(Pn) = 6, 3 respectively. He also gives the following necessary condition for sequences
to be periodic (i.e., bounded, by Proposition 14). In our terminology, given a coefficient
cycle of length n determining a bounded periodic coefficient sequence, we must have

ord(Pn) · n ≡ 0 (mod 3).

The converse of this statement is not true, however. McGuire’s result is implicit in our
previous results on order and trace. Interestingly, in [14] he generalizes this result to
random m-nacci (mth order) sequences. Instead of forming periodic coefficient sequences
using coefficient cycles of ± signs, he uses size-n sets of (m− 1)-tuples of ± signs. Using
products of m × m matrices he shows that for a bounded periodic coefficient sequence,
we must have

ord(Pn) · n ≡ 0 (mod m+ 1).

4 Approximating Viswanath’s Constant

One way to approximate Viswanath’s constant is to generate a long random Fibonacci
sequence and calculate its exponential growth using Definition 7. This random sampling
was used by Viswanath [19], where a sequence of length one million was shown to have
growth rate 1.132 and reached values of over 1050,000. This still only gives two decimal
places of accuracy! We can increase the accuracy in this random sampling by taking
averages of growth rates. Following, are the averages of the growth rates of 20 random
Fibonacci sequences of length 40002, using the definition of growth given in Proposition
16 with n = 40, 000. These values actually appear to be slightly more accurate than the

1.131885031 1.131973850 1.131740524
1.132081608 1.132389153 1.1323296404

previous approximation, despite the smaller sequence length. It is thus quite remarkable
that Viswanath and Bai were able to find 8 and 13 correct decimals respectively.

Also, instead of generating sequences randomly, it is possible to form periodic coeffi-
cient sequences for all possible length-n coefficient cycles, and take the arithmetic mean
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of their growth rates. This generates a set of periodic coefficient sequences (of infinite
length), some of which will approximate random Fibonacci sequences as n gets large. By
letting n → ∞, the average growth rate should effectively estimate Viswanath’s constant.
For n = 20 there are over half a million branches and the average growth rate calculated is
1.18 (see Hayes [9]). Figure 1 shows the average values of the growth rates of all possible
random Fibonacci sequences for σn with n 6 19. For large n this gives us the following
approximation:

eγf ≈ 1

2n

∑

all Pn

(

||tr(Pn)|+
√

tr(Pn)2 ± 4|
2

)
1

n

, (13)

where the bracketed term is the absolute value of the largest eigenvalue, as given in
Equations (11) and (12).

Figure 1: Average values of growth rates.

It is easily recognizable from Figure 1 that the growth rate follows a pattern for values
of n (mod 6). We can partially explain this pattern by considering some of the previously
gathered results on growth type. We have seen in Corollary 20 that linear growth occurs
only when 6|n. This growth rate here is 1 and so we expect that the growth rate for n ≡ 0
(mod 6) will be lower than the average growth rate for other values of n, as evidenced
by the x’s in Figure 1. Similarly, for n odd, Corollary 20 tells us that if 3 ∤ n, growth is
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exponential. Therefore, for n ≡ 1, 5 (mod 6), the growth rates must be strictly greater
than 1 and we might expect the average of growth rates for such n to be raised, as
evidenced by the circles in Figure 1.

We can simplify our average growth rate calculation by noticing that, for large values
of u, we have the approximation |tr(Pn)| = |u| ≈ |λ1|, and so Equation (13) becomes

eγf ≈ 1

2n

∑

all Pn

|u| 1n . (14)

We can now reduce the size of this calculation (or that in (13)) by dividing up the
number of cases we need to consider into equivalence classes. Proposition 11 told us that
rotating terms in a product matrix leaves trace and determinant unchanged. Similarly,
we have the following two propositions, which can be easily proven using properties of
matrices, or continuant polynomials (for a good introduction to continuants, see [8]).

Proposition 30. Given a coefficient cycle σn = (s1, . . . , sn) with n > 1 and correspond-
ing product matrix Pn, reversing the terms in the cycle gives σ′

n = (sn, . . . , s1) with cor-
responding product matrix P ′

n, where P ′
n is the transpose of Pn and hence has the same

characteristic equation and growth rate as Pn.

Proposition 31. Given a coefficient cycle σn = (s1, . . . , sn), with n > 1, switching each
term sn from + to − or vice versa gives us a new cycle σ′

n with corresponding product
matrix having the same growth rate as the original product matrix.

Further, if we reduce or extend the period by a multiple of the primitive cycle σp,
i.e., the smallest repeating cycle comprising the coefficient cycle σn, the growth rate is
unchanged. We can now define an equivalence class on our coefficient cycles as follows.

Definition 32. We write σn ∼ τd if the cycle σn = (s1, . . . , sn), where n > 1, can be
transformed into the cycle τd = (t1, . . . , td) by applying any finite combination of the
following operations:

1. reversal : (s1, . . . , sn) → (sn, . . . , s1);

2. rotation: (s1, . . . , sn) → (sn−k+1, . . . , sn, s1, . . . , sn−k);

3. negation: (s1, . . . , sn) → (−s1, . . . ,−sn);

4. period reduction or extension: (s1, . . . , sn) → (s1, . . . , sd), where p|d, i.e., σn is
reduced or extended by a multiple of its primitive cycle σp.

Instead of using a repeated coefficient cycle to generate a periodic coefficient sequence,
we can picture it as a loop which is continually traversed. This necklace is a string of
n characters of q different types (commonly thought of as n beads of q colors) which is
unchanged by rotation (see, for e.g., [8]). Similarly, a bracelet is unchanged by rotation and
reversal. The number of equivalence classes, i.e., primitive (non-repeating) two-colored
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bracelets with color swapping (negation), of coefficient cycles σn is given by the sequence
(see [20, A000046])

1, 1, 1, 1, 2, 3, 5, 8, 14, 21, 39, 62, 112, . . .

for n > 0. There are combinatorial formulas for the number of equivalence classes [20,
A000046], for bracelets with color swapping [20, A000011], for necklaces with color swap-
ping [20, A000013], and for necklaces [20, A000031].

5 Conclusion

In summary, the main results of this paper are the classification of the growth of periodic
coefficient sequences according to eigenvalue (Theorem 10) and trace (Theorem 19), the
explicit computation of the exponential growth rate of a periodic coefficient sequence
(Proposition 16) and the use of equivalence classes of sequences having the same growth
rate (Definition 32).

Our original intent was to try to shed some light on Viswanath’s constant by determin-
ing the number of equivalence classes, the size of each equivalence class, and the growth
type/rate of each equivalence class. It may then have been possible to combine this infor-
mation into a formula for the average growth rate of all periodic coefficient sequences for
σn. By letting n → ∞, we would in theory be computing Viswanath’s constant. This ap-
proach turned out to be quite difficult. We have found the number of equivalence classes
for period length n, and a way to determine the growth rate of each, but finding the size
of each class and constructing a formula are complex problems.

We have evidence of a second characterization of growth type, similar to that in
Theorem 19, based on continued fractions. For a coefficient cycle σn = (s1, s2, . . . , sn),
with si ∈ {+,−}, we consider the corresponding non-simple periodic continued fraction
γn = [ŝ1, ŝ2, . . . , ŝn], where ŝj ∈ {1,−1}.

The study of random Fibonacci sequences is relatively new, and filled with deep and
interesting results. In [15], Trefethen is quoted as saying: “Looking for patterns and
trends among such sequences of numbers can be a fascinating pastime.”
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