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Université Bordeaux 1

Talence, FRANCE

aval@labri.fr

Adrien Boussicault∗

LaBRI
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Abstract

In this work we introduce and study tree-like tableaux, which are certain fillings
of Ferrers diagrams in simple bijection with permutation tableaux and alternative
tableaux. We exhibit an elementary insertion procedure on our tableaux which
gives a clear proof that tree-like tableaux of size n are counted by n!, and which
moreover respects most of the well-known statistics studied originally on alternative
and permutation tableaux. Our insertion procedure allows to define in particular
two simple new bijections between tree-like tableaux and permutations: the first one
is conceived specifically to respect the generalized pattern 2-31, while the second
one respects the underlying tree of a tree-like tableau.

Keywords: tree-like tableaux; permutation tableaux; alternative tableaux; permu-
tations; binary trees.

Introduction

Permutation tableaux and alternative tableaux are equivalent combinatorial objects that
have been the focus of intense research in recent years. Originally introduced by Post-
nikov [13], they were soon studied by numerous combinatorialists [3, 7, 18, 20, 12, 19].

∗All authors are supported by the ANR (PSYCO project – ANR-11-JS02-001)
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They also popped up surprisingly in order to get a combinatorial understanding of the
equilibrium state of the PASEP model from statistical mechanics: this is the seminal work
of Corteel and Williams, see [8, 9, 10].

In this work we introduce and study tree-like tableaux (cf. Definition 1), which are
objects in simple bijection with alternative tableaux. Indeed, our results have immediate
reformulations in terms of alternative/permutation tableaux (see Proposition 3). We chose
to focus on these new tableaux for one main reason: they exhibit a natural tree structure
(giving them their name: cf. Figure 2, right) more clearly than the alternative tableaux,
and we use this structure in Section 4.2. As is mentioned in this last section, the present
work originated in fact in the study of trees.

The main result of this work is Theorem 6:

There is a simple bijective correspondence Insertpoint between

1. tree-like tableaux of size n together with an integer i ∈ {1, . . . , n+ 1}, and

2. tree-like tableaux of size n+ 1.

A variation Insertpoint∗ for symmetric tableaux is also defined and shares similar
properties, see Theorem 10. We prove that both Insertpoint and Insertpoint∗ carry var-
ious statistics of tableaux in a straightforward manner: we obtain thus new easy proofs
of formulas enumerating tableaux and symmetric tableaux (Section 2.3), as well as infor-
mation on the average number of crossings and cells of tableaux (Section 3).

An immediate corollary of Theorem 6 is that tree-like tableaux of size n are enumerated
by n!, while Theorem 10 shows that symmetric tableaux of size 2n + 1 are enumerated
by 2nn!. Several bijections between tableaux and permutations appeared already in the
literature; the ones that seem essentially distinct are [18] and the two bijections from [7].
All of them give automatically a correspondence as in Theorem 6, but none of them is as
elementary as Insertpoint. Conversely, it is clear that Insertpoint allows to define various
bijections between permutations and tableaux. We will describe two of them here: the
first one sends crossings to occurrences of the generalized pattern 2-31, while the second
one preserves the binary trees naturally attached to permutations and tree-like tableaux.

Let us give a brief outline of this work. Section 1 introduces numerous definitions
and notations, and most notably the tree-like tableaux which are the central focus of this
work. Section 2 is the core section of this article: we introduce our main tool, the insertion
Insertpoint, and prove that it gives a 1-to-(n + 1) correspondence between tableaux of
size n and n + 1. We use it to give elementary proofs of refined enumeration formulas
for tableaux. We also define a modified insertion Insertpoint∗ for symmetric tableaux
from which refined enumeration formulas are derived in a similar fashion. In Section 3
we keep using the insertions Insertpoint and Insertpoint∗ to enumerate crossings and
cells in tableaux. We also give a bijection between square symmetric tableaux and or-
dered partitions. In Section 4 we define two bijections between tree-like tableaux and
permutations, both based on Insertpoint: the first one sends crossings to occurrences of
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the pattern 2-31, while the second one “preserves trees”: it sends the tree structure of
the tree-like tableau to a tree naturally attached to the permutation (its increasing tree
without its labels).

1 Definitions and Notation

1.1 Basic definitions

A Ferrers diagram F is a left aligned finite set of unit cells in Z2, in decreasing number
from top to bottom, considered up to translation: see Figure 1, left. The half-perimeter
of F is the sum of its number of rows plus its number of columns; it is also equal to
the number of boundary edges, which are the edges found on the Southeast border of the
diagram. We will also consider boundary cells, which are the cells of F with no other cells
to their Southeast.

There is a natural Southwest to Northeast order on boundary edges, as well as on
boundary cells. Moreover, by considering the Southeast corner of boundary cells, these
corners are naturally intertwined with boundary edges: we will thus speak of a boundary
cell being Southwest or Northeast of a boundary edge. Two cells are adjacent if they
share an edge.

Ribbons: Given two Ferrers diagrams F1 ⊆ F2, we say that the set of cells S = F2−F1

(set-theoretic difference) is a ribbon if it is connected (with respect to adjacency) and
contains no 2× 2 square. In this case we say that S can be added to F1, or that it can be
removed from F2. Note that a removable ribbon from F is equivalently a connected set
S of boundary cells of F , such that the Southwest-most cell of S has no cell of F below
it, and the Northeast-most cell of S has no cell of F to its right.

e2

e1

Insertion at e1 Insertion at e2

Figure 1: A Ferrers diagram of half perimeter 17 with its highlighted boundary cells and
edges (left), and examples of column/row insertions at the boundary edges e1 and e2.

Row/Column insertion: Let F be a Ferrers diagram and e one of its boundary edges.
If e is at the end of a row r, we define the insertion of a column at e to be the addition of
a cell to r and all rows above it; symmetrically, if e is at the end of a column denoted by
c, we can insert a row at e by adding a cell to c and all columns to its left; see Figure 1,
where the shaded cells of the figure are the added cells of the column or row.
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Permutations and trees: We consider permutations σ of {1, . . . , n}, which are bijec-
tions from {1, . . . , n} to itself, and are counted by n!. We will represent permutations
as words σ1 . . . σn of length n where σi = σ(i). A descent is an index i < n such that
σi > σi+1. An occurrence of the pattern 2-31 in σ is a pair (i, j) of two indices such that
1 6 i < j < n and σj+1 < σi < σj.

A planar binary tree is a rooted tree such that each vertex has either two ordered
children or no child; vertices with no child are called leaves, those of degree 2 are called
nodes. The size of a tree is its number of nodes; see Figure 2 (right) for an example of
tree of size 8.

1.2 Tree-like tableaux

We can now define the main object of this work:

Definition 1 (Tree-like tableau). A tree-like tableau is a Ferrers diagram where each
cell contains either 0 or 1 point (called respectively empty cell or pointed cell), with the
following constraints:

(1) the top left cell of the diagram contains a point, called the root point ;
(2) for every non-root pointed cell c, there exists either a pointed cell above c in the

same column, or a pointed cell to its left in the same row, but not both;
(3) every column and every row possesses at least one pointed cell.

An example is shown on the left of Figure 2.

Remark 2. Condition (2) associates to each non-root point a unique other point above
it or to its left. Now draw an edge between these two points for each non-root point, as
well as an edge from every boundary edge to the closest point in its row or column: the
result is a binary tree, where nodes and leaves correspond respectively to pointed cells
and boundary edges. This is pictured in Figure 2, and explains the name tree-like given
to our tableaux. We will come back to this tree structure with more detail in Section 4.2.

Figure 2: A tree-like tableau (left) and the associated tree (right).
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Let T be a tree-like tableau. If the diagram of T has half-perimeter n+ 1, then T has
exactly n points: indeed Condition (2) associates to each row and column a unique point,
except that the first row and column are both associated to the root-point. We let n be
the size of T , and we denote by Tn the set of tree-like tableaux of size n. A crossing of
T is an empty cell of T with both a point above it and to its left; we let cr(T ) be the
number of crossings of T . The top points (respectively left points) of T are the non-root
points appearing in the first row (resp. the first column) of its diagram. The tableau of
Figure 2 has 4 crossings, 2 top points and 2 left points.

1.3 Alternative tableaux and permutation tableaux

As mentioned in the introduction, tree-like tableaux are in very close connection to per-
mutation tableaux and alternative tableaux, which are objects having already a rich lit-
erature. In this section we define these objects and describe the bijections linking them
to tree-like tableaux.

Let F1 be a Ferrers shape with possibly empty rows. A permutation tableau is a filling
of each cell of F1 by 0 or 1 such that (i) each column of F1 contains at least one 1 and (ii)
there is no cell with a 0 which has both a 1 to its left in the same row and a 1 above it in
the same column (see Figure 4, center). In a permutation tableau, a 1 is called superfluous
if there is another 1 above it in the same column. A top 1 is one that occurs in the top
row of F1. A row is called unrestricted if it contains no restricted 0: these are the 0s with
a 1 above them in the same column.

Let F2 be a Ferrers shape with possibly empty rows and columns. An alternative
tableau is a partial filling of the cells of F2 with up or left arrows, such that no arrow
points to another cell also containing an arrow (see Figure 4, right). A row (resp. a
column) is called free if it contains no left arrow (resp. up arrow) in it. A free cell is an
empty cell which has no arrow pointing towards it.

To any Ferrers diagram F , we associate (see Figure 3):

• a diagram F ′ obtained by removing the Southwest-most boundary edge of F , and
the cells of the left-most column,

• a diagram F ′′ obtained by removing the Southwest-most and Northeast-most bound-
ary edges of F , and the cells of the left-most column and of the top-most row.

Proposition 3. Let F be a Ferrers shape, and i, j, k be nonnegative integers. There exist
bijections between:

1. Tree-like tableaux of shape F with i left points, j top points and k crossings;

2. Permutation tableaux of shape F ′ with i + 1 unrestricted rows, j top 1s and k su-
perfluous 1s.

3. Alternative tableaux of shape F ′′ with i free rows, j free columns and k free cells.
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Figure 3: Diagrams F , F ′ and F ′′.

Proof. We describe the bijections between (1) and (3) first, and then between (2) and (3).
To go from (1) to (3) is simple: change every non-root point p to an arrow which is

oriented left (resp. up) if there is no point left of p (resp. above p). This transforms the
tableau into a packed alternative tableau [12, Section 2.1.2]; then simply delete the top
row and the leftmost column.

The bijection between (2) and (3) is due to Viennot [19]. Given a permutation tableau,
transform every 1 that is highest in its column to an up arrow, and transform every
restricted 0 that is the rightmost one in its row to a left arrow. Delete all other 0s and
1s, and erase the first row.

The fact that the two transformations are bijective is straightforward, as well as the
fact that they preserve the mentioned statistics.

1 1 1

1

1 1 1

1

1 1

1

1

1

0

0

0 0

00

0 00

0 0

(1) (2) (3)

Figure 4: An example of the bijective correspondences of Proposition 3 between the
various tableaux.

2 The fundamental insertion

This section is the core of this work. We describe a new way of inserting points in tree-like
tableaux, shedding new light on numerous enumerative results on those tableaux.

the electronic journal of combinatorics 20(4) (2013), #P34 6



2.1 Main Result

The key definition is the following one, which introduces a distinguished point in a tableau:

Definition 4 (Special point). Let T be a tree-like tableau. The special point of T is the
Northeast-most point among those that occur at the bottom of a column.

This is well-defined since the bottom row of T necessarily has a pointed cell (Defini-
tion 1, (3)), which is then at the bottom of a column.

Definition 5 (Insertpoint). Let T be a tableau of size n and e be one of its boundary
edges. Let T ′ be the tableau obtained by inserting a row (resp. column) at e and then
pointing its rightmost (resp. lowest) cell. Then we distinguish two cases:

(1) If e is to the Northeast of the special point of T , then define Insertpoint(T, e) := T ′;
(2) Otherwise, we add a ribbon starting just to the right of the new point of T ′ and

ending just below the special point of T . (If e is the lower edge of the special cell of T ,
do nothing.) The result is a tableau T ′′, and define Insertpoint(T, e) := T ′′.

The result is a tree-like tableau of size n+ 1, since all three conditions of Definition 1
are clearly satisfied. Examples of the two cases of Insertpoint are given in Figure 5, while
insertion at all possible edges of a given tableau is represented in Figure 9. Cells from the
inserted rows or columns are shaded, while those from added ribbons are marked with a
cross.

e1

e2

e1

Tableau T (1) T1 = insertpoint(T, e1) (2) T2 = insertpoint(T, e2)

Figure 5: The two cases in the definition of Insertpoint.

Theorem 6. For any n > 1, the insertion procedure insertpoint is a bijection between:
(A) The set of pairs (T, e) where T ∈ Tn and e is one of the n + 1 boundary edges of

T , and
(B) The set Tn+1.

Before we give the proof, we need the following fundamental lemma:

Lemma 7. If Insertpoint(T, e) := T ′, then the special point of T ′ is the new point added
during the insertion.
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Proof. Notice that the new point p′ is at the bottom of a column of T ′, so we must prove
that the columns of T ′ which are to the right of p′ do not have a bottom point. If we are
in case (1) of Definition 5, this is clear since these columns are the same as in T and they
are to the right of the special point p of T . In case (2), all columns of T ′ strictly to the
right of p and weakly to the left of p′ have a bottom cell coming from the added ribbon,
and therefore contain no point. Since columns to the right of p contain no bottom points
either since p is the special point of T , the proof is complete.

Figure 6: Generating tree-like tableaux via Insertpoint.

We can now give the proof of Theorem 6:
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Proof of Theorem 6. We first define a function Removepoint; we will then prove that it
is the desired inverse of Insertpoint. Let T be a tableau of size n + 1 and consider the
cell c containing the special point. In case there is a cell adjacent to the right of c, then
follow the boundary cells to the Northeast of c and let c′ be the first cell encountered
which has a point (that cell exists since the last column possesses at least one point); we
then remove the ribbon of empty cells comprised strictly between c and c′. This leaves a
Ferrers diagram since c′ is not the bottom cell of its column. Coming back to the general
case, delete now the row or column which contains c but no other points: let T1 be the
resulting tableau, and e be the boundary edge of T1 which is adjacent to c in T . We define
Removepoint(T ) := (T1, e); T1 has clearly size n and e is one of its boundary edges, and
we claim Removepoint is the desired inverse to the function Insertpoint.

It is clear that if T ′ = Insertpoint(T, e), then Removepoint(T ′) = (T, e): this is a
consequence of Lemma 7. Let us now prove that Insertpoint◦Removepoint is the identity
on Tn+1. So let T ∈ Tn+1, with c its special cell, and let (T1, e) := Removepoint(T ).
Suppose first c lies at the end of a row. In this case the special point of T1 must be to
the Southwest of e, therefore no ribbon will be added in Insertpoint(T1, e) and this last
tableau is thus clearly T . Now suppose there is a cell just to the right of c: in this case the
cell c′ in the definition of Removepoint contains the special point of T1, since the removal
of the ribbon will turn c′ into a bottom cell of a column. Now e will be to the left of c′ in
T1, and so the application of Insertpoint will add the removed ribbon: in this case also
Insertpoint(T1, e) = T , and this achieves the proof.

Since |T1| = 1 we have the immediate corollary:

Corollary 8. |Tn| = n! for any n > 1.

So we have an elementary proof that tableaux of size n are equinumerous with per-
mutations of length n. In fact, many bijections can be deduced from Insertpoint; we will
describe two such bijections in Sections 4.1 and 4.2.

2.2 Symmetric tableaux

In this section we consider symmetric tableaux, i.e. tree-like tableaux which are invariant
with respect to reflection through the main diagonal of their diagram; see an example in
Figure 7, left. Symmetric tree-like tableaux are in bijection with symmetric alternative
tableaux from [12, Section 3.5], and “type B permutation tableaux” from [11].

The size of such a tableau is necessarily odd, and we denote by T sym
2n+1 the set of

symmetric tableaux of size 2n + 1. T sym
2n+1 has cardinality 2nn!, as was shown in [11, 12];

we will give here a simple proof of this thanks to a modified insertion procedure.
Note that given a tree-like tableau T of size n, one can associate to it a symmetric

tableau as follows: if T has k columns, then add on top of it a k×k square of cells, where
only the top left cell is pointed; then add to the right of the square the reflected tableau
T ∗: see Figure 7, right. In this way we embed naturally Tn in T sym

2n+1.
We now define a modified point insertion Insertpoint∗ for symmetric tableaux. First

let us call ∗-special point of a symmetric tableau the point at the bottom of a column
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T

T

T ∗

Figure 7: A symmetric tableau, and the embedding of tree-like tableaux in symmetric
tableaux.

which is Northeast-most among those that are Southwest of the diagonal ; we will call
edges and cells below the diagonal the lower edges and points.

Definition 9 (Symmetric insertion). Let T ∈ T sym
2n+1 and (e, ε) be a pair consisting of

a lower boundary edge e and ε ∈ {+1,−1}. Define a first tableau T ′ by inserting a
row/column at e with a point at the end, as well as the symmetric column/row. There
are then three cases:

(1) If ε = +1 and e is Northeast of the ∗-special point, then we simply define
Insertpoint∗(T, e,+1) := T ′.

(2) If ε = +1 and e is Southwest of the ∗-special point, add a ribbon to T ′ be-
tween the new point (Southwest of the diagonal) and the ∗-special point of T below
the diagonal; add also the symmetric ribbon. If T ′′ is the resulting tableau, then define
Insertpoint∗(T, e,+1) := T ′′.

(3) If ε = −1, add a ribbon in T ′ between the two new points, and the resulting
tableau is by definition Insertpoint∗(T, e,−1).

e
f

(1) insertpoint∗(T, f,+1) (2) insertpoint∗(T, e,+1) (3) insertpoint∗(T, e,−1)T

Figure 8: The three cases in the definition of Insertpoint∗.

Examples of all 3 cases are given in Figure 8. It is easy to check that when only
ε = +1 is chosen during insertions, then the insertion produces precisely those symmetric
tableaux given by the embedding of usual tree-like tableaux pictured in Figure 7. Hence
the symmetric insertion Insertpoint∗ is a generalization of Insertpoint.
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Theorem 10. The procedure Insertpoint∗ is a bijection between the set of triplets (T, e, ε)
as in Definition 9 and T sym

2n+3.

Proof. The key remark is the following natural generalization of Lemma 7: the new lower
point inserted by Insertpoint∗ is the ∗-special point of the resulting tableau. In cases (1)
and (2) of Definition 9, the proof is the same as in Lemma 7, and this is clear in case (3).

The inverse of Insertpoint∗ is defined as follows: given T ∈ T sym
2n+3, find its lower special

point. If there is an empty cell to its right, follow the ribbon to the Northeast until the
next pointed cell c. If c is a lower cell, remove the ribbon of empty cells and its symmetric,
and define ε := 1; otherwise c must be the cell symmetric to the lower special cell, and
in this case remove from T the ribbon of empty cells and let ε := −1. If there is no
empty cell to the right of the lower special point, let ε := +1. For all cases, remove the
row (resp. column) which contains the special point and no other point, and let e be the
right (resp. bottom) edge of the special point which remains in the resulting tableau T ′.
Then T 7→ (T ′, e, ε) is the inverse of the insertion Insertpoint∗: the proof is essentially
the same as in the case of Insertpoint and is left to the reader.

We have the following immediate enumerative consequence:

Corollary 11. For n > 0,
|T sym

2n+1| = 2n n! .

2.3 Refined enumeration

We now show how our insertion procedures give elementary proofs of some enumerative
results on tableaux.

Let Tn(x, y) be the polynomial

Tn(x, y) =
∑
T∈Tn

xleft(T )ytop(T ),

where left(T ) and top(T ) are respectively the number of left points and top points in T .
When we insert a point in a tableau T of size n, then we get an extra left (respectively
right) point in the resulting tableau if the Southwest-most edge (resp. Northeast-most
edges) is picked, while for other boundary edges the number of top and left points remains
the same.

This gives immediately the recurrence relation Tn+1(x, y) = (x + y + n − 1)Tn(x, y)
which together with T1(x, y) = 1 gives:

Tn(x, y) = (x+ y)(x+ y + 1) · · · (x+ y + n− 2). (1)

This formula was proved in [7] and then bijectively in [12]; the proof just given is arguably
the simplest one, and is bijective.

We can also give a generalization of Formula (1) to symmetric tableaux [11, 6]. Fol-
lowing [6, Section 5] –reformulated in terms of tree-like tableaux–, we define

T sym
2n+1(x, y, z) =

∑
T∈T sym

2n+1

xleft(T )ytop
∗(T )zdiag(T ),
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where diag(T ) is the number of crossings among the diagonal cells; for top∗(T ), consider
the northernmost non-root point p in the first column, then the number of points on the
row of p is by definition top∗(T ).

Let T ′ = Insertpoint∗(T, e, ε) be as in Theorem 10. One has diag(T ′) = diag(T ) + 1
when ε = −1, and diag(T ′) = diag(T ) when ε = +1. Also left(T ′) = left(T ) + 1 when e
is the Southwest-most edge while left(T ′) = left(T ) for other choices of e. Finally, if the
row r considered in the definition of top∗(T ) has its boundary edge e′ Southwest of the
diagonal, then the insertion at e = e′ increases top∗(T ) by one, while all other choices for
e leave top∗(T ) invariant; if r has its boundary edge e′ Northeast of the diagonal, then the
column c symmetric to r ends below the diagonal at a boundary edge e′′, and then the
insertion at e = e′′ increases top∗(T ) by one while the other choices for e leave top∗(T )
invariant.

Putting things together we obtain the recurrence formula

T sym
2n+3(x, y, z) = (1 + z)(x+ y + n− 1)T sym

2n+1(x, y, z),

from which it follows:

T sym
2n+1(x, y, z) = (1 + z)n(x+ y)(x+ y + 1) · · · (x+ y + n− 2). (2)

This proof is much simpler than any of the two proofs given in [6]. Note also that
diag(T ) = 0 means precisely that T is of the form given on the right of Figure 7, from
which one gets

Tn(x, y) = T sym
2n+1(x, y, 0)

and thus (2) can be seen as an extension of (1).

3 Enumeration of crossings and cells

We denote by [T ] the set of tableaux {Insertpoint(T, e)} where e goes through all bound-
ary edges of T . Theorem 6 expresses that [T ] has cardinality n + 1 when T has size n,
and that we have the disjoint union

Tn+1 =
⊔

T∈Tn

[T ] . (3)

Similarly we denote by [T ]∗ the set of tableaux {Insertpoint∗(T, e, ε)} where e goes
through lower boundary edges of T and ε = ±1. Theorem 10 expresses that [T ]∗ has
cardinality 2(n+ 1) when T has size 2n+ 1, and that we have the disjoint union

T sym
2n+3 =

⊔
T∈T sym

2n+1

[T ]∗ (4)

Given a tableau T = T n of size n, there is a unique sequence (T 1, T 2, . . . , T n−1, T n = T )
of tableaux such that T i = Insertpoint(T i−1, ei) for certain boundary edges ei ∈ T i.
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Necessarily T i has size i for all i and in particular T 1 is the unique tableau of size 1. We
refer to this sequence of tableaux as the insertion history of T .

In this section we will analyze the mean number of crossings and cells that tree-like
tableaux have, by analyzing how these quantities evolve through the insertions procedures
of the previous section.

3.1 Unrestricted tree-like tableaux

Crossings of tree-like tableaux are an important statistic of these objects: They correspond
to superfluous ones in permutation tableaux (cf. Proposition 3) and the work of Corteel
and Williams [8, 9] shows that this statistic is involved in the study of the PASEP.

It turns out that crossings are particularly well-behaved with respect to our insertion
procedure, as the following shows.

Lemma 12. Let T ∈ Tn. The crossings of T are the ribbon cells added in its insertion
history.

Proof. Consider T ′ = Insertpoint(T, e) for any tableau T with e as one of its boundary
edges. Notice first that the empty cells of the inserted row or column are not crossings,
and that the status of the empty cells of T is left unchanged by this insertion. If a ribbon
is inserted, then all cells of the ribbons are clearly crossings, since all rows and columns of
T contain at least one point. This shows that the crossings of T ′ are those coming from
T plus the ribbon cells, which achieves the proof.

Let T be a tableau of size n. From the Southwest to the Northeast, we label its
boundary edges e0(T ), . . ., en(T ) and its boundary cells b0(T ), . . ., bn−1(T ). We have the
following proposition whose easy proof is omitted:

Proposition 13. Let T ∈ Tn, i ∈ {0, . . . , n}, and consider T ′ = Insertpoint(T, ei(T )).
Then the special cell of T ′ is bi(T

′).
Moreover, if bk(T ) is the special cell of T (where 0 6 k 6 n − 1), then we have

cr(T ′) = cr(T ) if k 6 i, while cr(T ′) = cr(T ) + (k − i) if k > i.

e0
e1
e2 e3

e5

e4

e0 e1 e3e2 e4 e5

Figure 9: A tableau of size 5 and all 6 possible point insertions.

This is illustrated in Figure 9, for which k = 3 and i goes from 0 to 5. A first
consequence of the proposition is that given k ∈ {0, . . . , n− 1}, there are n!/n = (n− 1)!
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tableaux T in Tn where the special cell of T is bk(T ). A second consequence is that
given such a tableau T , the total number of ribbon cells added when constructing all
tableaux in [T ] is 1 + 2 + . . .+ k =

(
k+1
2

)
, and thus the total number of crossings in [T ] is

(n+ 1)cr(T ) +
(
k+1
2

)
. Set Crn =

∑
T∈Tn cr(T ), then we get from (3) that, for n > 1,:

Crn+1 − (n+ 1)Crn = (n− 1)!×
n−1∑
k=0

(
k + 1

2

)
= (n− 1)!

(
n+ 1

3

)
.

If we let Xn = Crn/n!, we obtain simply Xn+1 −Xn = (n− 1)/6, from which we get:

Proposition 14. The total number of crossings in Tn is given by Crn = n!× (n− 1)(n−
2)/12.

This can also be stated as: given the uniform distribution on Tn, the expectation of cr
is given by (n− 1)(n− 2)/12. This was proved first in [4, Theorem 1] by a lengthy com-
putation, which relied on the recursive construction of (permutation) tableaux obtained
by adding the leftmost column.

Now we want to enumerate all cells in the tableaux. Recall first that the Eulerian
number A(n, k) is defined as the number of permutations of length n with k − 1 ascents.
In order to analyze the number of cells inserted during the insertion of a row or column,
the following proposition is helpful.

Proposition 15. The number of tree-like tableaux of size n with k rows is given by
A(n, k).

Proof. Suppose T has k rows. Then in [T ] there are k tableaux with k rows and n+ 1−k
tableaux with k+ 1 rows, which correspond respectively to a column and a row insertion.
From this one deduces that A(n + 1, k) = kA(n, k) + (n + 2 − k)A(n, k − 1); this is the
familiar recursion followed by Eulerian numbers.

Introducing the Eulerian polynomial An(t) =
∑n

k=1A(n, k)tk, we have

An+1(t) = (n+ 1)tAn(t) + t(1− t)A′n(t),

with initial condition A0(t) = 1. If we differentiate this equation twice, and plug in t = 1
in each case, one obtains equations for A′n(1) and A′′n(1) which give (this is well-known):

A′n(1) =
(n+ 1)!

2
and A′′n(1) =

(n+ 1)!(3n− 2)

12
,

valid for n > 1 and n > 2 respectively.

Proposition 16. The average number of cells in a tree-like tableau of size n is

Yn =
(n+ 1)(5n+ 6)

24
(5)
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Proof. Suppose T ∈ Tn has k rows, and thus n + 1 − k columns, and let ncr(T ) be
its number of non-crossing cells. Note that if the edge e is at the end of the jth row
or column, then Insertpoint(T, e) has ncr(T ) + j non-crossing cells since we inserted a
column or row with j cells. Hence we have that ncr([T ]) is equal to (n+1)ncr(T )+k(k+
1)/2 + (n+ 1− k)(n+ 2− k)/2; by summing over all tableaux T ∈ Tn we get for n > 2:

ncr(Tn+1) =(n+ 1)ncr(Tn) +
n∑

k=1

A(n, k)

(
k(k+1)

2
+

(n+1−k)(n+2−k)

2

)
=(n+ 1)ncr(Tn) +

n∑
k=1

A(n, k)k(k + 1)

=(n+ 1)ncr(Tn) + A′′n(1) + 2A′n(1)

=(n+ 1)ncr(Tn) + (n+ 1)!
3n+ 10

12

where we used the fact that A(n, k) = A(n+ 1− k) in the second equality. Dividing both
sides by (n+ 1)! and setting AvNcr(n) := ncr(Tn)/n! we get the equation:

AvNcr(n+ 1) = AvNcr(n) +
3n+ 10

12
for n > 2.

With the initial condition AvNcr(2) = 2 this gives AvNcr(n) = 1/24(3n2 + 17n+ 2),
which added to the average number of crossings (n− 1)(n− 2)/12 gives the result.

3.2 Symmetric tree-like tableaux

We will give here analogues of the results of the previous section for symmetric tableaux

Proposition 17. For n > 1, the average number of crossings in symmetric tree-like
tableaux of size 2n+ 1 is given by

X∗2n+1 =
2n2 + 1

6
. (6)

Proof. Assume n > 1. We denote by Cr∗2n+1 the total number of crossings in all symmetric
tableaux of size 2n+ 1. Let T be such a tableau, and let i ∈ {0, . . . n− 1} be the position
of its ∗-special point, and we wish to compute the number of crossings in [T ]∗. Then, as
for unrestricted tableaux, the crossings added by the insertions Insertpoint∗ with ε = 1
are counted by 2(1 + . . . + i) = i(i + 1), while the insertions with ε = −1 contribute
1 + 3 + . . .+ (2n+ 1) = (n+ 1)2 crossings.

Summing over T we get

Cr∗2n+3 = 2(n+ 1)Cr∗2n+1 + 2n(n− 1)!
n−1∑
i=0

(
i(i+ 1) + (n+ 1)2

)
(7)

= 2(n+ 1)Cr∗2n+1 + 2n(n− 1)!

(
(n+ 1)n(n− 1)

3
+ n(n+ 1)2)

)
(8)
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which together with X∗2n+1 =
Cr∗2n+1

2nn!
leads to:

X∗2n+3 = X∗2n+1 +
n− 1

6
+
n+ 1

2
. (9)

Since X∗3 = 1/2 we get by summation (6). Note that X∗1 = 0 while (6) would give 1/6.

Proposition 18. The numbers B(n, k) of symmetric tableaux of size 2n+1 with k diagonal
cells obey the following recursion:

B(n+ 1, k) = kB(n, k) + (n+ 1)B(n, k − 1) + (n+ 3− k)B(n, k − 2).

with B(0, 1) = 1 and B(0, k) = 0 if k 6= 1.

Proof. Suppose T has k diagonal cells; then in [T ]∗ there are:

• k tableaux with k diagonal cells (row insertion when ε = +1);

• (n + 1 − k) + k = n + 1 tableaux with k + 1 diagonal cells ( row insertion when
ε = −1 or column insertion when ε = +1);

• n+ 1− k tableaux with k + 2 diagonal cells (column insertion when ε = −1).

and from this one deduces the above recursion.

Let T be a symmetric tableau of size 2n + 1. Since Insertpoint∗ increase by 1 the
width and the height of symmetric tableaux, the diagonal of T contains less that n + 1
cells. We deduce that B(n, k)! = 0 if and only if k ∈ [1, n+ 1].

Introducing the polynomial Bn(t) =
∑n+1

k=1 B(n, k)tk the previous recurrence relations
become

Bn+1(t) = (n+ 1)(t+ t2)Bn(t) + (t− t3)B′n(t),

where B0(t) = t. If we differentiate this equation we get:

B′n+1 = (n+ 1)(2t+ 1)Bn +
(
(n+ 1)(t+ t2) + (1− 3t2)

)
B′n + (t− t3)B′′n;

Substituting t = 1 in this equation one gets:

B′n+1(1) = 3(n+ 1)Bn(1) + 2nB′n(1);

Introducing E
(1)
n = B′n(1)/(2nn!) this gives E

(1)
n+1 = n

n+1
E

(1)
n + 3

2
, which is easily solved:

Proposition 19. For n > 1, the average number of diagonal cells on a symmetric tableau
of size 2n+ 1 is E

(1)
n = 3(n+1)

4
.

Using these results we can then obtain the average number of cells in symmetric
tableaux, giving
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Proposition 20. The average number of cells in a symmetric tree-like tableau of size
2n+ 1 is

Y ∗n =
(10n+ 11)(n+ 1)

12
(10)

for n > 1.

Proof. Let T be a symmetric tableau of size 2n + 1 with k diagonal cells. The number
of non crossing cells in T is noted ncr(T ); now we want to compute ncr([T ]∗). The row
insertions contribute 2 · 2∑k

i=1 i = 2k(k+ 1) cells, while the column insertions contribute

2 ·∑n+1−k
i=1 [2(k + i) + 1] = 2(n+ 1− k)(n+ k + 3) cells; therefore

ncr([T ]∗) = 2(n+ 1)ncr(T ) + 2 [k(k + 1) + (n+ 1− k)(n+ k + 3)]

= 2(n+ 1)ncr(T ) + 2((n+ 1)(n+ 3)− k)

We now sum this over all tableaux of size 2n+ 1 and get

ncr(T sym
2n+3) = 2(n+ 1)ncr(T sym

2n+1) + 2
n+1∑
k=1

B(n, k)((n+ 1)(n+ 3)− k)

= 2(n+ 1)ncr(T sym
2n+1) + 2(n+ 1)(n+ 3)2nn!− 2B′n(1)

If we note BvNcr(n) = ncr(T sym
2n+1)/(2

nn!) we get:

BvNcr(n+ 1) = BvNcr(n) + (n+ 3)− 3

4
= BvNcr(n) + n+

9

4

This gives BvNcr(n) = 2n2+7n+3
4

, for n > 1, which together with the crossing numbers
(6) achieves the proof.

3.3 Square symmetric tableaux and ordered partitions

It does not seem that the numbers B(n, k) defined in Proposition 18 have been studied
in all generality. There exist “Eulerian number of type B” (A060187 in [15]) but these
are different: as shown in [5], these numbers EB(n, k) count symmetric tableaux of size
2n + 1 such that k is the sum of the number of non crossing diagonal cells and half the
number of crossing diagonal cells.

There is a recursive way to compute the exponential generating functions Eh(x) =∑
nB(n, n+ 1− h)xn/n! as follows:

hE ′h(x) = (1− x)E ′h−1(x)− Eh−1(x) + (h− 3)Eh−2(x)− xE ′h−2(x). (11)

This is a reformulation of the recurrence of Proposition 18. The initial values are
E−1(x) = 0 and E0(x) =

∑
n>0B(n, n+ 1)xn/n! which is given by

E0(x) =
1

2− exp(x)
(12)
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We will prove this bijectively, as a consequence of Theorem 21 below.

Say that a symmetric tableau is square if its shape is a square Ferrers diagram. For a
given size 2n+ 1, these are clearly the only tableaux with the maximum number n+ 1 of
diagonal cells, and they are thus counted by the numbers B(n, n+ 1) whose exponential
generating function is by definition E0(x). An ordered partition of {1, . . . , n} with k blocks
is a partition in k blocks together with a linear ordering of the blocks; the corresponding
counting sequence is given in [15, A000670]. We will construct a bijection Ξ from square
tableaux to ordered partitions.

Here we will consider only the cells of T that are strictly below the diagonal: this is
enough to reconstruct the whole tableau by symmetry, since non-root diagonal cells are
necessarily empty in symmetric tableaux. Call these restrictions half tableaux.

Figure 10: A half square tableau of size 8

Bijection Ξ: Let T be a half tableau coming from a square symmetric tableau of
size 2n+1. Therefore T consists of n rows which have 1, 2, . . . , n cells from top to bottom,
and has n points in total; see Figure 10.

Consider the last row of T , which has necessarily at least one point; let B = {i1 < . . . <
im} be the positions where these points appear; here positions are labeled by 1, . . . , n from
left to right. Now notice that for j > 1, column ij has no point beside the one in the last
row, while row ij − 1 is empty. Delete all these rows and columns from T , together with
the last row: after left- and bottom- justifying the remaining cells, the result is clearly a
half tableau T ′ of with n−m points.

By induction, Ξ(T ′) is an ordered partition π′ = (B′1, B
′
2, . . . , B

′
`) of {1, . . . , n − m}

where ` is the number of nonempty rows of T ′; relabel the entries in the blocks of π′

by applying the only increasing bijection {1, . . . , n −m} to {1, . . . , n}\{i1, . . . , im}, and
denote by Bi the block B′i after this relabeling. Then Ξ(T ) is defined as the ordered
partition π := (B1, . . . , B`, B).

Theorem 21. Ξ is a bijection between:
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• Square symmetric tableau of size 2n+ 1, and

• Ordered partitions of [n].

Moreover if T has j diagonal crossings and π = Ξ(T ), then π has j blocks.

As a corollary, we obtain the expression (12) since 1/(2 − exp(x)) is the exponential
generating function of ordered partitions.

An example of the bijection Ξ is shown on Figure 11.

2 5

→

1 3

→
2

→
1

({3}, {6}, {1, 4}, {2, 5})← ({2}, {4}, {1, 3}) ← ({1}, {2}) ← ({1})

Figure 11: The bijection Ξ between half square tableaux and ordered partitions

Proof. The property about diagonal crossings and blocks is obvious for Φ by construction,
since diagonal crossings correspond to nonempty rows in a half tableau.

We describe the reciprocal construction of Ξ, once again inductively. Assume Ξ−1

is known for ordered partitions with ` blocks, an let π have size n and ` + 1 blocks
B1, B2, . . . , B`+1. Assume B`+1 has m elements {i1 < . . . < im} and consider the partition
π′ with m blocks B′1, B

′
2, . . . , B

′
` which are B1, B2, . . . , B` relabeled on {1, . . . , n−m}, so

we can construct T = Ξ−1(π′). In T , insert rows in positions i2−1, . . . , im−1 from top to
bottom, and columns in positions i2, . . . , im from left to right; to finish, add a bottom row
with n cells and points in positions i1, i2, . . . , im. The result is the wanted (half) tableau
Ξ−1(π). It is easily verified that this is indeed the inverse of Ξ.

We end this section with two remarks. First notice the case j = n: the bijection Ξ
then restricts to a bijection between permutations of {1, . . . , n} and inversion arrays. It is
tempting to consider half tableaux as generalized inversion arrays for ordered partitions
and investigate which properties of permutations can be extended.

To finish, consider the numbers B(n, n). By definition, they count almost square
symmetric tableaux, that is non square tableaux whose shape becomes square after adding
a symmetric ribbon. The generating function E1(x) is (1 − x)/(2 − exp(x)) by 11; thus
B(n, n) counts threshold graphs on [n] with no isolated vertices [15, A053525]. This can
be also shown bijectively using the construction of Proposition 18 in the case k = n + 2,
Theorem 21 and the formula in [16, Exercise 5.4.b.].
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4 Bijections with permutations

It is pretty straightforward to derive bijections between permutations and tableaux from
Theorem 6. Here we will single out two such bijections because of their specific proper-
ties. The first one sends crossings in a tableau to occurrences of the pattern 2-31 in a
permutation, and the second one preserves a tree structure underlying both objects.

Remark 22. Both bijections of this section can be extended with little effort to bijections
between symmetric tableaux and signed permutations.

4.1 A first bijection which respects 2-31 patterns.

As mentioned at the end of Section 2.1, it is immediate to construct bijections from Tn
to permutations using Insertpoint. We will here define one with the goal of sending
crossings of tableaux to occurrences of the pattern 2-31 in a permutation.

First, a tableau T of size n is naturally encoded by a list a(T ) = (a1(T ), . . . , an(T ))
of integers satisfying 0 6 ai(T ) 6 i − 1. This is done as follows: let T1, T2, T3, . . . , Tn =
T be the insertion history of T . For i ∈ {2, . . . , n}, we define ai(T ) as the index j
such that Insertpoint(Ti−1, ej) = Ti, using the labeling of boundary edges defined before
Proposition 13.

We now give an algorithmic description of our first bijection Φ1. For i = n, n− 1, . . .
down to i = 1, apply the following: consider the set {1, . . . , n}\{σ(i + 1), . . . , σ(n)} =:
{x0 < x1 < . . . < xi−1} arranged in increasing order and simply define σ(i) = xai(T ); the
function Φ is then defined by setting Φ1(T ) = σ. For instance, if a(T ) = (0, 1, 0, 3, 1), one
finds easily σ = 34152.

Theorem 23. Φ1 is a bijection from Tn to permutations of length n. If σ = Φ1(T ), then
cr(T ) is equal to the number of occurrences of 2-31 in σ.

Proof. First, it is clear that the construction is bijective.
Now i is a descent in σ if and only if ai(T ) > ai+1(T ). Moreover, in this case, this

descent i will give rise to exactly ai(T )−ai+1(T ) occurrences of the pattern 2-31 of the form
(σ(k), σ(i), σ(i+ 1)) an occurrence of 2-31. So we showed that the number of occurrences
of 2-31 in σ is given by

∑n−1
i=1 max (ai(T )− ai+1(T ), 0).

But it is an easy reformulation of Proposition 13 that this quantity is precisely cr(T ),
which completes the proof.

This bijection is much simpler than bijection II from [7], which was designed specifically
to preserve the equivalent pattern 31-2.

4.2 A second bijection which “respects trees”.

Here we show that the tree structure of our tableaux can be naturally sent to the tree
structure on permutations underlying their representations as increasing trees.
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From permutations to binary trees: We define an increasing tree of size n to be a
binary tree of size n where the n nodes are labeled by all integers in {1, . . . , n} in such
a way that the labels increase along the path from the root to any node. There is a
well-known bijection with permutations: given an increasing tree, traverse its vertices in
inorder, which means recursively traverse the left subtree, then visit the root, then traverse
the right subtree. By recording node labels in the order in which they are visited, one
obtains the wanted permutation: see Figure 12 (left). If σ is a permutation with associated
increasing tree inctree(σ), then we define tree(σ) as the binary tree obtained by forgetting
the labels in inctree(σ).

From tree-like tableaux to binary trees: We described this in Remark 2. It can also
be obtained graphically by drawing two lines from every point of T , one down and one
to the right, and stopping them at the boundary. We let tree(T ) be the binary tree thus
constructed, see Figure 12 (right). Note that there is a natural identification between
boundary edges of T and leaves of tree(T ).

1

23

48 6

7 5

σ = 83761254

Figure 12: The same binary tree arising from a permutation (left) and a tableau (right).

Using Insertpoint, we now define a bijection Φ2 between permutations and tree-like
tableaux which preserves the binary trees attached to the objects. For this we proceed
by induction on n.

Let σ be a permutation of size n+ 1, and τ be the permutation of size n obtained by
deleting n+ 1 in σ. By induction hypothesis, the tableau T := Φ2(τ) is well defined and
satisfies tree(T ) = tree(τ). Define L to be the leaf of inctree(τ) appearing in the inorder
traversal at the position occupied by n+ 1 in σ: then inctree(σ) is obtained by replacing
L by a node labeled n + 1 with two leaves. Now L corresponds naturally to a boundary
edge eL in Φ2(τ), and we define Φ2(σ) = Insertpoint(Φ2(τ), eL).

Theorem 24. Given n > 1, the function Φ2 is a bijection between permutations of length
n and tree-like tableaux of size n, satisfying tree(σ) = tree(Φ2(σ)).

This is a simple consequence of the properties of Insertpoint. The permutation σ and
the tree-like tableau T from Figure 12 satisfy Φ2(σ) = T .
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Remark 25. The tree structure attached to tableaux is not new: first Burstein [3] defined
it on so-called bare tableaux, which are essentially our tree-like tableaux minus a column.
Then this tree structure was also studied by the third author in some detail [12, Section
4]. The main difference is that, although the (unlabeled) tree structure is essentially the
same, the labeling is quite different: here we have a quite simple bijection with increasing
trees, while the labelings from the two aforementioned references involve some complicated
increasing/decreasing conditions. The root of such complication can be traced to the fact
that the boundary edges in [3, 12] were labeled independently of the structure of the tree,
while here we use the tree to determine the labeling.

5 Further results and questions

In this work we described a very simple insertion procedure Insertpoint which can be
seen as a 1-to-(n + 1) correspondence between the sets Tn and Tn+1. We proved that
from this simple seed one could produce automatically most of the enumerative results
known on tableaux, as well as design bijections to permutations with various properties.
Other enumeration results can also be proved with the same techniques: enumeration of
tableaux according to the number of rows (this gives Eulerian numbers [20]), or the total
number of cells.

A further question would be to revisit the work of Corteel and Williams on the PASEP
model from statistical mechanics (see [10, 9, 8]), which involves objects related to al-
ternative tableaux. In particular, do their (weighted) staircase tableaux have recursive
decompositions similar to those given here for tree-like tableaux? An answer is given in
[2].

As mentioned in the introduction, this work founds its origin in problems about trees,
and not tableaux; we will here briefly describe such a problem. Suppose we draw the
nodes of a plane binary tree as points in the center of unit cells of Z2, where the children
of a node are drawn below and to the right of this node (as in the trees tree(T ) attached
to a tree-like tableau T ); we allow edges to cross outside of nodes. Let us call the drawing
unambiguous if, when one deletes the edges of the tree, it is then possible to reconstruct
them uniquely: one sees that this comes down essentially to condition (2) in Definition 1.
We are led to the following definition: a ambiguous tree is a tree-like tableau T with
rectangular shape. Such objects are investigated in [1] where several combinatorial results
are obtained.
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