
A basis for the diagonally
signed-symmetric polynomials
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Abstract

Let n > 1 be an integer and let Bn denote the hyperoctahedral group of rank n.
The group Bn acts on the polynomial ring Q[x1, . . . , xn, y1, . . . , yn] by signed permu-
tations simultaneously on both of the sets of variables x1, . . . , xn and y1, . . . , yn. The
invariant ring MBn := Q[x1, . . . , xn, y1, . . . , yn]Bn is the ring of diagonally signed-
symmetric polynomials. In this article, we provide an explicit free basis of MBn as
a module over the ring of symmetric polynomials on both of the sets of variables
x2

1, . . . , x
2
n and y2

1, . . . , y
2
n using signed descent monomials.

Keywords: hyperoctahedral group, symmetric polynomials.

1 Introduction

Let V be an n-dimensional vector space over a field k of characteristic zero. Suppose that
W is a finite reflection group in V ; that is, W is finite subgroup of GL(V ) generated by
elements of order 2 that fix a hyperplane pointwise. Then W acts by ring automorphisms
on the symmetric algebra S(V ∗), where V ∗ is the dual of V . If we give V a basis,
then S(V ∗) can be identified with a polynomial ring k[x] := k[x1, . . . , xn]. The action
of the group W on the polynomial ring k[x], under the above identification, has been
classically studied. For example, by [7, Theorem A] the ring k[x]W consisting of all W -
invariant polynomials is itself a polynomial ring on n homogeneous generators. Consider
now the diagonal action of W on the symmetric algebra S(V ∗ ⊕ V ∗). If we give V a
basis as before, then S(V ∗ ⊕ V ∗) can be identified with a polynomial algebra k[x,y] :=
k[x1, . . . , xn, y1, . . . , yn] and W acts diagonally on it. In this case, the ring MW := k[x,y]W

consisting of all diagonally W -invariant polynomials is no longer a polynomial algebra.
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The ring RW := k[x]W ⊗k[y]W of all polynomials that are W -invariant in both of the sets
of variables x and y is naturally a subring of MW . Therefore we can see MW as a module
over RW . It can be seen that in fact MW is a free module over RW of rank |W |. This
relies on the fact that MW is a Cohen-Macaulay ring which is true by [9, Proposition 13].
This article is concerned with the determination of explicit free bases of MW as a module
over RW for a particular class of groups using elementary methods. For simplicity, we
work with rational coefficients although all the constructions provided here work for any
field of characteristic zero.

In [5], Allen provided an explicit basis for the case of the symmetric group. More
precisely, suppose that W = Σn acts on the polynomial algebra Q[x] = Q[x1, . . . , xn] by
permutations of the variables x1, . . . , xn. In this case the invariant ring Q[x]Σn is the ring
of symmetric polynomials. This ring is a polynomial algebra on the elementary symmetric
polynomials. Let Σn act diagonally on Q[x,y] := Q[x1, . . . , xn, y1, . . . , yn]. Then MΣn =
Q[x,y]Σn is the ring of diagonally symmetric or multisymmetric polynomials. Given
π ∈ Σn define the diagonal descent monomial

eπ :=
∏

i∈Des(π−1)

(x1 · · ·xi)
∏

j∈Des(π)

(yπ(1) · · · yπ(j)) =
n∏
i=1

x
di(π

−1)
i y

dπ−1(i)(π)

i ,

where Des(π) denotes the descent set of π, and di(π
−1) and dπ1(i)(π) are integers (see

Section 2 for the definitions). By [5, Theorem 1.3] the collection {ρΣn(eπ)}π∈Σn forms a
free basis of MΣn as a module over RΣn = Q[x]Σn ⊗ Q[y]Σn , where ρΣn is the averaging
operator defined below.

The goal of this article is to show that an analogous construction works for the hy-
peroctahedral group Bn acting on the polynomial algebra Q[x] = Q[x1, . . . , xn] by signed
permutations. In this case, the invariant ring Q[x]Bn consists of all symmetric polyno-
mials on the variables x2

1, . . . , x
2
n. Suppose that Bn acts diagonally on the polynomial

ring Q[x,y] = Q[x1, . . . , xn, y1, . . . , yn] by signed permutations. Then the invariant ring
MBn = Q[x,y]Bn is the ring of diagonally signed-symmetric polynomials. A free basis of
it as a module over RBn = Q[x]Bn ⊗ Q[y]Bn can be constructed in the same spirit as in
the case of permutations. Given σ ∈ Bn, define the diagonal signed descent monomial

cσ :=

(
n∏
i=1

x
fi(σ

−1)
i

)(
n∏
i=1

y
fi(σ)
|σ(i)|,

)
.

See Section 3 for the definition of the numbers fi(σ). The goal of this article is to prove
the following theorem.

Theorem 1. Suppose that n > 1. Then the collection {ρ(cσ)}σ∈Bn forms a free basis of
MBn as a module over RBn, where ρ is the averaging operator.

A similar basis to the one given in the previous theorem was constructed in [6]. More-
over, in there a nice combinatorial interpretation of the basis monomials was provided
in terms of certain diagrams of the square lattice. The author would like to thank F.
Bergeron and R. Biagioli for pointing out their work to him.
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2 The symmetric group

In this section we provide a brief review of an explicit basis for the coinvariant ring for
groups of type A. This basis was constructed by Garsia and Stanton in [8] using descent
monomials. A construction of a free basis for the ring of diagonally symmetric polynomials
as a module over the symmetric polynomials, constructed by Allen in [5], is also reviewed.

2.1 Major index

For every integer n > 1, let Σn denote the symmetric group of self bijections of the set
{1, 2, . . . , n}. We use the notation π = [π1, . . . , πn] for an element π ∈ Σn with πi = π(i)
for 1 6 i 6 n. Given π ∈ Σn define its descent to be the set

Des(π) := {1 6 i 6 n− 1 | π(i) > π(i+ 1)}.

Also, for any 1 6 i 6 n let

di(π) := |{j ∈ Des(π) | j > i}|.

The numbers di(π) satisfy the following properties:

d1(π) > d2(π) > · · · > dn−1(π) > dn(π) = 0, and (1)

if i < j and di(π) = dj(π), then π(i) < π(i+ 1) < · · · < π(j). (2)

The major index of π ∈ Σn, denoted by maj(π), is defined to be

maj(π) :=
n∑
i=1

di(π) =
∑

i∈Des(π)

i.

Example 2. Suppose that π is the permutation

π =

(
1 2 3 4 5 6
6 2 1 4 3 5

)
.

In our notation this is the permutation π = [6, 2, 1, 4, 3, 5]. The descent set of this per-
mutation is Des(π) = {1, 2, 4} and

d1(π) = 3, d2(π) = 2, d3(π) = d4(π) = 1, and d5(π) = d6(π) = 0.

Also, the major index of π is maj(π) = 3 + 2 + 1 + 1 + 0 + 0 = 7.

In [10], MacMahon showed that the major index is equidistributed with respect to
the length function. This means that the number of permutations of length n with k
inversions is the same as the number of permutations of length n with major index equal
to k. The numbers d1(π) > d2(π) > · · · > dn−1(π) are defined exactly to provide a
partition of the integer maj(π).
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2.2 Descent monomials

Suppose that x = {x1, . . . , xn} is a set of algebraically independent commuting vari-
ables. Consider the polynomial algebra Q[x] := Q[x1, . . . , xn] seen as a graded ring
with deg(xi) = 1 for 1 6 i 6 n. The group Σn acts naturally on Q[x] by permuting
the variables x1, . . . , xn. The invariant ring Q[x]Σn consists of all symmetric polyno-
mials on the variables x1, . . . , xn. This ring is a polynomial algebra on the generators
e1(x1, . . . , xn), . . . , en(x1, . . . , xn), where ek(x1, . . . , xn) is the k-th elementary symmetric
polynomial

ek(x1, . . . , xn) :=
∑

16i1<···<ik6n

xi1xi2 · · ·xik .

Suppose that π ∈ Σn. Define the descent monomial associated to π to be

aπ :=
∏

i∈Des(π)

xπ(1) · · ·xπ(i) =
n∏
i=1

x
di(π)
π(i) =

n∏
i=1

x
dπ−1(i)(π)

i . (3)

It follows that for any π ∈ Σn we have

deg(aπ) = d1(π) + d2(π) + · · ·+ dn(π) = maj(π).

Example 3. Suppose that π = [6, 2, 1, 4, 3, 5]. Then, as in Example 2, the descent of π
is the set Des(π) = {1, 2, 4} and the corresponding descent monomial is the monomial

aπ = (xπ(1))(xπ(1)xπ(2))(xπ(1)xπ(2)xπ(3)xπ(4)) = x1x
2
2x4x

3
6.

In [8], Garsia and Stanton used Stanley–Reisner rings to show that descent monomials
provide a basis for the coinvariant algebra of type A. More precisely, let IAn denote the
ideal in Q[x] generated by the symmetric polynomials e1(x1, . . . , xn), . . . , en(x1, . . . , xn).
Then Q[x]/IAn is the coinvariant algebra of type A. Let āπ denote the image of aπ in
the coinvariant algebra under the natural map. In [8], it was proved that the collection
{āπ}π∈Σn forms a basis of Q[x]/IAn as a Q-vector space. Moreover, the collection {aπ}π∈Σn

provides a free basis for Q[x] as a module over the symmetric polynomials Q[x]Σn . This
result has an interesting geometric application. Consider the flag manifold U(n)/T , where
T ⊂ U(n) is a maximal torus. Then H∗(U(n)/T ;Q) can be identified with the invariant
algebra Q[x]/IAn , but under this identification the variables x1, . . . , xn are graded with
degree 2. This shows that descent monomials provide an explicit basis for the cohomology
of the flag manifold U(n)/T .

2.3 Diagonal descent monomials

Let y = {y1, . . . , yn} be another set of algebraically independent commuting variables
of degree 1 and consider the polynomial algebra Q[x,y]. The symmetric group Σn acts
diagonally on this polynomial ring and the ring of Σn-invariants, MΣn := Q[x,y]Σn , is
known as the ring of diagonally symmetric or multisymmetric polynomials. The ring of
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polynomials that are symmetric in both the variables x and y, RΣn := Q[x]Σn ⊗Q[y]Σn ,
is a subring of MΣn . Therefore MΣn can be seen as a module over RΣn . In [5], Allen
constructed a free basis for the module MΣn using a variation of the descent monomials
which is described next. For any π ∈ Σn define the diagonal descent monomial

eπ :=

(
n∏
i=1

x
di(π

−1)
i

)(
n∏
i=1

y
di(π)
π(i)

)
=

n∏
i=1

x
di(π

−1)
i y

dπ−1(i)(π)

i . (4)

Example 4. Suppose that π = [6, 2, 1, 4, 3, 5]. Then π−1 = [3, 2, 5, 4, 6, 1], Des(π) =
{1, 2, 4}, Des(π−1) = {1, 3, 5} and we have

dπ−1(1)(π) = d3(π) = 1, dπ−1(2)(π) = d2(π) = 2, dπ−1(3)(π) = d5(π) = 0,

dπ−1(4)(π) = d4(π) = 1, dπ−1(5)(π) = d6(π) = 0 and dπ−1(6)(π) = d1(π) = 3.

Also

d1(π−1) = 3, d2(π−1) = d3(π−1) = 2, d4(π−1) = d5(π−1) = 1 and d6(π) = 0.

Therefore the diagonal descent monomial associated to π is the monomial

eπ = x3
1x

2
2x

2
3x4x5y1y

2
2y4y

3
6.

In an analogous way as above, for any π ∈ Σn the total degree of eπ is given by
deg(eπ) = maj(π) + maj(π−1). On the other hand, consider the averaging operator

ρΣn : Q[x,y]→ Q[x,y]Σn = MΣn

f 7→ 1

n!

∑
π∈Σn

π · f.

Thus, by definition, ρΣn(eπ) is a diagonally symmetric polynomial. By [5, Theorem 1.3],
the collection {ρΣn(eπ)}π∈Σn forms a free basis of MΣn as a module over RΣn . It turns out
that this result also has an interesting geometric application. Let BcomU(n) be the geomet-
ric realization of the simplicial space obtained by defining [BcomU(n)]k := Hom(Zk, U(n)),
where Hom(Zk, U(n)) is the space of ordered commuting k-tuples in U(n). The space
BcomU(n) is the classifying space for commutativity in the group U(n). In [1, Section 8],
it is proved that the diagonal descent monomials can be used to obtain an explicit basis
of H∗(BcomU(n);Q) seen as a module over H∗(BU(n);Q), where BU(n) is the classifying
space of U(n).

3 The hyperoctahedral group

In this section we provide analogue constructions to the ones presented in the previous
section where the symmetric group is replaced by the group of signed permutations.
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3.1 Flag major index

Suppose that n > 1 is an integer. Denote by In the set of integers between −n and n not
including 0; that is,

In := {−n,−n+ 1, . . . ,−1, 1, . . . , n− 1, , n}.

Let Bn denote the group of bijections σ : In → In such that σ(−k) = −σ(k) for all k ∈ In,
with the composition of functions as the group operation. Thus, the group Bn is the group
of signed permutations, also known as the hyperoctahedral group of rank n. It is easy to
see that Bn is isomorphic to the semidirect product Σn n (Z/2)n. We use the following
notation for elements σ ∈ Bn. Let σi = σ(i) for 1 6 i 6 n, then we write σ = [σ1, . . . , σn].
The condition σ(−k) = −σ(k) for all k ∈ In implies that the element σ ∈ Bn is uniquely
determined by the numbers σ1, . . . , σn. The group Bn is the Weyl group associated to Lie
groups of type Bn and Cn and the symmetric group Σn is naturally a subgroup of Bn. As
in the case of the symmetric group, given σ ∈ Bn define its descent to be the set

Des(σ) := {1 6 i 6 n− 1 | σ(i) > σ(i+ 1)}

and for 1 6 i 6 n let
di(σ) := |{j ∈ Des(σ) | j > i}|.

As before the numbers di(σ) satisfy the following important properties:

d1(σ) > d2(σ) > · · · > dn−1(σ) > dn(σ) = 0, and (5)

if i < j and di(σ) = dj(σ), then σ(i) < σ(i+ 1) < · · · < σ(j). (6)

On the other hand, define

εi(σ) :=

{
0 if σ(i) > 0,
1 if σ(i) < 0,

and
fi(σ) := 2di(σ) + εi(σ).

The numbers fi(σ) also satisfy the properties:

f1(σ) > f2(σ) > · · · > fn(σ), and (7)

if i < j and fi(σ) = fj(σ), then σ(i) < σ(i+ 1) < · · · < σ(j) and all of these (8)

numbers have the same sign.

The flag major index of σ ∈ Bn, denoted by fmaj(σ), is defined to be

fmaj(σ) :=
n∑
i=1

fi(σ) = 2 maj(σ) + neg(σ),

where maj(σ) =
∑

i∈Des(σ) i is the major index of σ and neg(σ) = |{1 6 i 6 n | σ(i) < 0}|.
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Example 5. Consider the signed permutation

σ =

(
1 2 3 4 5 6
−6 2 −1 −4 3 5

)
.

In our notation this is σ = [−6, 2,−1,−4, 3, 5]. The Descent of σ is the set Des(σ) =
{2, 3}. Therefore

d1(σ) = d2(σ) = 2, d3(σ) = 1 and d4(σ) = d5(σ) = d6(σ) = 0,

and
ε1(σ) = ε3(σ) = ε4(σ) = 1 and ε2(σ) = ε5(σ) = ε6(σ) = 0,

We conclude that

f1(σ) = 5, f2(σ) = 4, f3(σ) = 3, f4(σ) = 1 and f5(σ) = f6(σ) = 0

and fmaj(σ) = 5 + 4 + 3 + 1 + 0 + 0 = 13.

The flag major index was introduced in [4] and further studied in [2] and [3]. This
statistic was introduced as a generalization of the major index for the hyperoctahedral
group. This tool has successfully been used to study representation theoretical properties
of the group Bn (see for example [3]). The numbers f1(σ) > · · · > fn(σ) are defined
so that they provide a partition of the flag major index of σ. Moreover, if σ ∈ Σn then
fmaj(σ) = 2 maj(σ) so the flag major index is indeed a natural generalization of the major
index.

3.2 Signed descent monomials

Suppose that x = {x1, . . . , xn} is a set of algebraically independent commuting variables.
Consider the polynomial algebraQ[x] seen as a graded ring with deg(xi) = 1 for 1 6 i 6 n.
The group Bn acts naturally on the polynomial algebra Q[x] by degree preserving ring
homomorphisms in the following way. If σ ∈ Bn, then

σ · (xp11 · · ·xpnn ) :=

(
σ(1)

|σ(1)|

)p1
· · ·
(
σ(n)

|σ(n)|

)pn
xp1|σ(1)| · · ·x

pn
|σ(n)|.

In other words, each σ permutes the variables x1, . . . , xn with a suitable sign change.
The ring of Bn-invariants, Q[x]Bn , consists of the symmetric polynomials in the variables
x2

1, . . . , x
2
n. It follows that Q[x]Bn is a polynomial algebra on the symmetric polynomi-

als e1(x2
1, . . . , x

2
n), . . . , en(x2

1, . . . , x
2
n). Suppose that σ ∈ Bn. Define the signed descent

monomial to be

bσ :=
n∏
i=1

x
fi(σ)
|σ(i)| =

n∏
i=1

x
f|σ−1(i)|(σ)

i . (9)
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Example 6. Let σ = [−6, 2,−1,−4, 3, 5]. In this case σ−1 = [−3, 2, 5,−4, 6,−1] and
from Example 5 we conclude that

f|σ−1(1)|(σ) = f3(σ) = 3, f|σ−1(2)|(σ) = f2(σ) = 4, f|σ−1(3)|(σ) = f5(σ) = 0,

f|σ−1(4)|(σ) = f4(σ) = 1, f|σ−1(5)|(σ) = f6(σ) = 0 and f|σ−1(6)|(σ) = f1(σ) = 5.

Therefore the corresponding signed descent monomial is

bσ = x3
1x

4
2x4x

5
6.

We observe that deg(bσ) = fmaj(σ) for every σ ∈ Bn. Signed descent monomials can
be used to obtain a basis for the coinvariant algebra for groups of type B,C as follows. Let
IBn denote the ideal in Q[x] generated by the elements e1(x2

1, . . . , x
2
n), . . . , en(x2

1, . . . , x
2
n).

Then the quotient Q[x]/IBn (x) is the coinvariant algebra in this case. Let b̄σ denote the
image of bσ in the coinvariant algebra under the natural map. By [3, Corollary 5.3], the
collection {b̄σ}σ∈Bn forms a basis of Q[x]/IBn (x) as a Q-vector space. We can also see Q[x]
as a module over the invariant ring Q[x]Bn . As {b̄σ}σ∈Bn forms a basis of Q[x]/IBn (x) as
a Q-vector space, then using [5, Theorem 1.2] it can be seen that {bσ}σ∈Bn forms a free
basis of Q[x] as a module over Q[x]Bn . This result has a geometric application as in the
case of the symmetric group, namely, the signed descent monomials provide an explicit
basis for the rational cohomology of the flag manifold G/T , for a compact connected Lie
group G of type Bn, Cn and a maximal torus T ⊂ G.

3.3 Diagonal signed descent monomials

Consider now y = {y1, . . . , yn} another set of algebraically independent commuting
variables of degree 1 and consider the polynomial algebra Q[x,y] := Q[x] ⊗ Q[y] =
Q[x1, . . . , xn, y1, . . . , yn]. The group Bn acts diagonally on this polynomial ring; that is,
Bn acts as signed permutations simultaneously on the variables x1, . . . , xn and y1, . . . , yn.
Define MBn := Q[x,y]Bn . In other words, MBn is the ring of diagonally signed-symmetric
polynomials. The ring of polynomials that are signed-symmetric on both the variables
x and y, RBn := Q[x]Bn ⊗ Q[y]Bn , is a subring of MBn and thus we can see MBn as a
module over RBn . As it was pointed out before, MBn is a free module over RBn and the
goal of this article is to construct an explicit basis for MBn as a module over RBn . For
this we will consider the following monomials.

Definition 7. Suppose that σ ∈ Bn. The diagonal signed descent monomial associated
to σ is defined to be

cσ :=

(
n∏
i=1

x
fi(σ

−1)
i

)(
n∏
i=1

y
fi(σ)
|σ(i)|

)
=

n∏
i=1

x
fi(σ

−1)
i y

f|σ−1(i)|(σ)

i . (10)

We observe that for any σ ∈ Bn we have deg(cσ) = fmaj(σ) + fmaj(σ−1).
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Example 8. Suppose that σ = [−6, 2,−1,−4, 3, 5]. Then σ−1 = [−3, 2, 5,−4, 6,−1] and
thus Des(σ−1) = {3, 5}. In this case, we obtain

f1(σ−1) = 5, f2(σ−1) = f3(σ−1) = 4, f4(σ−1) = 3, f5(σ−1) = 2 and f6(σ−1) = 1.

Also, from Example 6 we have

f|σ−1(1)|(σ) = 3, f|σ−1(2)|(σ) = 4, f|σ−1(3)|(σ) = 0,

f|σ−1(4)|(σ) = 1, f|σ−1(5)|(σ) = 0 and f|σ−1(6)|(σ) = 5.

We conclude that the corresponding diagonal signed descent monomial is

cσ = x5
1x

4
2x

4
3x

3
4x

2
5x6y

3
1y

4
2y4y

5
6.

3.4 Averaging polynomials

Consider the averaging operator

ρ : Q[x,y]→ Q[x,y]Bn = MBn

f 7→ 1

|Bn|
∑
σ∈Bn

σ · f.

The map ρ is a ring homomorphism that is surjective. Moreover, as a Q-vector space
MBn is generated by elements of the form ρ(m(x,y)), where m(x,y) is a monomial in
Q[x,y]. We will use the following notation. A sequence of non-negative integers will be
denoted in the form p = (p1, . . . , pn). Also, for such a sequence of integers we write xp to
denote the monomial xp11 · · ·xpnn .

Lemma 9. Suppose that p = (p1, . . . , pn) and q = (q1, . . . , qn) are sequences of non-
negative integers and let m(x,y) = xpyq. If pk + qk is odd for some 1 6 k 6 n, then
ρ(m(x,y)) = 0.

Proof. Suppose that 1 6 k 6 n is such that pk + qk is odd. Define

B+
n = {σ ∈ Bn | σ(k) > 0} and B−n = {σ ∈ Bn | σ(k) < 0}.

Note that Bn = B+
n tB−n . Moreover, there is a bijection τ : B+

n → B−n defined by

τ(σ)(i) :=

{
σ(i) if i 6= k,
−σ(i) if i = k.

By definition,

ρ(m(x,y)) =
1

|Bn|
∑
σ∈Bn

cσx
p1
|σ(1)| · · · x

pn
|σ(n)|y

q1
|σ(1)| · · · y

qn
|σ(n)|,
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where

cσ =

(
σ(1)

|σ(1)|

)p1+q1

· · ·
(
σ(n)

|σ(n)|

)pn+qn

.

For any σ ∈ B+
n , we have cτ(σ) = −cσ since pk + qk is odd. Therefore,

ρ(m(x,y)) =
1

|Bn|
∑
σ∈Bn

cσx
p1
|σ(1)| · · · x

pn
|σ(n)|y

q1
|σ(1)| · · · y

qn
|σ(n)|

=
1

|Bn|
∑
σ∈B+

n

(cσ + cτ(σ))x
p1
|σ(1)| · · ·x

pn
|σ(n)|y

q1
|σ(1)| · · · y

qn
|σ(n)| = 0.

By the previous lemma, it follows that MBn is generated as a vector space over Q by
the elements of the form ρ(m(x,y)), where m(x,y) = xpyq, and p = (p1, . . . , pn) and
q = (q1, . . . , qn) are sequences of integers such that pk + qk is even for all 1 6 k 6 n. Note
that for any such monomial we have

ρ(m(x, y)) =
1

n!

∑
α∈Σn

xp1α(1) · · ·x
pn
α(n)y

q1
α(1) · · · y

qn
α(n).

Thus, if pk + qk is even for all 1 6 k 6 n, then ρ(xpyq) 6= 0.

Suppose now that σ ∈ Bn and consider the monomial cσ =
∏n

i=1 x
fi(σ

−1)
i y

f|σ−1(i)|(σ)

i

defined in equation (10). We claim that for every 1 6 i 6 n the numbers fi(σ
−1) and

f|σ−1(i)|(σ) have the same parity. To see this recall that

fi(σ
−1) = 2di(σ

−1) + εi(σ
−1), and

f|σ−1(i)|(σ) = 2d|σ−1(i)|(σ) + ε|σ−1(i)|(σ).

Because of this, to show that fi(σ
−1) and f|σ−1(i)|(σ) have the same parity, it suffices to

show that εi(σ
−1) = ε|σ−1(i)|(σ) for any 1 6 i 6 n. Let k = σ−1(i) so that σ(k) = i. We

consider the following two cases.

• Case 1. Suppose that k = σ−1(i) > 0. Then in this case εi(σ
−1) = 0. Also,

|σ−1(i)| = k and thus ε|σ−1(i)|(σ) = εk(σ) = 0 since σ(k) = i > 0.

• Case 2. Suppose that k = σ−1(i) < 0. Then εi(σ
−1) = 1. On the other hand,

|σ−1(i)| = −k and σ(−k) = −i < 0. Therefore ε|σ−1(i)|(σ) = ε−k(σ) = 1.

In either case we conclude that εi(σ
−1) = ε|σ−1(i)|(σ) for any 1 6 i 6 n. This shows

that fi(σ
−1) and f|σ−1(i)|(σ) have the same parity. As a consequence, we conclude that

ρ(cσ) 6= 0 for all σ ∈ Bn. By definition ρ(cσ) ∈ MBn . We will show below that the
collection {ρ(cσ)}σ∈Bn forms a free basis of MBn as a module over RBn .
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3.5 Ordering of monomials

Our next goal is to define a total order on a subset of the set of monomials of the form
m(x,y) = xpyq. We will only consider monomials that are ordered in a suitable way. To
motivate the ordering that we use suppose that σ ∈ Bn and consider the corresponding
diagonal signed descent monomial monomial cσ. This monomial can be written in the
form cσ = xδyγ , where

δ = (f1(σ−1), . . . , fn(σ−1)), and

γ = (f|σ−1(1)|(σ), . . . , f|σ−1(n)|(σ)).

We observe that the sequences δ and γ satisfy the next key properties. From equation
(7) we obtain right away

f1(σ−1) > f2(σ−1) > · · · > fn(σ−1). (11)

Furthermore, assume 1 6 i < n is such that fi(σ
−1) = fi+1(σ−1) and these are both even

numbers. This implies that εi(σ
−1) = εi+1(σ−1) = 0 which means that σ−1(i) > 0 and

σ−1(i+ 1) > 0. On the other hand, by equation (8), we see that 0 < σ−1(i) < σ−1(i+ 1).
Using equation (7), we conclude f|σ−1(i)|(σ) = fσ−1(i)(σ) > fσ−1(i+1)(σ) = f|σ−1(i+1)|(σ).
Thus we obtain:

if fi(σ
−1) = fi+1(σ−1) are even, then f|σ−1(i)|(σ) > f|σ−1(i+1)|(σ). (12)

Finally, assume that 1 6 i < n is such that fi(σ
−1) = fi+1(σ−1) and these are both odd.

Then, in this case, we conclude that εi(σ
−1) = εi+1(σ−1) = 1. This implies σ−1(i) < 0

and σ−1(i + 1) < 0. Using equation (8), we see that σ−1(i) < σ−1(i + 1) < 0 and thus
−σ−1(i) > −σ−1(i + 1) > 0. Equation (7) implies then that f|σ−1(i)|(σ) = f−σ−1(i)(σ) 6
f−σ−1(i+1)(σ) = f|σ−1(i+1)|(σ). In this case, we conclude that

if fi(σ
−1) = fi+1(σ−1) are odd, then f|σ−1(i)|(σ) 6 f|σ−1(i+1)|(σ). (13)

Equations (11), (12) and (13) motivate us to work with monomials m(x,y) = xpyq

whose exponents are ordered in a similar way.

Definition 10. Suppose that p = (p1, . . . , pn) and q = (q1, . . . , qn) are two sequences of
non-negative integers with pk + qk even for all 1 6 k 6 n. We say that the monomial
m(x,y) = xpyq is ordered and write m(x,y) ∈ On if the exponents of m(x,y) satisfy the
following conditions:

1. p1 > p2 > · · · > pn,

2. if pi = pi+1 are even, then qi > qi+1, and

3. if pi = pi+1 are odd, then qi 6 qi+1.
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The previous ordering can be described in the following way. For each integer q, define

s(q) :=

{
q if q is even,
−q if q is odd.

Suppose that p = (p1, . . . , pn) and q = (q1, . . . , qn) are sequences of non-negative integers.
Then m(x,y) = xpyq ∈ On if and only if (p1, s(q1)) >` . . . >` (pn, s(qn)), where >`

denotes the lexicographic order. Equations (11), (12) and (13) imply that for every
σ ∈ Bn the diagonal signed descent monomial cσ is ordered in this way; that is, cσ ∈ On
for all σ ∈ Bn. Suppose now that m(x,y) = xpyq is a monomial with pk + qk even
for all 1 6 k 6 n but whose exponents are not necessarily ordered as above. Consider
the signed-symmetric polynomial ρ(m(x,y)). In this polynomial there exists a unique
monomial n(x,y) whose exponents are ordered as above; that is, ρ(m(x,y)) contains a
unique monomial n(x,y) ∈ On and ρ(m(x,y)) = ρ(n(x,y)). Because of this, it suffices
to work with monomials m(x,y) that are ordered as above.

Next we define a total order on On so that we can compare monomials. For this
suppose that q = (q1, . . . , qn) is a sequence of integers. Define the ordering of q to be the
sequence

o(q) := (qα(1), . . . , qα(n)),

where (qα(1), . . . , qα(n)) is a rearrangement of the sequence q in decreasing order; that is,
α ∈ Σn is such that qα(1) > . . . > qα(n). For example, if q = (2, 3, 4, 1, 1) then o(q) =
(4, 3, 2, 1, 1). Suppose now that m(x,y) = xpyq is a monomial with p = (p1, . . . , pn) and
q = (q1, . . . , qn). Define

o(m(x,y)) := (o(p), o(q)).

In other words, o(m(x,y)) recovers the exponents x and y in the monomial m(x,y)
ordered in a decreasing fashion. For example, if n = 4 and m(x,y) = x2

1x3x
5
4y1y

4
2y3y

2
4,

then o(m(x,y)) = ((5, 2, 1, 0), (4, 2, 1, 1)). Using this ordering of exponents, we can define
the following total order on On.

Definition 11. Suppose that m(x,y) = xpyq and n(x,y) = xiyj are two monomials in
On. We write m(x,y) < n(x,y) if and only if

1. o(m(x,y)) >` o(n(x,y)), and

2. if o(m(x,y)) = o(n(x,y)), then (p, s(q)) >` (i, s(j)).

In the above equation we used the notation s(q) := (s(q1), . . . , s(qn)) for a sequence
of integers q = (q1, . . . , qn). Also, >` denotes the lexicographic order.

Example 12. Suppose that n = 4. Consider the monomials m(x,y) = x7
1x

6
2x

6
3x

5
4y

3
1y

8
2y

6
3y

5
4

and n(x,y) = x7
1x

6
2x

6
3x

5
4y

5
1y

8
2y

6
3y

3
4. Then m(x,y), n(x,y) ∈ O4 are such that

o(m(x,y)) = o(n(x,y)) = ((7, 6, 6, 5), (8, 6, 5, 3))

and m(x, y) < n(x,y).
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3.6 Signed index permutation

Suppose that m(x,y) = xpyq ∈ On. We observe that by construction the sequence
p = (p1, . . . , pn) is in decreasing order. This is not necessarily true for the sequence
q = (q1, . . . , qn). With this in mind, we can associate to the monomial m(x,y) the unique
element σ ∈ Bn, which we call its signed index permutation, that satisfies the following
properties:

q|σ(1)| > q|σ(2)| > · · · > q|σ(n)|, (14)

if 0 < i < j and q|σ(i)| = q|σ(j)|, then σ(i) < σ(i+ 1) < · · · < σ(j), and (15)

q|σ(i)| is even if and only if σ(i) > 0. (16)

In other words, the signed permutation σ is the unique element in Bn whose signs are
determined by the parity of the qi’s and that orders the elements in the sequence q =
(q1, . . . , qn) in decreasing way breaking ties from left to right for even values of qi and
from right to left for odd values of qi.

Example 13. Suppose that n = 6 and that m(x,y) = x7
1x

6
2x

6
3x

5
4x

5
5x

3
6y

3
1y

8
2y

6
3y

3
4y

5
5y

5
6 ∈ O6.

In this case q = (3, 8, 6, 3, 5, 5) and the signed index permutation associated to m(x,y) is
σ = [2, 3,−6,−5,−4,−1].

3.7 Exponent decomposition

Suppose that m(x,y) = xpyq is a monomial in On and let σ ∈ Bn be the signed index
permutation associated to m(x,y) as explained above. We can use the signed permutation
σ to obtain a decomposition of the sequences p and q as is explained next. We start by
decomposing q. For this we need the following proposition.

Proposition 14. Suppose that m(x,y) = xpyq ∈ On. Then, the sequence of integers
{q|σ(i)| − fi(σ)}ni=1 is a decreasing sequence of non-negative even integers.

Proof. By the definition and equation (16) we have that for any 1 6 i 6 n

q|σ(i)| − fi(σ) = q|σ(i)| − 2di(σ)− εi(σ)

≡ q|σ(i)| − εi(σ) (mod 2)

≡ 0 (mod 2).

This proves that q|σ(i)| − fi(σ) is even for all 1 6 i 6 n. Observe that q|σ(n)| − fn(σ) =
q|σ(n)| − εn(σ). We have q|σ(n)| > 0, and q|σ(n)| and εn(σ) have the same parity with
εn(σ) ∈ {0, 1}. It follows then that in either case q|σ(n)| − fn(σ) > 0. It remains to prove
q|σ(i)| − fi(σ) > q|σ(i+1)| − fi+1(σ) for all 1 6 i 6 n− 1. For this we consider the following
cases.

• Case 1. Suppose that σ(i) < σ(i + 1). This implies di(σ) = di+1(σ). Thus, in this
case, we need to prove that q|σ(i)| − εi(σ) > q|σ(i+1)| − εi+1(σ). Since q|σ(i)| > q|σ(i+1)| the

the electronic journal of combinatorics 20(4) (2013), #P36 13



only case we need to inspect is the case εi(σ) = 1 and εi+1(σ) = 0. However, under this
assumption q|σ(i)| is odd and q|σ(i+1)| is even and thus q|σ(i)| − 1 > q|σ(i+1)|.

• Case 2. Suppose that σ(i) > σ(i + 1) and εi(σ) 6= εi+1(σ). This implies εi(σ) = 0
and εi+1(σ) = 1. We have di(σ) = di+1(σ) + 1. In this case, we need to show that
q|σ(i)|−1 > q|σ(i+1)|. Note that q|σ(i)| must be even and q|σ(i+1)| must be odd and by equation
(14) we have q|σ(i)| > q|σ(i+1)|. Therefore q|σ(i)| > q|σ(i+1)| which means q|σ(i)|− 1 > q|σ(i+1)|.

• Case 3. Suppose that σ(i) > σ(i+ 1) and εi(σ) = εi+1(σ). Then di(σ) = di+1(σ) + 1.
In this case we need to show that q|σ(i)| − 2 > q|σ(i+1)|. Since εi(σ) = εi+1(σ), then
q|σ(i)| and q|σ(i+1)| must have the same parity. By equation (14) we have q|σ(i)| > q|σ(i+1)|.
Thus we only need to prove that q|σ(i)| > q|σ(i+1)|. Assume by contradiction that q|σ(i)| =
q|σ(i+1)|. Using equation (15) we conclude σ(i) < σ(i + 1) which contradicts our original
assumption.

By the previous proposition, for every 1 6 i 6 n we can find a non-negative number
µ|σ(i)| such that q|σ(i)| = 2µ|σ(i)| + fi(σ). Define γ|σ(i)| := fi(σ) so that γi = f|σ−1(i)|(σ).

Proposition 15. The sequences γ = (γ1, . . . , γn) and µ = (µ1, . . . , µn) are sequences of
non-negative integers that satisfy the following properties:

1. q = 2µ + γ,

2. µ|σ(1)| > µ|σ(2)| > · · · > µ|σ(n)|,

3. γ|σ(1)| > γ|σ(2)| > · · · > γ|σ(n)|,

4. if 0 < i < j 6 n and γi = γj, then s(qi) > s(qj).

Proof. Property (1) follows directly from the definition of µ and γ. Property (2) was
proved in Proposition 14 and property (3) follows from equation (7). Suppose now that
0 < i < j 6 n and γi = γj. This means f|σ−1(i)|(σ) = f|σ−1(j)|(σ); that is, 2d|σ−1(i)|(σ) +
ε|σ−1(i)|(σ) = 2d|σ−1(j)|(σ) + ε|σ−1(j)|(σ). From here we obtain ε|σ−1(i)|(σ) = ε|σ−1(j)|(σ) and
d|σ−1(i)|(σ) = d|σ−1(j)|(σ). By definition

qi = γi + 2µi = 2(µi + 2d|σ−1(i)|(σ)) + ε|σ−1(i)|(σ),

qj = γj + 2µj = 2(µj + 2d|σ−1(j)|(σ)) + ε|σ−1(j)|(σ).

In particular, we conclude that qi and qj have the same parity. We need to consider two
cases according to the parity of these numbers. Suppose first that qi and qj are even. Let
k = |σ−1(i)| and l = |σ−1(j)|. Since qi and qj are even, then εk(σ) = εl(σ) = 0 and this
implies that σ−1(i), σ−1(j) > 0; that is, k = σ−1(i) > 0 and l = σ−1(j) > 0. Let’s show
that k < l. Assume, by contradiction, that l < k. Since dl(σ) = dk(σ) and l < k, then by
equation (6) it follows that

j = σ(l) < σ(l + 1) < · · · < σ(k) = i

which contradicts the assumption i < j. Therefore 0 < σ−1(i) < σ−1(j) and by equation
(14) we conclude qi = q|σ(σ−1(i))| > q|σ(σ−1(j))| = qj. The case where qi and qj are odd is
handled in a similar way.
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Next we obtain a similar decomposition for the sequence p = (p1, . . . , pn). To start
assume m(x,y) = xpyq ∈ On. This implies that pi + qi is even for all 1 6 i 6 n. On the
other hand, εi(σ

−1) = 0 if and only if k := σ−1(i) > 0 and this is the case if and only if
qi = qσ(k) is even. We conclude that if m(x,y) ∈ On then for every 1 6 i 6 n

pi ≡ qi ≡ εi(σ
−1) (mod 2).

Proposition 16. Suppose that m(x,y) = xpyq ∈ On. Then {pi − fi(σ
−1)}ni=1 is a

decreasing sequence of non-negative even integers.

Proof. By the above comment

pi − fi(σ−1) = pi − 2di(σ
−1)− εi(σ−1)

≡ qi − εi(σ−1) (mod 2)

≡ 0 (mod 2).

This proves that pi − fi(σ
−1) is even for all 1 6 i 6 n. On the other hand, we have

pn− fn(σ−1) = pn− εn(σ−1) > 0 because pn is odd if and only if εn(σ−1) = 1. We are left
to prove that pi − fi(σ−1) > pi+1 − fi+1(σ−1) for all 1 6 i 6 n− 1. For this the following
cases are considered.

• Case 1. Suppose that σ−1(i) < σ−1(i + 1). This implies di(σ
−1) = di+1(σ−1). Thus

in this case we need to prove that pi − εi(σ−1) > pi+1 − εi+1(σ−1). Since pi > pi+1, the
only case we need to inspect is the case εi(σ

−1) = 1 and εi+1(σ−1) = 0. However, under
this assumption pi is odd and pi+1 is even and thus pi − 1 > pi+1 as pi > pi+1.

• Case 2. Suppose that σ−1(i) > σ−1(i + 1) and εi(σ
−1) 6= εi+1(σ−1). This is only

possible if εi(σ
−1) = 0 and εi+1(σ−1) = 1. Then i ∈ Des(σ−1) and di(σ

−1) = di+1(σ−1)+1.
In this case we need to show that pi− 1 > pi+1. Note that pi must be even and pi+1 must
be odd, and by assumption pi > pi+1. Therefore pi > pi+1 and thus pi − 1 > pi+1 as
desired.

• Case 3. Suppose that σ−1(i) > σ−1(i + 1) and εi(σ
−1) = εi+1(σ−1). Then i ∈

Des(σ−1) and therefore di(σ
−1) = di+1(σ−1) + 1. In this case, we need to show that

pi − 2 > pi+1. Note that εi(σ
−1) = εi+1(σ−1) implies that pi and pi+1 have the same

parity. We know that pi > pi+1. Therefore we only need to prove that pi > pi+1. Assume
by contradiction that pi = pi+1. By assumption m(x,y) = xpyq ∈ On and pi = pi+1. This
implies s(qi) > s(qi+1). Let k = |σ−1(i)| and l = |σ−1(i + 1)|. If εi(σ

−1) = εi+1(σ−1) = 0
then we obtain 0 < l < k. We conclude qi+1 = q|σ(l)| > q|σ(k)| = qi by equation (14).
Observe that qi and qi+1 must be even since they have the same parity as εi(σ

−1) =
εi+1(σ−1) = 0. Thus qi = s(qi) > s(qi+1) = qi+1 and in turn qi+1 = q|σ(l)| = q|σ(k)| = qi.
This together with equation (15) imply i+ 1 = σ(l) < σ(k) = i which is a contradiction.
Suppose now that εi(σ

−1) = εi+1(σ−1) = 1. Then k = −σ−1(i) and l = −σ−1(i + 1)
and by assumption σ−1(i) > σ−1(i + 1). Thus 0 > −k > −l; that is, 0 < k < l. Using
equation (14) we conclude qi = q|σ(k)| > q|σ(l)| = qi+1. Under the given assumptions qi
and qi+1 must be odd and s(qi) > s(qi+1); that is, qi 6 qi+1. Again we conclude that
qi = q|σ(k)| = q|σ(l)| = qi+1. Since 0 < k < l using equation (15) as before, we conclude
that −i = σ(k) < σ(l) = −i− 1 deriving a contradiction in either case.
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By the previous proposition, for every 1 6 i 6 n we can find a non-negative integer νi
such that 2νi = pi − fi(σ−1); that is, pi = 2νi + fi(σ

−1). Define δi := fi(σ
−1).

Proposition 17. The sequences δ = (δ1, . . . , δn) and ν = (ν1, . . . , νn) are sequences of
non-negative integers that satisfy the following properties:

1. p = 2ν + δ,

2. ν1 > ν2 > · · · > νn,

3. δ1 > δ2 > · · · > δn,

4. if 0 < i < j 6 n and δi = δj, then s(qi) > s(qj).

Proof. Property (1) is given directly by the definition of the sequences ν and δ. Also,
property (2) is proved in Proposition 16 and property (3) follows from equation (7) applied
to the signed permutation σ−1. To prove property (4) suppose that 0 < i < j 6 n and δi =
δj. This means fi(σ

−1) = fj(σ
−1) and in turn di(σ

−1) = dj(σ
−1) and εi(σ

−1) = εj(σ
−1).

Since i < j, applying equation (6) to the numbers di(σ
−1), it follows that σ−1(i) < σ−1(j).

Also, as εi(σ
−1) = εj(σ

−1) then qi and qj have the same parity. Assume qi and qj are both
even, then 0 < σ−1(i) < σ−1(j) and by equation (14) we have

qi = q|σ(σ−1(i))| > q|σ(σ−1(j))| = qj.

Similarly, if qi and qj are odd, then σ−1(i) < σ−1(j) < 0 and thus −σ−1(i) > −σ−1(j) > 0.
Again by property (14) we have

qi = q|σ(σ−1(i))| 6 q|σ(σ−1(j))| = qj.

In either case we obtain s(qi) > s(qj).

3.8 Monomial decomposition

Next we derive a decomposition for monomials that are ordered as in Definition 10. For
that suppose that m(x,y) = xpyq ∈ On. We can decompose p = 2ν + δ, where ν
and δ are the sequences of integers provided in Propositions 17. Similarly, we can write
q = 2µ+γ, where µ and γ are sequences of integers given by Proposition 15. Let σ ∈ Bn

be the index permutation associated to the monomial m(x,y). Recall that by definition
δi = fi(σ

−1) and γi = f|σ−1(i)|(σ). Therefore the diagonal signed descent monomial cσ is
given by

cσ =
n∏
i=1

x
fi(σ

−1)
i y

f|σ−1(i)|(σ)

i = xδyγ .

This means that we have a decomposition

m(x,y) = xpyq = x2ν+δy2µ+γ = x2νy2µcσ.
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Given a sequence of integers i = (i1, . . . , in), let Σn(i) denote the stabilizer of i under
the permutation action of Σn; that is, Σn(i) is the subgroup of elements in Σn that fix i.
Define

s2ν(x) =
∑

[α]∈Σn/Σn(ν)

x2α(ν), and s2µ(y) =
∑

[β]∈Σn/Σn(µ)

y2β(µ).

By definition, the functions s2ν(x) and s2µ(y) are symmetric polynomials on the variables
x2

1, . . . , x
2
n and y2

1, . . . , y
2
n induced by the monomials x2ν and y2µ respectively.1 In partic-

ular, s2ν(x)s2µ(y) ∈ RBn . In the same way as in [5, Proposition 3.2], the polynomial
s2ν(x)s2µ(y)ρ(cσ) can be decomposed as we prove next.

Theorem 18. Suppose that m(x,y) = xpyq ∈ On and let σ ∈ Bn be the corresponding
signed index permutation. Let ν, µ, δ and γ be as defined above. Then

s2ν(x)s2µ(y)ρ(cσ) = km(x,y)ρ(m(x,y)) +
∑

n(x,y)�m(x,y)

kn(x,y)ρ(n(x,y)).

In the above equation n(x, y) ∈ On runs through the collection of ordered monomials with
same total degree as m(x, y) with n(x,y) � m(x,y), km(x,y) > 0 and kn(x,y) are constants.

Proof. Using the definition we have

s2ν(x)s2µ(y)ρ(cσ) = ρ(s2ν(x)s2µ(y)cσ) =
∑

[α]∈Σn/Σn(ν)

∑
[β]∈Σn/Σn(µ)

ρ(x2ανy2βµcσ)

=
∑

[α]∈Σn/Σn(ν)

∑
[β]∈Σn/Σn(µ)

ρ(x2αν+δy2βµ+γ).

Fix α, β ∈ Σ and let n(x,y) ∈ On be the unique ordered monomial such that ρ(n(x,y)) =
ρ(x2αν+δy2βµ+γ). To prove the theorem we need to prove that n(x,y) 4 m(x,y). Let
[Σn(δ)] denote the image of Σn(δ) in Σn/Σn(ν) under the natural map. If [α] ∈ [Σn(δ)]
then o(2αν + δ) = o(α(2ν + δ)) = o(p). Also, if [α] /∈ [Σn(δ)], then by parts (2) and
(3) of Proposition 17 it follows that if o(2αν + δ) <` o(p). Similarly, let [Σn(γ)] denote
the image of Σn(γ) in Σn/Σn(µ). Then if [β] ∈ [Σn(γ)] then o(2βµ + γ) = o(q). Also,
if [β] /∈ [Σn(γ)] then by parts (2) and (3) of Proposition 15 we have o(2βµ + γ) <` o(q).
With this in mind we have the following cases.

• Case 1. Suppose that [α] /∈ [Σn(δ)] or [β] /∈ [Σn(γ)]. If [α] /∈ [Σn(δ)] then by
the previous comment o(2αν + δ) <` o(p) and if [α] ∈ [Σn(δ)] but β /∈ [Σn(γ)] then
o(2αν + δ) = o(p) but o(2βµ + γ) <` o(q). In either case we conclude

o(n(x,y)) = (o(2αν + δ), o(2βµ + γ)) <` (o(p), o(q)) = o(m(x,y)).

It follows that in this case n(x,y) � m(x,y).

1The reader is warned that the functions s2ν(x) and s2µ(y) are symmetric functions and not Schur
functions as the notation may suggest.
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• Case 2. Suppose that [α] ∈ [Σn(δ)] and [β] ∈ [Σn(γ)]. We can assume without loss
of generality that α ∈ Σn(δ) and β ∈ Σn(γ). Then

x2αν+δy2βµ+γ = xα(2ν+δ)yβ(2µ+γ) = xα(p)yβ(q).

Therefore n(x,y) = xpyπα
−1β(q) for some π ∈ Σn. Note that the permutation π has to

stabilize p and δ, thus in particular π ∈ Σn(δ). In this case

o(n(x,y)) = o(xα(p)yβ(q)) = o(m(x,y)).

To prove that n(x.y) 4 m(x,y) we need to show that (p, s(πα−1β(q))) 6` (p, s(q));
that is, we need to prove that s(πα−1β(q)) 6` s(q). If s(πα−1β(q)) = s(q) there is
nothing to prove. Assume that s(πα−1β(q)) 6= s(q) and let 1 6 k 6 n be the smallest
integer such that s(qπα−1β(k)) 6= s(qk). We need to show that s(qπα−1β(k)) < s(qk). Since
β ∈ Σn(γ), then by Proposition 15 part (4) we have that if i < β(i) then s(qi) > s(qβ(i)).
Similarly, since α, π ∈ Σn(δ) by Proposition 17 part (4) whenever i < πα−1(i) then
s(qi) > s(qπα−1(i)). Using this we can see that s(qk) > s(qπα−1β(k)).

In either case we conclude that n(x,y) 4 m(x,y).

Example 19. Suppose that n = 3 and that m1(x,y) = x3
3y1y

2
2. Observe that this mono-

mial is not ordered in the sense of Definition 10. Let m(x,y) = x3
1y1y2, then m(x,y) ∈ O3

and ρ(m(x,y)) = ρ(m1(x,y)). Let p = (3, 0, 0) and q = (1, 2, 0) so that m(x,y) = xpyq.
In this case the signed index permutation corresponding to m(x,y) is the signed per-
mutation σ = [2,−1, 3]. It follows that σ−1 = [−2, 1, 3] and that Des(σ) = {1} and
Des(σ−1) = ∅. Also

f1(σ) = 2, f2(σ) = 1, f3(σ) = 0,

f1(σ−1) = 1, f2(σ−1) = 0, f3(σ−1) = 0.

In the notation of the previous theorem we have ν = (1, 0, 0), µ = (0, 0, 0) , δ = (1, 0, 0)
and γ = (1, 2, 0). Thus we have p = 2ν + δ and q = 2µ + γ. In this case

s2ν(x) = x2
1 + x2

2 + x2
3 and s2µ(y) = 1.

In addition

cσ = ρ(x1y1y
2
2) =

1

6

(
x1y1y

2
2 + x2y

2
1y2 + x3y

2
2y3 + x1y1y

2
3 + x2y2y

2
3 + x3y

2
1y3

)
.

The decomposition given by the previous theorem in this case is

s2ν(x)s2µ(y)ρ(cσ) = s2ν(x)ρ(cσ)

=
1

6
(x2

1 + x2
2 + x2

3)
(
x1y1y

2
2 + x2y

2
1y2 + x3y

2
2y3 + x1y1y

2
3 + x2y2y

2
3 + x3y

2
1y3

)
= ρ(x3

1y1y
2
2) + ρ(x2

1x2y
2
1y2) + ρ(x2

1x3y
2
2y3).
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Observe that x2
1x2y

2
1y2, x

2
1x3y

2
2y3 ∈ O3. Furthermore, x3

1y1y
2
2 < x2

1x2y
2
1y2 and x3

1y1y
2
2 <

x2
1x3y

2
2y3. We conclude then that

ρ(x3
1y1y

2
2) = s2ν(x)ρ(cσ)− ρ(x2

1x2y
2
1y2)− ρ(x2

1x3y
2
2y3).

Iterating this procedure on the monomials x2
1x2y

2
1y2 and x2

1x3y
2
2y3, we can write ρ(x3

1y1y
2
2)

as a linear combination of the ρ(cσ)’s with coefficients in RBn . In the next theorem we
show that this method works in general and thus {ρ(cσ)}σ∈Bn yields a free basis of MBn

as a module over RBn .

3.9 Main theorem

Finally we are ready to prove the main theorem of this article.

Theorem 20. Suppose that n > 1. Then the collection {ρ(cσ)}σ∈Bn forms a free basis of
MBn as a module over RBn.

Proof. Let’s show first that {ρ(cσ)}σ∈Bn generates MBn as a module over RBn . It suffices
to show that for every m(x,y) ∈ On the polynomial ρ(m(x,y)) is generated by the dif-
ferent ρ(cσ). Fix m(x,y) ∈ On and let σ be the corresponding signed index permutation.
By the previous theorem we have

m(x,y) = km(x,y)s2nu(x)s2µ(y)ρ(cσ) +
∑

n(x,y)�m(x,y)

kn(x,y)n(x,y),

for some constants kn(x,y) and monomials n(x,y) � m(x,y) of same total degree. Iterating
this process on the monomials n(x,y) � m(x,y) as many times as necessary, we see that
we can write m(x,y) as a linear combination of the elements {ρ(cσ)}σ∈Bn with coefficients
in RBn . (Note that this process must terminate after finitely many stages as there are
only finitely many monomials n(x,y) of same total degree as m(x,y)). This proves that
{ρ(cσ)}σ∈Bn generates MBn as a RBn-module. On the other hand, note that MBn is a
bigraded ring over Q with

bideg(xpyq) = (|p|, |q|),
where |p| = p1+· · ·+pn. With this grading, for every σ ∈ Bn we have that the polynomial
ρ(cσ) is homogeneous and

bideg(ρ(cσ)) = (fmaj(σ−1), fmaj(σ)).

Let PMBn (s, t) denote the bigraded Hilbert series of the bigraded ring MBn . Using [4,
Theorem 3] we conclude that the series PMBn (s, t) is given by

PMBn (s, t) =

(∑
σ∈Bn s

fmaj(σ−1)tfmaj(σ)
)

∏n
i=1(1− s2i)(1− t2i)

.

This together with [5, Theorem 1.4] show that {ρ(cσ)}σ∈Bn is a free basis of MBn as
module over RBn .
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Example 21. Suppose that n = 2. Then the basis constructed in the previous theorem
is:

c1 = 1, c2 =
1

2
(x1y1 + x2y2) , c3 =

1

2

(
x2

1y
2
2 + x2

2y
2
1

)
,

c4 =
1

2

(
x1y1y

2
2 + x2y

2
1y2

)
, c5 = x1x2y1y2, c6 =

1

2
(x2

1x2y2 + x1x
2
2y1),

c7 =
1

2
(x2

1x2y
2
1y2 + x1x

2
2y1y

2
2), c8 =

1

2
(x3

1x2y
3
1y2 + x1x

3
2y1y

3
2).

As in the previous cases this theorem also has a geometric application. Let BcomSp(n)
be the geometric realization of the simplicial space obtained by considering the space of
commuting k-tuples in Sp(n). Explicitly, this simplicial space is defined by [BcomSp(n)]k =
Hom(Zk, Sp(n)). Thus BcomSp(n) is the classifying space for commutativity on Sp(n).
In [1, Section 8], it is proved that the signed diagonal descent monomials can be used to
obtain an explicit basis of H∗(BcomSp(n);Q) seen as a module over H∗(BSp(n);Q).
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