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Abstract

A graph G is said to be determined by its generalized spectrum (DGS for short) if
for any graph H, H and G are cospectral with cospectral complements implies that
H is isomorphic to G. Wang and Xu (2006) gave some methods for determining
whether a family of graphs are DGS. In this paper, we shall review some of the old
results and present some new ones along this line of research.

More precisely, let A be the adjacency matrix of a graph G, and let W =
[e,Ae, · · · , An−1e] (e is the all-one vector) be its walk-matrix. Denote by Gn the set
of all graphs on n vertices with det(W ) 6= 0. We define a large family of graphs

Fn = {G ∈ Gn|
det(W )

2bn/2c
is square-free and 2bn/2c+1 6 |det(W )}

(which may have positive density among all graphs, as suggested by some numerical
experiments). The main result of the paper shows that for any graph G ∈ Fn, if there
is a rational orthogonal matrix Q with Qe = e such that QTAQ is a (0,1)-matrix,
then 2Q must be an integral matrix (and hence, Q has well-known structures). As
a consequence, we get the conclusion that almost all graphs in Fn are DGS.

Keywords: Spectra of graphs; Cospectral graphs; Determined by spectrum

1 Introduction

Throughout the paper, we are only concerned with simple graphs. Let G be a simple
graph with (0,1)-adjacency matrix A. The spectrum of G consists of all the eigenvalues
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(together with their multiplicities) of the matrix A. The spectrum of G together with
that of its complement will be referred to as the generalized spectrum of G in the paper.
For some terms and terminologies on graph spectra, see [1].

A graph G is said to be determined by its spectrum (DS for short), if any graph having
the same spectrum as G is necessarily isomorphic to G (of course, the spectrum concerned
should be specified).

The spectrum of a graph encodes useful combinatorial information about the given
graph, and the relationship between the structural properties of a graph and its spectrum
has been studied extensively over many years. A fundamental question in Spectral Graph
Theory is: “ Which graphs are DS?” The problem dates back to more than 50 years ago
and originates from Chemistry, which has received a lot of attention from researchers in
recent years. It turns out that, however, determining what kinds of graphs are DS is
generally a very hard problem. For the background and some known results about this
problem, we refer the reader to [2, 3] and the references therein.

In [5, 6], Wang and Xu gave a method for determining whether a graph G is determined
by its generalized spectrum (DGS for short), by using some arithmetic properties of the
walk-matrix associated with the given graph. In this paper, we review some of the previous
results and further present some new results along this line of research, which significantly
improves the results in [5, 6]. The new ingredient of the paper is the discovery that whether
the determinant of the walk-matrix is square-free (for odd primes) is closely related to
whether G is DGS.

The paper is organized as follows: In the next section, we review some previous results
that will be needed in the sequel. In Section 3, we give a simple criterion for excluding
odd primes. The case p = 2 is discussed in Section 4. Conclusions and open problems are
given in Section 5.

2 Preliminaries

For convenience of the reader, in this section, we will briefly review some known results
from [5, 6].

Let W = [e, Ae, · · · , An−1e] (e is the all-one vector) be the walk-matrix of a graph G.
Then the (i, j)-th entry of W is the number of walks of G starting from vertex i with
length j − 1. A graph G is called controllable graph if W is non-singular (see also [4]). It
turns out that the arithmetic properties of det(W ) is closely related to wether G is DGS
or not, as we shall see later. Denote by Gn the set of all controllable graphs on n vertices.
The following theorem lies at the heart of our discussions.

Theorem 1 (Wang and Xu [5]). Let G ∈ Gn. Then there exists a graph H that is
cospectral with G w.r.t. the generalized spectrum if and only if there exists a rational
orthogonal matrix Q such that QTA(G)Q = A(H) and Qe = e.

Define

QG =

{
Q is a rational Qe = e, QTA(G)Q is a symmetric
orthogonal matrix (0, 1)−matrix with zero diagonal

}
,
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where e is the all-one vector. The following theorem follows easily from Theorem 1.

Theorem 2 (Wang and Xu [5]). Let G ∈ Gn. Then G is DGS iff the set QG contains
only permutation matrices.

By the theorem above, in order to determine whether a given graph G ∈ Gn is DGS
or not, we have to determine those Q in QG explicitly. At first glance, this seems to be
as difficult as the original problem. However, we manage to do so by introducing the
following useful notion.

The level of a rational orthogonal matrix Q with Qe = e is the smallest positive integer
` such that `Q is an integral matrix. Clearly, ` is the least common denominator of all
the entries of the matrix Q. If ` = 1, then Q is a permutation matrix.

Determining QG for all G ∈ Gn seems too ambitious. Next, we shall only consider
those controllable graphs G such that the level of those Q ∈ QG equals either 1 or 2.

To illustrate the methods in [5, 6], first we give the relationships between the values
of ` for matrices Q ∈ QG and properties of the walk-matrix W of G. Recall that an n×n
matrix U with integer entries is called unimodular if det(U) = ±1. The Smith Normal
Form (SNF in short) of an integral matrix M is of the form diag(d1, d2, · · · , dn), where
di is the ith elementary divisor of the matrix M and di|di+1 (i = 1, 2, · · · , n − 1) hold.
It is well known that for every integral matrix M with full rank, there exist unimodular
matrices U and V such that M = USV = Udiag(d1, d2, · · · , dn)V , where S is the SNF
of the matrix M . For a graph G ∈ Gn, it is not difficult to show that dn is the smallest
positive integer ` such that `W−1 is an integral matrix.

Theorem 3 (Wang and Xu [5], Exclusion Criterion). Let W be the walk-matrix of a graph
G ∈ Gn, and Q ∈ QG with level `. Then we have:
(a) `|dn, where dn is the nth elementary divisor of the SNF of W .
(b) Let p be any prime factor of dn. If p|`, then the following system of congruence
equations must have a non-trivial solution (x 6≡ 0 mod p ).

W Tx ≡ 0, xTx ≡ 0 (mod p). (1)

Theorem 3 (a) shows that ` is a divisor of dn, and hence all possible values of ` are
finite for a given graph in Gn and can be effectively computed through calculating the
SNF of W . While (b) shows that not all of the divisors of dn can be a divisor of `; let p
be any prime factor of dn(G) and if (1) has no non-trivial solution, then p must not be a
prime factor of `, and it can be excluded from further consideration. Using this way, it
can be expected that in most cases, many possibilities of the values of the divisors of dn
can be excluded.

Now we show how to check whether Eq. (1) has only trivial solutions. As an illustra-
tion, we shall restrict ourselves to the simplest case.

For convenience, we work with the finite field Fp in what follows. Suppose that
rankp(W ) = n − 1, where rankp(W ) is the rank of W over the finite field Fp. Consider
the first equation of Eq. (1) as a system of linear equations over Fp, then the set of
solutions to the first equation of (1) forms a one-dimensional subspace of Fn

p . We can
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write x = kξ, for some 0 6= ξ ∈ Fn
p and k = 0, · · · , p − 1. So Eq. (1) has only trivial

solution iff
ξT ξ 6= 0 in Fp. (2)

Let us give two examples which are taken from [6].
Let G1 and G2 be two graphs with the adjacency matrices being given as follows. It

can easily be computed that d12(G1) = 2 · 17 · 67 · 8054231, and ξT ξ = 12, 25 and 1492735
for each prime p = 17, 67 and 8054231 respectively, where ξ is defined as above. Thus,
all the prime factors of d12(G1) can be excluded except for p = 2. It can be computed
that d13(G2) = 2 · 32 · 5 · 197 · 263 · 5821, and ξT ξ = 1, 0, 139, 101 and 4298 for each prime
p = 3, 5, 197, 263 and 5821. So all the prime factors of d13(G2) can be excluded except for
p = 2, 5.



0 1 1 0 0 1 0 0 1 0 1 1
1 0 0 0 0 0 0 0 1 1 0 1
1 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 1 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 1
1 0 1 0 1 0 1 1 0 1 1 0
0 0 0 0 0 1 0 0 1 1 1 0
0 0 0 1 0 1 0 0 1 0 1 0
1 1 1 0 0 0 1 1 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0 1
1 0 1 0 0 1 1 1 0 0 0 1
1 1 0 0 1 0 0 0 0 1 1 0





0 1 0 0 1 1 0 0 1 1 0 0 1
1 0 1 1 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 1 1 1 0 0 1 1
0 1 1 0 1 0 1 0 0 0 1 1 1
1 0 0 1 0 0 0 1 1 1 0 0 1
1 1 0 0 0 0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 0 0 0 1 1 0
0 0 1 0 1 1 0 0 0 1 1 0 1
1 0 1 0 1 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 1 1 0 1 1 0
0 0 0 1 0 0 1 1 0 1 0 0 1
0 0 1 1 0 1 1 0 0 1 0 0 1
1 0 1 1 1 1 0 1 0 0 1 1 0



.

Nevertheless, it is not difficult to show that p = 2 is always a prime factor of dn and
cannot be excluded invariably. In [6], some further exclusion criterions are proposed to
eliminate the possibility of p = 2. It can be show that p = 2 can be excluded for both
graphs G1 and G2, by using the methods in [6]. Therefore G1 is DGS. However, we do not
know wether G2 is DGS or not since p = 5 cannot be excluded using the existing method.

In the next section, we shall present a simple criterion for excluding primes p > 2.

3 A simple exclusion criterion for p > 2

In this section, we give a simple criterion for excluding primes p > 2, in terms of whether
the exponent of p in det(W ) is larger than one. The main result of this section is the
following

Theorem 4. Let G ∈ Gn, Q ∈ QG with level `, and p an odd prime. If p| det(W ) and
p2 6 | det(W ), then p cannot be a divisor of `.

Before presenting the proof of above theorem, we need several lemmas below. Note
that the assumption that p| det(W ) and p2 6 | det(W ) imply that rankp(W ) = n− 1. This
fact will be used frequently in the sequel.
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Lemma 5. Let G ∈ Gn, Q ∈ QG with level `. Let p be an odd prime divisor of `. Assume
that rankp(W ) = n−1. Then we must have rankp(`Q) = 1, and the following congruence
equation has a solution z:

Az ≡ λ0z, e
T z ≡ 0, zT z ≡ 0, z 6≡ 0 (mod p) (3)

for some integer λ0.

Proof. The lemma follows immediately from the proof of the next lemma.

Lemma 6. Let G ∈ Gn, Q ∈ QG with level `. Let p be an odd prime divisor of `. Assume
that rankp(W ) = n − 1 and rankp(`Q) = 1, and the following congruent equation has a
solution z:

W T z ≡ 0, zT z ≡ 0, z 6≡ 0 (mod p), (4)

Then zTAz ≡ λ0z
T z (mod p2) holds, where λ0 is an integer such that Az ≡ λ0z (mod p)

holds .

Proof. First we claim that there exists a column u of the integer matrix `Q and an integer
vector β such that

u = z + pβ; (5)

uTAu ≡ 0 (mod p2); (6)

uTu ≡ 0 (mod p2). (7)

In fact, it is easy to see that there exists a column u of `Q such that u 6≡ 0 (mod p). With
such a u, we have W Tu ≡ 0 (mod p), uTu = `2 ≡ 0 (mod p2), and uTAu = 0. So u is a
solution of Eq. (4), and Eq. (5) holds for some integer β.

By Eq. (7) we have

(z + pβ)T (z + pβ) ≡ zT z + 2pzTβ ≡ 0 (mod p2).

Since Q ∈ QG, we get QTAQ = B, where B is the adjacency matrix of some graph
H. By AQ = QB we get

Aui =
n∑
k=1

bikuk, i = 1, 2, · · · , n,

where ui is the i-th column of `Q. Note that rankp(`Q) = 1. Taking mod p on both sides
of the equation above that contains u on the right side generates Az ≡ λ0z (mod p), for
some integer λ0.

Let Az = λ0z+ pγ, where γ is an integer vector. Then it follows from Eq. (5) and (6)
that

(z + pβ)TA(z + pβ) ≡ zTAz + 2pzTAβ

= zT (λ0z + pγ) + 2p(λ0z + pγ)Tβ

≡ λ0(z
T z + 2pzTβ) + pzTγ

≡ pzTγ

≡ 0 (mod p2)

Thus we have zT (Az − λ0z) = pzTγ ≡ 0 (mod p2). This completes the proof.
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Lemma 7. Let M = Udiag(d1, d2, · · · , dn)V = USV , where S is the SNF of M , U and V
are unimodular matrices and di|di+1 for i = 1, 2, · · · , n−1. Then the system of congruence
equations Mx ≡ 0 (mod p2) has a solution x 6≡ 0 (mod p) if and only if p2|dn.

Proof. The equation Mx ≡ 0 (mod p2) is equivalent to diag(d1, d2, · · · , dn)V x ≡
0 (mod p2). Let V x = y. Consider diag(d1, d2, · · · , dn)y ≡ 0 (mod p2). If p2|dn, let
y = (0, 0, · · · , 0, 1)T , then x = V −1y 6≡ 0 (mod p) is a required solution to the original
congruence equation. On the other hand, it is easy to see if p2 6 |dn, then the equation has
no solution x with x 6≡ 0 (mod p).

As a simple consequence of the above lemma, we have

Corollary 8. Suppose that rankp(W ) = n − 1, and W T z ≡ 0, z 6≡ 0 (mod p). If there

exists an integer vector x such that W Tx ≡ WT z
p

(mod p), then p2| det(W ).

Lemma 9. If rankp(W ) = n− 1, then we always have rankp(A− λ0I) > n− 2.

Proof. For contrary, suppose that there exist three vectors z, u and v which are linearly
independent over Fp such that (A − λ0I)z = 0, (A − λ0I)u = 0 and (A − λ0I)v = 0,
where we assume without loss of generality that eT z = 0, eTu 6= 0 and eTv 6= 0. Then
we can choose integers k and l with keTu + leTv = 0, over Fp. Let w = ku + lv. Then
eTAiw = 0 and hence W Tw = 0 and W T z = 0, which implies that rankp(W ) 6 n − 2,
which contradicts the assumption that rankp(W ) = n− 1.

It follows from Lemma 9 that rankp(A − λ0I) = n − 1 or n − 2. Next, we shall
distinguish this two cases in the following lemmas.

Lemma 10. If rankp(A− λ0I) = n− 1, then p2| det(W ).

Proof. Let z be an integral vector with W T z ≡ 0 (mod p). We prove the lemma by
showing that the following congruence equation always has a solution x.

W Tx ≡ W T z

p
(mod p). (8)

Note that zT e = 0 and zT (A− λ0I) = 0, over Fp. It follows that the all-one vector e
can be written as the linear combinations of the columns of A − λ0I, i.e., there exists a
column vector u such that

e = (A− λ0I)u, over Fp (9)

It follows from Eq. (9) that there exists an integer vector β such that

e = (A− λ0I)u+ pβ. (10)

Thus, we have

W = [e, Ae, · · · , An−1e]
= [(A− λ0I)u+ pβ,A((A− λ0I)u+ pβ), · · · , An−1((A− λ0I)u+ pβ)]

= (A− λ0I)[u,Au, · · · , An−1u] + p[β,Aβ, · · · , An−1β]

= (A− λ0I)X + p[β,Aβ, · · · , An−1β],
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where X := [u,Au, · · · , An−1u].
It follows that

W T z = XT (A− λ0I)z + p[zTβ, zTAβ, · · · , zTAn−1β]T . (11)

Since W T z ≡ 0, (A − λ0I)z ≡ 0, Aiz ≡ λi0z (i = 0, 1, · · · , n − 1) (mod p), by Eq.
(11) we have

W T z

p
≡ XT (A− λ0I)z

p
+ zTβ[1, λ0, · · · , λn−10 ]T (mod p). (12)

Moreover, it follows from the fact that rankp(A − λ0I) = n − 1, zT (A − λ0I) = 0
and zT z = 0, over Fp, that z can be written as the linear combinations of the columns of
A− λ0I, i.e., there exists a vector y such that z = (A− λ0I)y.

It is easy to show that W Ty ≡ eTy[1, λ0, · · · , λn−10 ]T (mod p). In fact, this follows from
the following congruence equations:

z ≡ (A− λ0I)y (mod p),

eTAy ≡ λ0e
Ty + eT z ≡ λ0e

Ty (mod p),

· · · · · ·
eTAn−1y ≡ λn−10 eTy (mod p).

Now we show that eTy 6≡ 0 (mod p). For otherwise, if eTy ≡ 0 (mod p), then it
follows that W Ty = 0 over Fp. Note that W T z = 0 over Fp. Moreover, y and z are
linearly independent. It follows that rankp(W ) 6 n − 2, which contradicts the fact that
rankp(W ) = n− 1.

Thus, there exists an integer k such that

zTβ ≡ keTy (mod p), (13)

Moreover, it follows from the facts that zT (A−λ0I)z
p

≡ 0, zT (A−λ0I) ≡ 0, (mod p) and

rankp(A−λ0I) = n−1 that the vector (A−λ0I)z
p

can be written as the linear combinations
of the columns of A− λ0I, i.e., there exists a vector v such that

(A− λ0I)z

p
≡ (A− λ0I)v.

Note that W T ≡ XT (A− λ0I) (mod p). Therefore, we have

W T z

p
≡ XT (A− λ0I)z

p
+ kW Ty

≡ W Tv + kW Ty

≡ W T (v + ky) (mod p).

By Cor. 8, the lemma follows.
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Lemma 11. Let rankp(W ) = n − 1. Suppose that rankp(A − λ0I) = n − 2. Then
rankp([A− λ0I, z]) = n− 1.

Proof. Since rankp(A − λ0I) = n − 2, there are two vectors z and y which are linearly
independent such that Az = λ0z and Ay = λ0y with eT z = 0, over Fp.

Suppose the lemma does not hold. Then we have that z can be written as the linear
combinations of the columns of A − λ0I. Thus, there exists a vector x such that z =
(A− λ0I)x, i.e.,

Ax = z + λ0x,

A2x = Az + λ0z + λ20x,

· · · · · ·

An−1x = An−2z + λ0A
n−3z + · · ·+ λn−30 Az + λn−20 z + λn−10 x.

Now choose k and l, not all zero, such that eTw = 0, where w = kx+ ly.
Then, we have

eTAiw = keTAix+leTAiy = keT (Aiz+λ0A
i−1z+· · ·+λi−10 Az+λi−10 z)+λi0(ke

Tx+leTy) = 0,

for i = 0, 1, · · · , n− 1, i.e., W Tw = 0.
Now we show that x, y and z are linearly independent. Suppose ax + by + cz = 0.

Then left-multiplying both sides of the above equality by (A − λ0I) gives az = 0, which
implies a = 0. By assumption that y and z are linearly independent, we have b = c = 0.

Therefore, z and w are linearly independent. Moreover, we have W T z = 0 and W Tw =
0. This contradicts the fact that rankp(W ) = n− 1.

Lemma 12. Suppose that rankp(A− λ0I) = n− 2. Then p2|det(W )

Proof. Note that rankp(W ) = n− 1 and rankp(A− λ0I) = n− 2. By Lemma 11, we get
that z cannot be expressed as the linear combinations of the column vectors of A− λ0I,
over Fp, and hence rankp([A−λ0, z]) = n− 1. Moreover, zT e = 0 and zT [A−λ0I, z] = 0,
it follows that the all-one vector e can be expressed as the linear combinations of the
column vectors of A− λ0I and z, i.e., there exist an vector u and an integer k such that

e = (A− λ0I)u+ kz, over Fp.

That is,
e = (A− λ0I)u+ kz + pβ, over Z.

It follows that

Ae = A(A− λ0I)u+ kAz + pAβ = (A− λ0I)Au+ kAz + pAβ.

A2e = A2(A− λ0I)u+ kA2z + pA2β = (A− λ0I)A2u+ kA2z + pA2β.

· · · · · · · · · · · · · · ·
An−1e = An−1(A− λ0I)u+ kAn−1z + pAn−1β = (A− λ0I)An−1u+ kAn−1z + pAn−1β.
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Therefore,

W = [e, Ae, · · · , An−1e]
= (A− λ0I)[u,Au, · · · , An−1u] + k[z, Az, · · · , An−1z] + p[β,Aβ, · · · , An−1β]

= (A− λ0I)X + k[z, Az, · · · , An−1z] + p[β,Aβ, · · · , An−1β], over Z,

where X = [u,Au, · · · , An−1u]. It follows that

W T z

p
= XT (A− λ0I)z

p
+ k[

zT z

p
,
zTAz

p
, · · · , z

TAn−1z

p
]T

+ [βT z, · · · , βTAn−1z]T (over Z)

≡ XT (A− λ0I)z

p
+ k

zT z

p
[1, λ0, · · · , λn−10 ]T + βT z[1, λ0, · · · , λn−10 ]T (mod p)

The congruence equation follows from the facts that zTAiz
p
− λi0z

T z

p
≡ 0 and Aiz ≡

λi0z (mod p).

Moreover, zT (A−λ0I)z
p

≡ 0 and zT [A− λ0I, z] ≡ 0 (mod p). It follows that there exist
a vector α and an integer m such that

(A− λ0I)z

p
≡ (A− λ0I)α +mz (mod p) (14)

XT (A− λ0I)z

p
≡ XT (A− λ0I)α +mXT z

≡ W Tα− kzTα[1, λ0, · · · , λn−10 ]T +mXT z

≡ W Tα + (muT z − kzTα)[1, λ0, · · · , λn−10 ]T (mod p)

Thus

W T z

p
≡ W Tα + (k

zT z

p
+ βT z +muT z − kzTα)[1, λ0, · · · , λn−10 ]T (mod p) (15)

Let y be a vector with (A− λ0)y = 0 that is linearly independent with z. Then we must
have eTy 6≡ 0(mod p). For otherwise, if eTy ≡ 0(mod p), then it follows W Ty ≡ 0. Note
W T z = 0, W Ty = 0 and y and z are linearly independent, over Fp. This contradicts the
fact that rankp(W ) = n− 1.

It follows that there exists an integer l such that

k
zT z

p
+ βT z +muT z − kzTα ≡ leTy (mod p).

Thus, we have

W T z

p
≡ W Tα + leTy[1, λ0, · · · , λn−10 ]T ≡ W Tα + lW Ty ≡ W T (α + ly) (mod p) (16)

By Cor. 8, the lemma follows.
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Now, we are ready to present the proof of Theorem 4.

Proof of Theorem 4. Combining Lemmas 5-7,9-12 and Cor. 8, Theorem 4 follows imme-
diately.

Let us give a few remarks to end this section.
i) Result in Theorem 4 is the best possible in the sense that if p > 2 has exponent

larger than one, then Theorem 4 may not be true. The following is a counterexample.
Let the adjacency matrix of graph G be given as below. It can easily be computed

that
det(W ) = 26 × 32 × 157× 1361× 2237.

The exponent of p = 3 in the standard prime decomposition det(W ) is equal to 2, and
p = 3 cannot be excluded. Actually, let Q be a rational orthogonal matrix given as below.
Then Q ∈ QG with level ` = 3, since it can be easily verified that QTAQ is a (0, 1)-matrix.

A =



0 0 0 0 0 1 0 1 0 0 1 0
0 0 1 0 1 0 1 0 1 0 1 1
0 1 0 1 1 0 1 1 0 0 1 0
0 0 1 0 1 0 1 0 0 0 1 1
0 1 1 1 0 1 0 1 0 0 0 1
1 0 0 0 1 0 1 1 1 0 1 0
0 1 1 1 0 1 0 1 1 0 1 1
1 0 1 0 1 1 1 0 1 1 0 0
0 1 0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 1
1 1 1 1 0 1 1 0 0 1 0 1
0 1 0 1 1 0 1 0 1 1 1 0


,

Q =
1

3



0 0 0 0 0 0 3 0 0 0 0 0
2 −1 −1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 3 0 0
1 1 1 2 −1 −1 0 0 0 0 0 0
−1 2 −1 1 1 1 0 0 0 0 0 0
−1 −1 2 1 1 1 0 0 0 0 0 0

1 1 1 −1 2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 0 0 0 3
1 1 1 −1 −1 2 0 0 0 0 0 0


.

ii) By Theorem 4, for graph G2 in the previous example, p = 5 can also be excluded
since the 5| det(W ) and 52 6 | det(W ). Thus, G2 is also DGS.
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4 Some discussions on p = 2

As mentioned previously, the case p = 2 is more involved to deal with. Let us try to
explain this through the following lemmas.

Lemma 13 (c.f. Wang [7]). eTAke is even for every positive integer k.

Proof. Note that

eTAke = Tr(Ak) +
∑
i 6=j

Ak = Tr(Ak) + 2
∑
i<j

Ak ≡ Tr(Ak) (mod 2).

T r(Ak) = Tr(AAk−1) =
∑

i,j aijbij = 2
∑

i<j aijbij, where B := Ak−1. Thus the lemma
follows.

Lemma 14 (c.f. Wang [7]). rank2(W ) 6 dn
2
e.

Proof. Suppose n is even. Then it follows from Lemma 4.1 that W TW = 0 over F2.
2rank2(W ) = rank2(W

T ) + rank2(W ) 6 n. Thus we have rank2(W ) 6 n/2 = dn
2
e.

If n is odd. Let Ŵ be the matrix obtained from W by deleting the first column. Then
W T Ŵ = 0 over F2. Note rank2(W ) + rank2(Ŵ ) 6 n and rank2(Ŵ ) > rank2(W )− 1. It
follows that rank2(W ) 6 (n+ 1)/2 = dn

2
e.

By Lemma 14, the system of linear equations in Eq. (1) has a set of solutions with
dimension at least bn/2c, and it not difficult to show that it is always possible to choose
some of the solutions to meet the second requirement in Eq. (1).

Moreover, by Lemma 14, the following corollary follows immediately.

Corollary 15. Let det(W ) = ε2αpα1
1 · · · pαs

s (ε = ±1) be the standard decomposition of
det(W ) into prime factors . Then α > bn

2
c.

For any graph G ∈ Gn, the number of di which is even in the SNF S =
diag(d1, d2, · · · , dn) of W must be at leat bn/2c. Next, we are interested in a specific
family of controllable graphs

Fn = {G ∈ Gn|
det(W )

2bn/2c
is square-free and 2bn/2c+1 6 | det(W )}.

By Cor. 15, for every graph in Fn, the SNF of W must be like S =
diag(1, · · · , 1, 2, · · · , 2, 2b), where b is an odd square-free integer and the number of 2’s is
exactly bn/2c in the diagonal of W .

Let G ∈ Fn. Let Q ∈ QG with level ` and p be any prime divisor of `. Then by
Theorem 3 (a), we have p|2b. If p > 2, then by Theorem 4, we have p 6 |`. Therefore,
` = 1 or ` = 2. Next, we present a simple exclusion criterion for ` = 2, which significantly
simplifies the method in [6].
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Lemma 16. Let G ∈ Gn. Let Q ∈ QG with level ` = 2. Then there exists a (0,1)-vector
u with four non-zero entries ‘1’ such that

uTAku ≡ 0 (mod 4) , k = 1, 2, · · · , n− 1. (17)

Moreover, u satisfies W Tu ≡ 0, u 6≡ 0 (mod 2)

Proof. Q ∈ QG implies that QTAQ = B, where B is a (0,1)-matrix. Let ū be the i-th
column of 2Q. It follows from QTAkQ = Bk that ūTAkū = 4(Bk)i,i ≡ 0 (mod 4). It
follows from the facts ` = 2 and Qe = e that the four non-zero entries of ū are 1, 1, 1,
and −1, respectively. Let u = ū + 2ej (ej denotes the j-th standard basis of Rn) be a
(0, 1)-vector with four non-zero entries ‘1’ . Then

uTAku = ūTAkū+ 4ūTAkej + 4eTj A
kej ≡ 0 (mod 4).

The last assertion follows from the fact that QTAkQ = Bk and Qe = e imply that
W TQ is an integral matrix. Thus W Tu ≡ 0, u 6≡ 0 (mod 2) holds.

Lemma 16 gives a simple way to eliminate the possibility of ` = 2. First, solve the
system of linear equations W Tx = 0 with additional requirement that x has four non-
zero entries 1, over F2, to get a solution set S. This can be done through checking

(
n
4

)
possibilities. Then for each solution x check whether Eq. (17) holds. If every x ∈ S does
not satisfy Eq. (17), then ` 6= 2 and hence ` = 1, i.e., G is DGS.

Let us give an example for illustration. Let G = G1 be the first
graph given in Section 2. Clearly G ∈ Fn. It can be easily com-
puted by Mathematica 5.0 that the corresponding solution set is S =
{(0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0)T , (0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0)T , (1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0)T ,
(1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0)T , (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0)T , (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0)T ,
(0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0)T , (0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0)T , (1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1)T ,
(1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1)T , (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1)T , (0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1)T ,
(0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1)T , (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1)T , (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)T}

However, none of x ∈ S satisfies Eq. (17). Thus G is DGS.
We remark, though Lemma 16 is a sufficient condition to exclude the case ` = 2, our

numerical experiments do suggest that it is always necessary for graphs G ∈ Fn.

5 Concluding remarks and open problems

We have reviewed some previous results on the topic of characterizing a graph by both
its spectrum and the spectrum of its complement. Then we have presented a simple new
exclusion criterion for excluding odd primes. The case p = 2 has also been discussed.

As it turns out, the arithmetic properties of det(W ) is closely related to whether a
given controllable graphs is DGS. Actually, we have the following

Conjecture (Wang [7]): Every graph in Fn is DGS.
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For a given graph G ∈ Fn, Q ∈ QG with level `. We have shown that either ` = 1 or
` = 2. However, some additional efforts have to be made to eliminate the possibility of
` = 2.

Finally, we remark that it can be shown (see [8]) that almost every graphs in Fn is
DGS. In view of the simple definition of Fn, it suggests a possible way to show that DGS-
graphs have positive density via proving Fn has positive density (numerical experiments
show that Fn has density nearly 0.2). This needs further investigations in the future.
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