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Abstract
In 2007, Levstein and Maldonado computed the Terwilliger algebra of the John-

son graph J(n,m) when 3m 6 n. It is well known that the halved graphs of the
incidence graph J(n,m,m + 1) of Johnson geometry are Johnson graphs. In this
paper, we determine the Terwilliger algebra of J(n,m,m + 1) when 3m 6 n, give
two bases of this algebra, and calculate its dimension.
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1 Introduction

Let Γ = (X,R) denote a simple connected graph with the vertex set X and the edge set
R. Suppose MatX(C) denotes the algebra over the complex number field C consisting of

∗Corresponding author
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all matrices whose rows and columns are indexed by elements of X. For vertices x and y,
∂(x, y) denotes the distance between x and y, i.e., the length of a shortest path connecting
x and y. Fix a vertex x ∈ X. Let D(x) = max{∂(x, y) | y ∈ X} denote the diameter with
respect to x. For each i ∈ {0, 1, . . . , D(x)}, let Γi(x) = {y ∈ X | ∂(x, y) = i} and define
E∗i = E∗i (x) to be the diagonal matrix in MatX(C) with yy-entry

(E∗i )yy =

{
1, if y ∈ Γi(x),
0, otherwise.

The subalgebra T = T (x) of MatX(C) generated by the adjacency matrix A of Γ and
E∗0 , E

∗
1 , . . . , E

∗
D(x) is called the Terwilliger algebra of Γ with respect to x. Let CX denote

the vector space over C consisting of all column vectors whose coordinates are indexed
by X. A T -module is any subspace W of CX such that TW ⊆ W . We call a nonzero
T -module irreducible if it does not properly contain a nonzero T -module. An irreducible
T -module W is thin if dimE∗iW 6 1 for every i, and the graph Γ is said to be thin with
respect to x if every irreducible T (x)-module is thin.

Terwilliger [13, 14, 15] initiated the study of the Terwilliger algebra of an association
scheme, which has been an important tool in studying structures of an association scheme.
For more information, see [4, 5, 6]. The Terwilliger algebras of group schemes were
discussed in [1, 2]. The Terwilliger algebras of some distance-regular graphs have been
determined; see [17] for strongly regular graphs, [8] for Hypercubes, [11] for Hamming
graphs, [12] for Johnson graphs, [10] for odd graphs.

Let Ω be a set of cardinality n and let
(

Ω
i

)
denote the collection of all i-subsets of Ω.

Suppose m is a nonnegative integer with m+ 1 6 n. The incidence graph J(n,m,m+ 1)
of Johnson geometry is a bipartite graph with a bipartition

(
Ω
m

)
∪
(

Ω
m+1

)
, where y ∈

(
Ω
m

)
and z ∈

(
Ω

m+1

)
are adjacent if y ⊆ z. The graph J(n,m,m + 1) is distance-biregular (see

[3]). It is well known that the halved graphs of J(n,m,m+ 1) are Johnson graphs.
Levstein and Maldonado [12] determined the Terwilliger algebra of the Johnson graph

J(n,m) when 3m 6 n. In this paper we shall determine the Terwilliger algebra of
J(n,m,m + 1) with respect to x ∈

(
Ω
m

)
when n > 3m. In Section 2, we introduce

some useful identities for intersection matrices. In Section 3, the Terwilliger algebra of
J(n,m,m+ 1) is described. In Section 4, we give two bases of this algebra and compute
its dimension.

2 Intersection matrices

In this section we shall introduce intersection matrices and some related identities.
Let V be a set of cardinality v. The inclusion matrix Wi,j(v) is a binary matrix whose

rows and columns are indexed by elements of
(
V
i

)
and

(
V
j

)
, respectively, with the yz-entry

defined by

(Wi,j(v))yz =

{
1, if y ⊆ z,
0, otherwise.
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Observe that

Wi,j(v)Wj,k(v) =

(
k − i
j − i

)
Wi,k(v). (1)

Let H l
i,j(v) be a binary matrix whose rows and columns are indexed by elements of(

V
i

)
and

(
V
j

)
, respectively, and the yz-entry is defined by

(H l
i,j(v))yz =

{
1, if |y ∩ z| = l,
0, otherwise.

Define

C l
i,j(v) =

min(i,j)∑
g=l

(
g

l

)
Hg

i,j(v). (2)

In order to simply the notation, we write Wi,j for Wi,j(v) when v is clear from context,
and do the same for H l

i,j(v) and C l
i,j(v). The matrices Wi,j, H

l
i,j and C l

i,j are intersection
matrices introduced in [7].

Observe C0
i,j is the all-one matrix and

C
min(i,j)
i,j =

{
WT

j,i, if i > j,
Wi,j, otherwise.

Lemma 2.1 ([7]) Let V be a set of cardinality v. Write Wi,j = Wi,j(v) and C l
i,j = C l

i,j(v).
Then

C l
i,jC

s
j,k =

min(l,s)∑
h=max(0,l+s−j)

(
v − l − s

j − l − s+ h

)(
i− h
l − h

)(
k − h
s− h

)
Ch

i,k.

In particular, the following hold:
(i) WT

i,jWi,k = Ci
j,k;

(ii) C l
i,jWj,k =

(
k−l
j−l

)
C l

i,k;

(iii) Wi,kW
T
j,k =

min(i,j)∑
l=max(0,i+j−k)

(
v−i−j

k−i−j+l

)
C l

i,j;

(iv) Wi,jC
l
j,k =

min(l,i)∑
h=max(0,l+j−i)

(
v−l−i

j−l−i+h

)(
k−h
l−h

)
Ch

i,k.

Fix x ∈
(

Ω
m

)
. We then consider the adjacency matrix A of J(n,m,m + 1) as a block

matrix with respect to the partition {x}∪Γ1(x)∪· · ·∪ΓD(x)(x). Let Ai,j be the submatrix
of A with rows indexed by vertices of Γi(x) and columns indexed by vertices of Γj(x).

Lemma 2.2 Given two vertices x, y of J(n,m,m+ 1). If x ∈
(

Ω
m

)
, then

∂(x, y) =

{
2i, if |y| = m and |x ∩ y| = m− i,
2i+ 1, if |y| = m+ 1 and |x ∩ y| = m− i.

In particular, D(x) = min(2m+ 1, 2n− 2m).
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Proof. Immediate from [9, Lemma 2.2]. 2

Lemma 2.3 Let I(v
k)

be the identity matrix of size
(
v
k

)
. Then

Ai,j = 0, if 0 6 i 6 j 6 D(x) and i 6= j − 1; (3)

A2i,2i+1 = I( m
m−i)
⊗Wi,i+1(n−m), if 0 6 i 6 bD(x)− 1

2
c; (4)

A2i+1,2i+2 = WT
m−i−1,m−i(m)⊗ I(n−m

i+1 ), if 0 6 i 6 bD(x)

2
c − 1, (5)

where “⊗” denotes the Kronecker product of matrices.

Proof. (3) is directed.
Pick y ∈ Γ2i(x), z ∈ Γ2i+1(x). By Lemma 2.2 we have |y| = m, |z| = m + 1,

|x ∩ y| = |x ∩ z| = m − i. Suppose y = αm−i ∪ βi, z = α′m−i ∪ β′i+1, where αm−i and

α′m−i ∈
(

x
m−i

)
, while βi ∈

(
Ω\x
i

)
and β′i+1 ∈

(
Ω\x
i+1

)
. Then

(A2i,2i+1)yz = 1⇔ αm−i = α′m−i and βi ⊆ β′i+1 ⇔ (I( m
m−i)
⊗Wi,i+1(n−m))yz = 1,

which leads to (4).
Similarly, (5) holds. 2

3 The Terwilliger algebra

Let n > 3m and X denote the vertex set of J(n,m,m + 1). Fix x ∈
(

Ω
m

)
. In this section

we shall determine the Terwilliger algebra T = T (x) of J(n,m,m + 1). Hereafter the
ground set of all matrices C l

p,q(m) is x and that of C l
p,q(n−m) is Ω \ x.

For i, j ∈ {0, 1, . . . , 2m+ 1}, let Mi,j be the vector space spanned by

C l
m−b i

2
c,m−b j

2
c(m)⊗ Cs

d i
2
e,d j

2
e(n−m),

where

0 6 l 6 min(m− b i
2
c,m− bj

2
c), 0 6 s 6 min(d i

2
e, dj

2
e).

Write

M =
2m+1⊕
i,j=0

L(Mi,j), (6)

where L(Mi,j) = {L(M) ∈ MatX(C) |M ∈Mi,j}, and

L(M)Γk(x)×Γl(x) =

{
M, if k = i and l = j,
0, otherwise.

Note that M is a vector space. By Lemma 2.1, M is an algebra. In the remaining of
this section we shall prove T =M.
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Lemma 3.1 The Terwilliger algebra T is a subalgebra of M.

Proof. By Lemma 2.3 we have A ∈M. For 0 6 i 6 2m+ 1, since

E∗i = E∗i (x) = L(C
m−b i

2
c

m−b i
2
c,m−b i

2
c(m)⊗ Cd

i
2
e

d i
2
e,d i

2
e(n−m)) ∈M,

we get T ⊆M. 2

For i, j ∈ {0, 1, . . . , 2m + 1}, let Ti,j = {Mi,j | M ∈ T }, where Mi,j is the submatrix
of M with rows indexed by vertices of Γi(x) and columns indexed by vertices of Γj(x).
Since T is an algebra, each Ti,j is a vector space. Since T E∗j T ⊆ T , (T E∗j T )i,k ⊆ Ti,k,
which gives

Ti,jTj,k ⊆ Ti,k. (7)

Since A, E∗i ∈ T , we have E∗i1AE
∗
i2
AE∗i3 · · ·AE

∗
ip−1

AE∗ip ∈ E
∗
i1
T E∗ip , from which it follows

that

Ai1,i2Ai2,i3 · · ·Aip−2,ip−1Aip−1,ip ∈ Ti1,ip , (8)

where 0 6 is 6 2m+ 1 for any s ∈ {1, . . . , p}.
Note that

WT
m−bh

2
c,m−bh

2
c(m)⊗Wdh

2
e,dh

2
e(n−m) = I( m

m−bh2 c
) ⊗ I(n−m

dh2 e
).

By Lemma 2.3 and (1), for h+ 1 6 k, one gets

Ah,h+1 · · ·Ak−1,k = (bk
2
c − bh

2
c)!(dk

2
e − dh

2
e)!WT

m−b k
2
c,m−bh

2
c(m)⊗Wdh

2
e,d k

2
e(n−m).

Hence, by (8), for h 6 k, we have

WT
m−b k

2
c,m−bh

2
c(m)⊗Wdh

2
e,d k

2
e(n−m) ∈ Th,k. (9)

Lemma 3.2 For 2i+ 2 6 j 6 2m+ 1 and 0 6 s 6 i+ 1, we have

C
m−b j

2
c

m−i−1,m−b j
2
c
(m)⊗ Cs

i+1,d j
2
e(n−m) ∈ T2i+2,j. (10)

Proof. We use induction on s (s decreasing from i+ 1 to 0). Since

C
m−b j

2
c

m−i−1,m−b j
2
c
(m)⊗ Ci+1

i+1,d j
2
e
(n−m) = WT

m−b j
2
c,m−i−1

(m)⊗Wi+1,d j
2
e(n−m),

by (9), (10) holds for 2i+ 2 6 j 6 2m+ 1 and s = i+ 1.

Assume that C
m−b j

2
c

m−i−1,m−b j
2
c
(m)⊗ Cs

i+1,d j
2
e(n−m) ∈ T2i+2,j. By (7) and (8) we obtain

(C
m−b j

2
c

m−i−1,m−b j
2
c
(m)⊗ Cs

i+1,d j
2
e(n−m))(Aj,j+1Aj+1,j) ∈ T2i+2,jTj,j ⊆ T2i+2,j, (11)

(C
m−b j

2
c

m−i−1,m−b j
2
c
(m)⊗ Cs

i+1,d j
2
e(n−m))(Aj,j−1Aj−1,j) ∈ T2i+2,jTj,j ⊆ T2i+2,j. (12)
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When j is even, by Lemma 2.3, Lemma 2.1, (11) leads to

aC
m− j

2

m−i−1,m− j
2

(m)⊗ Cs
i+1, j

2

(n−m) + bC
m− j

2

m−i−1,m− j
2

(m)⊗ Cs−1

i+1, j
2

(n−m) ∈ T2i+2,j,

where a = (n−m− s− j
2
)( j

2
− s+ 1) and b = (i− s+ 2)( j

2
− s+ 1). Similarly when j is

odd, (12) yields that

a′C
m−b j

2
c

m−i−1,m−b j
2
c
(m)⊗ Cs

i+1,d j
2
e(n−m) + b′C

m−b j
2
c

m−i−1,m−b j
2
c
(m)⊗ Cs−1

i+1,d j
2
e
(n−m)

belongs to T2i+2,j, where a′ = (n−m−s−d j
2
e+1)(d j

2
e−s) and b′ = (i−s+2)(d j

2
e−s+1).

Since s 6 i+1 6 d j
2
e, b 6= 0 and b′ 6= 0. Thus we have C

m−b j
2
c

m−i−1,m−b j
2
c
(m)⊗Cs−1

i+1,d j
2
e
(n−m) ∈

T2i+2,j.
Hence the desired result follows. 2

Lemma 3.3 The algebra M is a subalgebra of T .

Proof. During this proof we will omit the symbol (m) from matrices in front of “⊗”, and
omit (n−m) from matrices behind “⊗”.

In order to get the desired conclusion, we only need to show that Mi,j ⊆ Ti,j for
i, j ∈ {0, 1, . . . , 2m + 1}. Write MT

i,j = {MT | M ∈ Mi,j} and T T
i,j = {MT | M ∈ Ti,j}.

Since Mj,i = MT
i,j and Tj,i = T T

i,j , it suffices to prove Mi,j ⊆ Ti,j for i 6 j. We use
induction on i.

Step 1. We show that M0,j ⊆ T0,j for 0 6 j 6 2m+ 1.
According to (6), the subspace M0,j is spanned by C l

m,m−b j
2
c ⊗ C

0
0,d j

2
e, where 0 6 l 6

m− b j
2
c. Since

C l
m,m−b j

2
c ⊗ C

0
0,d j

2
e =

(
m− b j

2
c

l

)
WT

m−b j
2
c,m ⊗W0,d j

2
e

for any l ∈ {0, 1, . . . ,m− b j
2
c}, we get M0,j ⊆ T0,j from (9).

Step 2. Assume that Mp,j ⊆ Tp,j for p 6 2i. We will show that M2i+1,j ⊆ T2i+1,j

and M2i+2,j ⊆ T2i+2,j.

Step 2.1. We show that M2i+1,j ⊆ T2i+1,j for 2i+ 1 6 j 6 2m+ 1.
It suffices to prove

C l
m−i,m−b j

2
c ⊗ C

s
i+1,d j

2
e ∈ T2i+1,j, (13)

where 0 6 l 6 m− b j
2
c, 0 6 s 6 i+ 1.

By induction hypothesis,

C l
m−i,m−b j

2
c ⊗ C

s
i,d j

2
e ∈M2i,j ⊆ T2i,j,
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for 0 6 l 6 m− b j
2
c, 0 6 s 6 i. Since

AT
2i,2i+1 = I( m

m−i)
⊗WT

i,i+1 ∈MT
2i,2i+1 ⊆ T T

2i,2i+1,

we have
(I( m

m−i)
⊗WT

i,i+1)(C l
m−i,m−b j

2
c ⊗ C

s
i,d j

2
e) ∈ T

T
2i,2i+1T2i,j ⊆ T2i+1,j.

By Lemma 2.1, (13) holds for 0 6 l 6 m− b j
2
c and 0 6 s 6 i.

Next we shall show that (13) holds for 0 6 l 6 m− b j
2
c and s = i+ 1.

By (9), for j 6 k 6 2m+ 1,

(WT
m−b j

2
c,m−i ⊗Wi+1,d j

2
e)(W

T
m−b k

2
c,m−b j

2
c ⊗Wd j2 e,d k2 e)(Wm−b k

2
c,m−b j

2
c ⊗W

T
d j
2
e,d k

2
e)

belongs to T2i+1,j. By Lemma 2.1,

aC
m−b k

2
c

m−i,m−b j
2
c
⊗

 i+1∑
h=max(0,i+1+d j

2
e−d k

2
e)

(
n−m− i− 1− d j

2
e

dk
2
e − i− 1− d j

2
e+ h

)
Ch

i+1,d j
2
e

 (14)

belongs to T2i+1,j, where a =
( b k

2
c−i

b k
2
c−b j

2
c

)(d k
2
e−i−1

d j
2
e−i−1

)
6= 0. Since (13) holds for 0 6 l 6 m−b j

2
c

and 0 6 s 6 i, one has(
n−m− i− 1− d j

2
e

dk
2
e − d j

2
e

)
C

m−b k
2
c

m−i,m−b j
2
c
⊗ Ci+1

i+1,d j
2
e
∈ T2i+1,j.

Since 0 6 2i+ 1 6 j 6 k − 1 6 2m− 1 and n > 3m, we get

n−m− i− 1− dj
2
e > n−m−m− dj

2
e > m− dj

2
e > dk

2
e − dj

2
e > 0,

and so
(n−m−i−1−d j

2
e

d k
2
e−d j

2
e

)
6= 0. Hence (13) holds for 0 6 l 6 m− b j

2
c and s = i+ 1.

Step 2.2. We show that M2i+2,j ⊆ T2i+2,j for 2i+ 2 6 j 6 2m+ 1.
It suffices to prove

C l
m−i−1,m−b j

2
c ⊗ C

s
i+1,d j

2
e ∈ T2i+2,j, 0 6 l 6 m− bj

2
c, 0 6 s 6 i+ 1. (15)

By the inductive assumption, for 0 6 l 6 m− b j
2
c and 0 6 s 6 i+ 1,

C l
m−i,m−b j

2
c ⊗ C

s
i+1,d j

2
e ∈M2i+1,j ⊆ T2i+1,j.

Since
AT

2i+1,2i+2 = Wm−i−1,m−i ⊗ I(n−m
i+1 ) ∈ T

T
2i+1,2i+2,
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by (7) we have

(Wm−i−1,m−i ⊗ I(n−m
i+1 ))(C l

m−i,m−b j
2
c ⊗ C

s
i+1,d j

2
e) ∈ T

T
2i+1,2i+2T2i+1,j ⊆ T2i+2,j. (16)

By Lemma 2.1,

Wm−i−1,m−iC
l
m−i,m−b j

2
c = (i+ 1− l)C l

m−i−1,m−b j
2
c + (m− bj

2
c − l + 1)C l−1

m−i−1,m−b j
2
c
.

Thus (16) implies that

((i+ 1− l)C l
m−i−1,m−b j

2
c + (m− bj

2
c − l + 1)C l−1

m−i−1,m−b j
2
c
)⊗ Cs

i+1,d j
2
e (17)

belongs to T2i+2,j, where 0 6 l 6 m − b j
2
c, 0 6 s 6 i + 1. Since the coefficient of

C l−1

m−i−1,m−b j
2
c
⊗ Cs

i+1,d j
2
e in (17) is m− b j

2
c − l + 1 6= 0, by Lemma 3.2 we get (15).

Hence the desired result follows. 2

Theorem 3.4 Fix x ∈
(

Ω
m

)
. Let T be the Terwilliger algebra of J(n,m,m+1) with respect

to x and M be the algebra defined in (6). If n > 3m, then T =M.

Proof. Combining Lemmas 3.1 and 3.3, the desired result follows. 2

The condition n > 3m guarantees the coefficient of C
m−b k

2
c

m−i,m−b j
2
c
⊗ Ci+1

i+1,d j
2
e

in (14) is

non-zero. It seems to be interesting to determine the Terwilliger algebra of J(n,m,m+1)
without this assumption.

Theorem 3.5 ([16, Theorem 13]) Let Γ = (X,R) be a graph and T be the Terwilliger
algebra of Γ with respect to a vertex x. If E∗i T E∗i is symmetric for any i ∈ {0, 1, . . . , D(x)},
then Γ is thin with respect to x.

Corollary 3.6 With reference to Theorem 3.4, J(n,m,m+ 1) is thin with respect to x.

Proof. By Theorem 3.4, for any i ∈ {0, 1, . . . , D(x)}, the subspace E∗i T E∗i is spanned by

L(C l
m−b i

2
c,m−b i

2
c(m)⊗ Cs

d i
2
e,d i

2
e(n−m)),

where 0 6 l 6 m− b i
2
c, 0 6 s 6 d i

2
e. Since each element of E∗i T E∗i is symmetric, we get

the conclusion from Theorem 3.5. 2
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4 Two bases of the Terwilliger algebra

In this section we shall determine two bases of the Terwilliger algebra T in Theorem 3.4.
Set

Gi,j = {g | Hg

m−b i
2
c,m−b j

2
c
(m) 6= 0}, Ri,j = {r | Hr

d i
2
e,d j

2
e(n−m) 6= 0}.

Theorem 4.1 Let T be as in Theorem 3.4. Then

{L(Hg

m−b i
2
c,m−b j

2
c
(m)⊗Hr

d i
2
e,d j

2
e(n−m)), g ∈ Gi,j, r ∈ Ri,j}2m+1

i,j=0 (18)

as well as

{L(C l
m−b i

2
c,m−b j

2
c(m)⊗ Cs

d i
2
e,d j

2
e(n−m)), l ∈ Gi,j, s ∈ Ri,j}2m+1

i,j=0 (19)

are two bases of T .

Proof. Without loss of generality, suppose i 6 j. We have H l
i,j(v) 6= 0 if and only if

max(0, i+ j − v) 6 l 6 min(i, j), so d i
2
e − |Ri,j|+ 1 6 r 6 d i

2
e when r ∈ Ri,j. By (2) we

obtain

Cr
d i
2
e,d j

2
e(n−m) =

d i
2
e∑

h=r

(
h

r

)
Hh
d i
2
e,d j

2
e(n−m), (20)

which implies that Hr
d i
2
e,d j

2
e(n−m) is a linear combination of {Cs

d i
2
e,d j

2
e(n−m)}s∈Ri,j

for

any r ∈ Ri,j. Similarly, Hg

m−b i
2
c,m−b j

2
c
(m) can be expressed as a linear combination of

{C l
m−b i

2
c,m−b j

2
c(m)}l∈Gi,j

for any g ∈ Gi,j . Hence every element of

{Hg

m−b i
2
c,m−b j

2
c
(m)⊗Hr

d i
2
e,d j

2
e(n−m)}g∈Gi,j ,r∈Ri,j

(21)

belongs to Mi,j. Again by (2), for 0 6 l 6 m− b j
2
c and 0 6 s 6 d i

2
e,

C l
m−b i

2
c,m−b j

2
c(m)⊗ Cs

d i
2
e,d j

2
e(n−m)

=
(m−b j

2
c∑

g=l

(
g

l

)
Hg

m−b i
2
c,m−b j

2
c
(m)

)
⊗
( d i2 e∑

r=s

(
r

s

)
Hr
d i
2
e,d j

2
e(n−m)

)
.

Observe that (21) are linearly independent, so (21) is a basis ofMi,j. Therefore (18) is a
basis of T .

Furthermore, by (20) we get {C l
m−b i

2
c,m−b j

2
c(m)⊗ Cs

d i
2
e,d j

2
e(n−m)}l∈Gi,j ,s∈Ri,j

is also a

basis of Mi,j, from which it follows that (19) is a basis of T . 2
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Corollary 4.2 With reference to Theorem 3.4 we get the dimension of T is

dim T =


1
12

(m+ 1)(m+ 2)(m+ 3)(3m+ 10)− 4, if n = 3m,
1
12

(m+ 1)(m+ 2)(m+ 3)(3m+ 10)− 1, if n = 3m+ 1,
1
12

(m+ 1)(m+ 2)(m+ 3)(3m+ 10), if n > 3m+ 2.

Proof. By Theorem 4.1,

dim T =
2m+1∑
i,j=0

|Gi,j||Ri,j|

=
2m+1∑
i,j=0

(min(m− b i
2
c,m− bj

2
c)−max(0,m− b i

2
c − bj

2
c) + 1)

×(min(d i
2
e, dj

2
e)−max(0, d i

2
e+ dj

2
e − n+m) + 1).

By zigzag calculation, we get the desired result. 2

5 Concluding Remark

We conclude this paper with the following remarks:
(i) Let Ω be a set of cardinality n and let J(n,m) be the Johnson graph based on Ω with

n > 3m. Fix an m-subset x of Ω. Let T ′ = T ′(x) and T = T (x) be the Terwilliger algebra
of J(n,m) and J(n,m,m+1) with respect to x, respectively. Since

⊕m
i,j=0E

∗
2i(x)T E∗2j(x)

is an algebra, {L(Hg
m−i,m−j(m) ⊗ Hr

i,j(n − m)), g ∈ G2i,2j, r ∈ R2i,2j}mi,j=0 is a basis of⊕m
i,j=0E

∗
2i(x)T E∗2j(x) by Theorem 4.1. By [12, Definition 4.2, Lemma 4.4, Theorem 5.9]

this basis coincides with that of T ′, which implies that T ′ '
⊕m

i,j=0 E
∗
2i(x)T E∗2j(x).

(ii) Using the same method, the Terwilliger algebra of J(n,m,m+ 1) with respect to
an (m+ 1)-subset may be determined.
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