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Abstract

This paper deals with the question of completing a monotone increasing family
of subsets Γ of a finite set Ω to obtain the dependent sets of a matroid. Specifically,
we provide several natural processes for transforming the clutter Λ of the inclusion-
minimal subsets of the family Γ into the set of circuits C(M) of a matroid M with
ground set Ω. In addition, by combining these processes, we prove that all the
minimal matroidal completions of the family can be obtained.
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1 Introduction

A monotone increasing family of subsets Γ of a finite set Ω is a collection of subsets of Ω
such that any superset of a set in the family Γ must be in Γ. All the inclusion-minimal
elements of Γ determine a clutter Λ, that is, a collection of subsets of Ω none of which
is a proper subset of another. Clutters are also known as antichains, Sperner systems or
simple hypergraphs.

A wide variety of examples of monotone increasing families exist, among them the
collection of the linearly dependent subsets of vectors in a vector space. A matroid M is
a combinatorial object that provides an axiomatic abstraction of linear dependence on a
finite set Ω. The minimal dependent sets of a matroid M are called circuits. Therefore,
the family of circuits of a matroid M is a clutter.
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2009SGR1387.

the electronic journal of combinatorics 21(1) (2014), #P1.11 1



We say that a clutter is matroidal if it corresponds to the family of circuits of a ma-
troid. Matroidal clutters, as well as “almost matroidal” clutters, play a key role in several
situations. For instance, in the context of secret-sharing schemes they become a crucial is-
sue for providing general bounds on the optimal information rate of the scheme (see [4, 8]).
In the framework of algebraic combinatorics and commutative algebra, other interesting
examples can be found that deal with monomial ideals and arithmetic properties of the
face ring of simplicial complexes (see [1, 9]).

Since in general a clutter is far from being matroidal, it is of interest to know how it
can be transformed into a matroidal one. This paper deals with the question of finding
the matroidal completions of a clutter .

The outline of the paper is as follows. In Section 2 we recall some definitions and
basic facts about clutters and matroids. Several ways to obtain matroidal completions of
clutters can be found in Section 3; namely, we present the uniform completions (Propo-
sition 3), the I-completions (Proposition 5), and the T -completions (Proposition 8). In
addition, by means of the clutter transformations involved in these processes, a necessary
condition for a clutter to be a matroid port is obtained (Proposition 9). Finally, Section 4
is devoted to analyzing the minimal matroidal completions. We characterize the clutters
with only one minimal element (Theorem 12), and we show how to obtain all the minimal
matroidal completions of any clutter (Theorem 13).

2 Clutters and matroids

In this section we present the definitions and basic facts concerning families of subsets,
clutters and matroids that are used in the paper. (The reader is referred to [6, 10] for
general references on matroid theory).

Let Ω be a finite set. Observe that if Γ is a monotone increasing family of subsets
of Ω, then the collection min(Γ) of its inclusion-minimal elements is a clutter; while if
Λ is a clutter on Ω, then the family Λ+ = {A ⊆ Ω : A0 ⊆ A for some A0 ∈ Λ} is a
monotone increasing family of subsets. Clearly Γ = (min(Γ))+ and Λ = min

(
Λ+

)
. So

a monotone increasing family of subsets Γ is determined uniquely by the clutter min(Γ),
while a clutter Λ is determined uniquely by the monotone increasing family Λ+.

Despite the foregoing, we must take into account the following lemma concerning the
relationship between the inclusion and the equality of two clutters Λ1 and Λ2, and the
inclusion and the equality of their associated monotone increasing families of subsets Λ+

1

and Λ+
2 .

Lemma 1. Let Λ1,Λ2 be two clutters on a finite set Ω. Then:

1. Λ1 = Λ2 if and only if Λ+
1 = Λ+

2 .

2. If Λ1 ⊆ Λ2 then Λ+
1 ⊆ Λ+

2 . The converse is not true.

3. Λ+
1 ⊆ Λ+

2 if and only if Λ1 ⊆ Λ+
2 .

the electronic journal of combinatorics 21(1) (2014), #P1.11 2



Proof. The proofs of the statements are a straightforward consequence of the definition
of Λ+ and of the fact that Λ = min

(
Λ+

)
. So it is only necessary to present an example of

clutters with Λ1 * Λ2 and Λ+
1 ⊆ Λ+

2 . For instance, on the finite set Ω = {1, 2, 3}, let us
consider the clutters Λ1 = {{1, 2}, {2, 3}} and Λ2 = {{1}, {2, 3}}. Then Λ1 * Λ2, while
Λ+

1 = {{1, 2}, {2, 3}, {1, 2, 3}} ⊆ {{1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} = Λ+
2 .

The previous lemma leads us to consider a binary relation 6 defined on the set of
clutters on Ω. Namely, if Λ1 and Λ2 are two clutters on Ω, then we say that Λ1 6 Λ2 if and
only if Λ+

1 ⊆ Λ+
2 . Therefore, Λ1 6 Λ2 if and only if for all A1 ∈ Λ1 there exists A2 ∈ Λ2

such that A2 ⊆ A1. It is clear that the binary relation 6 is reflexive and transitive.
Besides, from statement (1) of the previous lemma, the relation 6 is antisymmetric.
Therefore, the binary relation 6 is a partial order on the set of clutters of Ω. We will use
this partial order throughout the paper.

There are many interesting families of clutters that can be considered. However,
because of their applications, we are interested in clutters that provide matroids.

Matroids are combinatorial objects that can be axiomatized in terms of their inde-
pendent sets, bases, circuits, rank function, flats, or hyperplanes. Here we present the
definition in terms of circuits. A matroid M is an ordered pair M = (Ω, C) consisting of
a finite set Ω, called the ground set of the matroid, and a family C of nonempty subsets
of Ω which satisfy the following three conditions:

1. ∅ 6∈ C;

2. if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2; and

3. if C1 and C2 are distinct members of C and x ∈ C1 ∩C2, then there is a member C3

of C such that C3 ⊆ (C1 ∪ C2) \ {x}.

The members of the clutter C are the circuits of the matroid M. We shall often
write C(M) instead of C. The dependent sets of the matroid are the supersets of the
circuits, that is, the dependent sets of M are the members of C(M)+. Therefore, the
set of dependent sets of the matroid is a monotone increasing family of subsets whose
inclusion-minimal elements are its circuits. A clutter Λ is said to be a matroidal clutter
if it is the set of circuits of a matroid, that is, if there exists a matroid M0 such that
C(M0) = Λ.

Since the set of circuits of a matroid is a clutter on the ground set of the matroid, we
can consider the partial order induced by 6 on the set of matroids with ground set Ω.
Thereby, ifM1 andM2 are two matroids with ground set Ω, then we say thatM1 6M2

if and only if C(M1) 6 C(M2) where C(Mi) is the clutter of the circuits of Mi. So,
M1 6M2 if and only if every circuit ofM1 contains a circuit ofM2. In matroid theory
this is equivalent to saying that the identity map on Ω is a weak map from the matroid
M1 to the matroid M2 (see [6, Proposition 7.3.11]).
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3 Matroidal completions of a clutter

The set of circuits of a matroid is a clutter, but there are clutters on a finite set Ω that
are not the set of circuits of a matroid with ground set Ω. So, a natural question that
arises at this point is to determine how to complete a clutter Λ to obtain a matroid; that
is to say, to transform the clutter Λ into a matroidal clutter.

In order to look for matroidal completions, it is important to take into account the
dependent sets of the matroid instead of the circuits. This is due to the fact that, as the
following example shows, there exist clutters Λ such that Λ * C(M) for any matroidM.

Example 2. Let n > 4. On the finite set Ω = {1, 2, 3, . . . , n}, we consider the clutter Λ =
{{1, 2}, {1, 3}, {2, 3, . . . , n}}. Observe that

(
{1, 2}∪{1, 3}

)
\{1} = {2, 3}  {2, 3, . . . , n}.

Hence it follows that Λ * C(M) for any matroid M.

The above example leads us to the following definition. Let Λ be a clutter on a finite
set Ω, and let M be a matroid with ground set Ω. We say that the matroid M is a
matroidal completion of the clutter Λ if Λ ⊆ C(M)+. In other words, M is a matroidal
completion of Λ if and only if every subset A ∈ Λ is a dependent set inM. From Lemma 1
we get that M is a matroidal completion of Λ if and only if Λ 6 C(M). We will write
Λ 6 M instead of Λ 6 C(M). The set of all the matroidal completions of a clutter Λ
is denoted by Mat(Λ), that is Mat(Λ) = {M : Λ 6 M}. Observe that if ∅ ∈ Λ then
Mat(Λ) = ∅. So, from now on, throughout the paper we assume that ∅ 6∈ Λ if Λ is a
clutter. As is shown in the next subsection, this assumption guarantees that Mat(Λ) 6= ∅
for all clutters.

The aim of this section is to provide three methods in order to obtain matroidal
completions of Λ; that is, to obtain matroidsM in Mat(Λ). By combining these methods,
the minimal matroidal completions will be studied in Section 4.

3.1 Uniform completion

The following proposition states that the family of uniform matroids provides matroidal
completions of clutters. Recall that if Ω is a finite set of size |Ω| = ω and if m 6 ω is
a non-negative integer, then the uniform matroid of rank m on Ω is the matroid Um,ω

with ground set Ω and set of circuits C(Um,ω) = {C ⊆ Ω : |C| = m + 1} if m < ω and
C(Um,ω) = ∅ if m = ω.

Proposition 3. Let Λ be a clutter on a finite set Ω of size |Ω| = ω. Then, Um,ω ∈ Mat(Λ)
if and only if m 6 s− 1 where s = min{|A| : A ∈ Λ}.

Proof. The dependent sets of the uniform matroid Um,ω are those subsets X ⊆ Ω with
|X| > m + 1. Therefore, Λ ⊆ C(Um,ω)+ if and only if |A| > m + 1 for all A ∈ Λ; that is,
if and only if s > m + 1.

It is clear that Um1,ω 6 Um2,ω if and only if m1 > m2. Hence, the uniform matroids
in Mat(Λ) form a chain Us−1,ω 6 · · · 6 U1,ω 6 U0,ω whose minimal element is Us−1,ω. We
will say that Us−1,ω is the uniform completion of Λ and it is denoted by U(Λ).
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The following example shows that, in general, there are matroids in Mat(Λ) that are
not uniform matroids. Moreover, from the example, it follows that in general the uniform
completion U(Λ) is not a minimal matroidal completion of Λ.

Example 4. On the finite set Ω = {1, 2, 3, 4, 5}, we consider the clutter Λ = {{1, 2},
{1, 3}, {2, 3, 4}, {2, 3, 5}}. We have that Λ ⊆ C(M)+ where M is the matroid with set of
circuits C(M) = {{1, 2}, {1, 3}, {2, 3}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}}. So M is a matroidal
completion of Λ which is not a uniform matroid. Observe that the uniform matroids in
Mat(Λ) are U1,4 and U0,4, and here M � U(Λ) = U1,4 6 U0,4.

3.2 Completion with intersections: I -transformations

In this subsection we prove that it is possible to transform a clutter Λ into a matroidal
clutter by adding intersections of suitable subsets of Λ. To present our result we need to
introduce some previous definitions.

Let Λ be a clutter on a finite set Ω. For a subset X ⊆ Ω, we denote by IΛ(X) the
intersection of the subsets A in Λ contained in X, (this intersection is the one involved in
the characterization of the set of circuits in connected matroids, see [6, Theorem 4.3.2]).
We say that a clutter Λ′ is an I-transformation of the clutter Λ if Λ′ = min

(
Λ∪{A1∩A2}

)
where A1, A2 ∈ Λ are two different subsets with IΛ(A1 ∪ A2) 6= ∅.

Proposition 5. Let Λ be a clutter on a finite set Ω. If Λ is not matroidal then there exists
a chain of clutters Λ = Λ0 � Λ1 � · · · � Λr such that the clutter Λi is an I-intersection
of Λi−1 for i > 1 and the clutter Λr is a matroidal clutter.

Proof. First of all notice that if A1, A2 ∈ Λ are different then, IΛ(A1∪A2) = ∅ if and only
if for all x ∈ A1 ∩ A2 there exists A3 ∈ Λ with A3 ⊆ (A1 ∪ A2) \ {x}. Therefore we get
that a clutter Λ is a matroidal clutter if and only if IΛ(A1 ∪A2) = ∅ for any two different
A1, A2 ∈ Λ.

The proof of the proposition follows from this equivalence. Indeed, if Λ is not a
matroidal clutter, then we get that there exist two different subsets A1, A2 ∈ Λ with
IΛ(A1 ∪ A2) 6= ∅. So we can consider the clutter Λ1 = min

(
Λ ∪ {A1 ∩ A2}

)
, which is an

I-intersection of Λ. Clearly Λ � Λ1 because A1 and A2 are different. We now proceed in
the same way with the clutter Λ1, and so on.

Therefore, by means of I-transformations we can transform a clutter Λ into a matroidal
clutter. The matroids obtained in this way will be called I-matroidal completions of Λ.
Next we present some examples to show that it no general result exists concerning the
comparison between two different I-matroidal completions of a clutter.

Example 6. On the finite set Ω = {1, 2, 3, 4, 5}, we consider the clutters Λ1, Λ2 and
Λ3 where Λ1 = {{1, 2, 3},{1, 2, 4}, {3, 4, 5}}, Λ2 = {{1, 2, 3}, {1, 2, 4}, {1, 5}, {2, 5}} and
Λ3 = {{1, 2, 3}, {1, 2, 4},{4, 5}}. It is clear that Λ1 has only one I-matroidal com-
pletion, the matroid M1 with set of circuits C(M1) = {{1, 2}, {3, 4, 5}}. The two
I-matroidal completions of the clutter Λ2 are the matroids M2,1 and M2,2 with set
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of circuits C(M2,1) = {{1, 2}, {1, 5}, {2, 5}} and C(M2,2) = {{1, 2}, {5}}. The two
I-matroidal completions of Λ3 are the matroids M3,1 and M3,2 with set of circuits
C(M3,1) = {{1, 2}, {4, 5}} and C(M3,2) = {{1, 2, 3}, {4}}. Therefore the I-matroidal
completions of Λ2 form a chain M2,1 6 M2,2, while the I-matroidal completions of Λ3

are not comparable, that is, M3,1 
M3,2 and M3,2 
M3,1.

3.3 Completion with unions: T -transformations

The aim of this subsection is to present some natural ways to obtain matroidal completions
of a clutter Λ, that is, to obtain matroids in Mat(Λ). Unlike in the previous subsection,
here we proceed in a recursive way by adding, in each step of the process, some slight
modifications of the union of two distinct elements of the clutter. Our result is stated
in Proposition 8, and by using these matroidal completions a necessary condition for
matroid ports is presented in Proposition 9. Let us start by defining the two elementary
transformations involved in the recursive process.

Let Λ be a clutter on a finite set Ω. We define the elementary transformations T (1)(Λ)
and T (2)(Λ) of Λ as the clutters:

• T (1)(Λ) = min
(
Λ∪

{
(A1∪A2)\{x} where A1, A2 ∈ Λ are different and x ∈ A1∩A2

})
;

that is, in the first elementary transformation T (1)(Λ), we consider the minimal
elements of the family obtained by adding to Λ those subsets that arise from the
circuit condition.

• T (2)(Λ) = min
(
Λ∪

{
(A1∪A2) \ IΛ(A1∪A2), where A1, A2 ∈ Λ are different}

)
; that

is, in the second elementary transformation T (2)(Λ), we add to Λ the subsets ob-
tained from the union after removing the intersections IΛ(X) defined in the previous
subsection.

Since T (1)(Λ) and T (2)(Λ) are clutters, we can apply the elementary transformations
again. Hence, for (i1, i2) ∈ {1, 2} × {1, 2} we can consider the clutter T (i2)(T (i1)(Λ)). At
this point we proceed in a recursive way. Let r > 2 be a non-negative integer and let
(i1, . . . , ir) ∈ {1, 2}r be an r-tuple. Then we define the clutter T (i1,...,ir)(Λ) by the recursion
formula T (i1,...,ir)(Λ) = T (ir)(T (i1,...,ir−1)(Λ)); that is, T (i1,...,ir)(Λ) is the ir elementary
transformation of T (i1,...,ir−1)(Λ).

In this way we obtain the following tree diagram of T -transformations of the clutter
Λ, where we write (i1, . . . , ir) instead of T (i1,...,ir)(Λ):
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We will say that a clutter Λ′ is a T -transformation of Λ if it is obtained from Λ in this
way, that is, if Λ′ = T (i1,...,ir)(Λ) for some r-tuple (i1, . . . , ir). The next lemma points out
the relationship between two T -transformations, that is, between two clutters of the above
diagram. The first statement of the lemma deals with the relationship between clutters
in each branch of the diagram, whereas the last two statements deal with the comparison
of clutters in a same row of the diagram, that is, the 2r possible clutters T (i1,...,ir)(Λ).

Lemma 7. Let Λ be a clutter on a finite set Ω. Let I = (i1, i2, i3, . . . , is, is+1, . . . ) be a
sequence with i` ∈ {1, 2}, and let (j1, . . . , jr), (k1, . . . , kr) ∈ {1, 2}r be two r-tuples. Then,
the following statements hold:

1. Λ 6 T (i1)(Λ) 6 T (i1,i2)(Λ) 6 · · · 6 T (i1,...,is)(Λ) 6 T (i1,...,is,is+1)(Λ) 6 · · · , and there
exists r > 1 such that T (i1,...,ir)(Λ) = T (i1,...,ir,ir+1)(Λ).

2. If (j1, . . . , jr−1) = (k1, . . . , kr−1) and jr 6 kr, then T (j1,...,jr)(Λ) 6 T (k1,...,kr)(Λ). In
general this inequality is not an equality.

3. If (j1, . . . , jr−1) 6= (k1, . . . , kr−1) then, in general, there is no relationship between
the clutters T (j1,...,jr)(Λ) and T (k1,...,kr)(Λ).

Proof. From the definitions of the two elementary transformations it follows that if Λ0

is a clutter on Ω then Λ0 6 T (1)(Λ0) and Λ0 6 T (2)(Λ0). Therefore, we have that the
iteration of the elementary transformations provides a monotone increasing sequence of
clutters Λ 6 T (i1)(Λ) 6 T (i1,i2)(Λ) 6 · · · 6 T (i1,...,is)(Λ) 6 T (i1,...,is,is+1)(Λ) 6 · · · . The
proof of statement (1) is concluded by noticing that there are only a finite number of
clutters in a finite set.

Next let us prove statement (2). It is necessary to prove the inequality T (i1,...,ir−1,1)(Λ)6
T (i1,...,ir−1,2)(Λ) and, in addition, we must also show that in general this inequality is not
an equality. Clearly, to do this it is enough to prove that if Λ0 is a clutter on the finite
set Ω then T (1)(Λ0) 6 T (2)(Λ0) and, in addition, we must show that there are clutters Λ0

of Ω with T (1)(Λ0) 6= T (2)(Λ0).
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First let us show that T (1)(Λ0) 6 T (2)(Λ0); that is, we must demonstrate that if
X ∈ T (1)(Λ0), then there exists X ′ ∈ T (2)(Λ0) such that X ′ ⊆ X. So let X ∈ T (1)(Λ0) =
min

(
Λ0∪

{
(A1∪A2)\{x}, where A1, A2 ∈ Λ0 are different and x ∈ A1∩A2

})
. If X = A ∈

Λ0, then from the definition of T (2)(Λ0), it follows that there exists X ′ ∈ T (2)(Λ0) with
X ′ ⊆ X, as we wanted to prove. Therefore, we may assume now that X = (A1∪A2)\{x}
where A1 and A2 are two distinct members of Λ0 and where x ∈ A1 ∩ A2. At this point
we distinguish two cases. First suppose that x ∈ IΛ0(A1 ∪ A2). In such a case we have
that (A1 ∪ A2) \ IΛ0(A1 ∪ A2) ⊆ (A1 ∪ A2) \ {x} and from the definition of T (2)(Λ0)
we get that there exists X ′ ∈ T (2)(Λ0) with X ′ ⊆ (A1 ∪ A2) \ IΛ0(A1 ∪ A2). Hence, if
x ∈ IΛ0(A1 ∪ A2), then there exists X ′ ∈ T (2)(Λ0) with X ′ ⊆ X. Now assume that
x 6∈ IΛ0(A1 ∪ A2). Then from the definition of IΛ0(A1 ∪ A2) we get that there exists
A3 ∈ Λ0 with A3 ⊆ (A1 ∪ A2) \ {x}. Since A3 ∈ Λ0, there exists X ′ ∈ T (2)(Λ0) with
X ′ ⊆ A3. Therefore, if x 6∈ IΛ0(A1 ∪ A2), then there exists X ′ ∈ T (2)(Λ0) with X ′ ⊆ X.
Thus, in both cases we conclude that there exists X ′ ∈ T (2)(Λ0) such that X ′ ⊆ X, that
is, T (1)(Λ0) 6 T (2)(Λ0), as we wanted to prove.

To finish the proof of statement (2) we must show that there are clutters Λ0 with
T (1)(Λ0) 6= T (2)(Λ0). Let us consider the clutter Λ0 = {{1, 2, 3}, {1, 2, 4, . . . , n}} of
the finite set Ω = {1, 2, 3, 4, . . . , n} where n > 4. Then we have that T (1)(Λ0) =
{{1, 2, 3}, {1, 2, 4, . . . , n}, {1, 3, 4, . . . , n}, {2, 3, 4, . . . , n}}, whereas T (2)(Λ0) = {{1, 2, 3},
{1, 2, 4, . . . , n}, {3, 4, . . . , n}}. So in this case we have that T (1)(Λ0) � T (2)(Λ0). This
completes the proof of statement (2).

To finish, let us prove statement (3); namely, we are going to show that in general
neither the lexicographic order nor the reverse lexicographic order between r-tuples is
preserved by applying T -transformations and, moreover, we prove that there exist clutters
Λ for which the T -transformations T (i1,...,ir)(Λ) and T (j1,...,jr)(Λ) are not comparable. On
the finite set Ω = {1, 2, 3, 4, 5}, we consider the clutters Λ1 = {{1, 2, 3}, {2, 3, 4}, {4, 5}},
Λ2 = {{1, 2, 3}, {1, 4, 5}, {3, 5}} and Λ3 = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}}. For the clutter Λ1

we have that T (1,2)(Λ1) = {{1, 5}, {4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}} and
that T (2,1)(Λ1) = {{1, 4}, {1, 5}, {4, 5}, {1, 2, 3}, {2, 3, 4}, {2, 3, 5}}, and therefore we have
the inequality T (1,2)(Λ1) 6 T (2,1)(Λ1). However, since the transformations (1, 2) and (2, 1)
of the clutter Λ2 are T (1,2)(Λ2) = {{2, 4}, {3, 5}, {1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 4, 5}} and
T (2,1)(Λ2) = {{3, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 4, 5}, {2, 3, 4}, {2, 4, 5}}, then
T (2,1)(Λ2) 6 T (1,2)(Λ2). On the other hand, the T - transformations (1, 2) and (2, 1) of the
clutter Λ3 are T (1,2)(Λ3) = {{1, 5}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5},
{3, 4, 5}} and T (2,1)(Λ3) = {{1, 4}, {2, 5}, {1, 2, 3}, {1, 3, 5}, {2, 3, 4}, {3, 4, 5}}, and so we
have that T (1,2)(Λ3) 
 T (2,1)(Λ3) and that T (2,1)(Λ3) 
 T (1,2)(Λ3). This completes the
proof of the lemma.

Now let us consider the “stable” value T (I)
∗ (Λ) of the monotone increasing sequence

of clutters Λ 6 T (i1)(Λ) 6 · · · 6 T (i1,...,ir)(Λ) 6 T (i1,...,ir,ir+1)(Λ) 6 · · · obtained from
Λ by using the sequence I = (i1, i2, . . . , ir, ir+1, . . . ) where i` ∈ {1, 2}; that is, if
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r0 = min{r : T (i1,...,ir)(Λ) = T (i1,...,irir+1)(Λ)}, then:

T (I)
∗ (Λ) = Λ if T (i1)(Λ) = Λ,

T (I)
∗ (Λ) = T (i1,...,ir0 )(Λ) if T (i1)(Λ) 6= Λ.

The main result of this subsection is the following proposition, which states that for
any sequence I the clutter T (I)

∗ (Λ) defines a matroid.

Proposition 8. Let Λ be a clutter on a finite set Ω. Let I = (i1, i2, i3, . . . ) be a sequence

where i` ∈ {1, 2}. Then, the clutter T (I)
∗ (Λ) is a matroidal clutter with Λ 6 T (I)

∗ (Λ).
Furthermore, if r0 = min{r : T (i1,...,ir)(Λ) = T (i1,...,ir,ir+1)(Λ)}, then for s 6 r0 − 1 the
clutter T (i1,...,is)(Λ) is not matroidal.

Proof. From Lemma 7 we get that Λ 6 T (i1,...,i`)(Λ) for any `-tuple (i1, . . . , i`). Therefore,

Λ 6 T (I)
∗ (Λ). Recall that by definition T (i1,...,i`)(Λ) = T (i`)(T (i1,...,i`−1)(Λ)). Therefore,

to prove the proposition it is enough to demonstrate that if Λ0 is a clutter on Ω, then
Λ0 = T (1)(Λ0) if and only if Λ0 is a matroidal clutter, and that Λ0 = T (2)(Λ0) if and only
if Λ0 is a matroidal clutter. In other words, we must prove that Λ0 = T (2)(Λ0) if and only
if Λ0 = T (1)(Λ0), if and only if Λ0 is a matroidal clutter.

First let us show that if Λ0 = T (2)(Λ0) then Λ0 = T (1)(Λ0). By applying statements
(1) and (2) of Lemma 7 we get that Λ0 6 T (1)(Λ0) and that T (1)(Λ0) 6 T (2)(Λ0). Hence,
if Λ0 = T (2)(Λ0), then Λ0 6 T (1)(Λ0) 6 T (2)(Λ0) = Λ0 and so Λ0 = T (1)(Λ0).

Now let us show that if Λ0 = T (1)(Λ0) then Λ0 is a matroidal clutter; that is, we must
demonstrate that Λ0 satisfies the conditions of the set of circuits of a matroid. So let
A1, A2 ∈ Λ0 be different and let x ∈ A1 ∩ A2. Since Λ0 = T (1)(Λ0), there exists A3 ∈ Λ0

such that A3 ⊆ (A1 ∪ A2) \ {x}. Therefore, the circuit conditions are fulfilled.
Finally it is necessary to demonstrate that if Λ0 is a matroidal clutter then Λ0 =

T (2)(Λ0). Recall that in the proof of Proposition 5 it was stated that a clutter Λ is
a matroidal clutter if and only if IΛ(A1 ∪ A2) = ∅ for any two different A1, A2 ∈ Λ.
Therefore, if the clutter Λ0 is a matroidal clutter, then IΛ0(A1 ∪ A2) = ∅ if A1, A2 ∈ Λ0

are different, and so T (2)(Λ0) = Λ0. This completes the proof of the proposition.

In some way, the stable value of the above proposition indicates how far Λ is from
being a matroid. For instance, from the above proposition it follows that a clutter Λ is
the set of circuits of a matroid with ground set Ω if and only if there exists a sequence I
such that T (I)

∗ (Λ) = Λ.
A matroid is said to be connected if for every pair of distinct elements of the ground

set, there is a circuit containing both. A clutter Λ of a finite set Ω is said to be a matroid
port if it corresponds to the set of circuits of a connected matroid containing a fixed point,
that is, if there exists a connected matroid N with ground set Ω ∪ {ω0}, where ω0 6∈ Ω,
such that Λ = {C \ {ω0} : ω0 ∈ C ∈ C(N )}. In such a case it is said that the clutter Λ
is the port of the connected matroid N at the point w0.

Matroid ports were introduced by Lehman [2] to solve the Shannon switching game.
There are several characterizations of these combinatorial objects which range from ex-
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cluding minors [3, 7] to optimal information rates in secret-sharing schemes [4]. In addi-
tion, a combinatorial necessary condition for a clutter to be a matroid port was stated
in [5]. Here we present a necessary condition in terms of clutter transformations.

Proposition 9. Let Λ be a clutter on a finite set Ω. Assume that Λ is a matroid port.
Then, T (I)

∗ (Λ) = T (i1)(Λ) for any sequence I = (i1, i2, . . . ) with i` ∈ {1, 2} and i1 = 2.

Proof. By assumption, Λ is a matroid port, so there exists a connected matroid N with
ground set Ω ∪ {ω0}, where ω0 6∈ Ω, such that Λ = {C \ {ω0} : ω0 ∈ C ∈ C(N )}. Let us
denote Λ = {A1, . . . , Ar}. On one hand, since the clutter Λ is the port of the matroid N
at the point w0, the circuits of N containing the point w0 are {A1∪{w0}, . . . , Ar∪{w0}}.
On the other hand, by applying [6, Theorem 4.3.2] it follows that the circuits of N
not containing w0 are the minimal elements of the form (A1 ∪ A2) \ IΛ(A1 ∪ A2), where
A1, A2 ∈ Λ are distinct. Therefore we have that C(N ) = {A1 ∪ {w0}, . . . , Ar ∪ {w0}} ∪
min{(A1 ∪ A2) \ IΛ(A1 ∪ A2), where A1, A2 ∈ Λ are distinct}.

At this point let us consider the matroid N /{ω0} obtained by the contraction of the
subset {w0} from the matroid N (see [6, page 104] for the definition of contraction).
From [6, Proposition 3.1.11] we know that the circuits of the matroid N /{ω0} are the
minimal non-empty members of {C \ {w0}, where C ∈ C(N )}. Hence it follows that
C(N /{ω0}) = min

(
Λ ∪

{
(A1 ∪ A2) \ IΛ(A1 ∪ A2), where A1, A2 ∈ Λ are different}

)
; that

is, we get that C(N /{ω0}) = T (2)(Λ). In particular, this equality implies that the clutter
T (2)(Λ) is a matroidal clutter. So, by applying Proposition 8 to the clutter T (2)(Λ) it

follows that T (J )
∗

(
T (2)(Λ)

)
= T (2)(Λ) for any sequence J = (j1, j2, . . . ) with j` ∈ {1, 2}.

Therefore we conclude that T (I)
∗ (Λ) = T (i1)(Λ) for any sequence I = (i1, i2, . . . ) with

i` ∈ {1, 2} and i1 = 2, as we wished to prove.

The clutters in the following example show that the necessary condition of the above
proposition is not sufficient, and that there is no analogous result if we use the first
elementary transformation instead of the second one.

Example 10. Let us consider the clutter Λ = {{1, 2}, {1, 3}, {2, 3}, {3, 4}} of the finite
set Ω = {1, 2, 3, 4}. As shown in [7], this clutter is not a matroid port. However, it is

not hard to check that T (I)
∗ (Λ) = T (2)(Λ) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} for

any sequence I = (i1, i2, . . . ). Therefore, the necessary condition of Proposition 9 is not
sufficient. Now, in order to prove that the proposition does not work with the first ele-
mentary T -transformation, we consider the clutter Λ = {{1, 2, 3}, {2, 3, 4, 5}, {2, 3, 5, 6}}
of the finite set Ω = {1, 2, 3, 4, 5, 6}. Observe that Λ = {C \ {7} : 7 ∈ C ∈ C(N )},
where N is the connected matroid with ground set Ω ∪ {7} and set of circuits C(N ) =
{{1, 2, 3, 7}, {2, 3, 4, 5, 7}, {2, 3, 5, 6, 7}, {1, 4, 5}, {1, 5, 6}, {4, 6}}. Therefore, the clutter Λ
is a matroid port. However, it is straightforward to check that the first elementary
transformation of the clutter Λ is T (1)(Λ) = {{1, 2, 3}, {1, 2, 4, 5}, {1, 2, 5, 6}, {1, 3, 4, 5},
{1, 3, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}. Observe that T (1)(Λ)
is not a matroidal-clutter because ({1, 2, 3} ∩ {2, 3, 4, 6}) \ {3} = {1, 2, 4, 6} 6∈ T (1)(Λ)+.

Therefore, by applying Proposition 8 it follows that T (I)
∗ (Λ) 6= T (i1)(Λ) for any sequence

I = (i1, i2, . . . ) with i` ∈ {1, 2} and i1 = 1.
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To conclude this subsection, we focus our attention on the matroid implicit on Propo-
sition 8. Let us denote by M(I)(Λ) the unique matroid with ground set Ω and set of

circuits C(M(I)(Λ)) = T (I)
∗ (Λ). Since Λ 6 T (I)

∗ (Λ), the matroid M(I)(Λ) is a matroidal
completion of Λ; that is, M(I)(Λ) ∈ Mat(Λ). The matroids obtained in this way will be
called T -matroidal completions of Λ.

Let us show that there exists no general result concerning the comparison between
two different T -matroidal completions of a clutter. The three clutters in the following
example illustrate this fact.

Example 11. On the finite set Ω = {1, 2, 3, 4, 5} let us consider the clutters Λ1, Λ2 and Λ3

where Λ1 = {{1, 2, 3}, {2, 3, 4, 5}}, Λ2 = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}} and Λ3 = {{1, 2, 3},
{1, 2, 4}, {3, 4, 5}}. It is a straightforward calculation to check that the clutter Λ1 has only
two T -matroidal completionsM1,1 andM1,2, while for i = 2, 3 the clutter Λi has exactely
three T -matroidal completions Mi,1, Mi,2 and Mi,3. Namely, if I = (i1, i2, i3, . . . ) is a
sequence with i` ∈ {1, 2}, then:

- the T -matroidal completions of the clutter Λ1 are M(I)(Λ1) = M1,1 if i1 = 1
while M(I)(Λ1) = M1,2 if i1 6= 1, where M1,1 and M1,2 are the matroids with
ground set Ω and circuits C(M1,1) = {{1, 2, 3}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}
and C(M1,2) = {{1, 2, 3}, {1, 4, 5}, {2, 3, 4, 5}}.

- the T -matroidal completions of Λ2 areM(I)(Λ2) =M2,1 = U2,5 the uniform matroid
if I = (1, 1, i3, . . . ); while if I = (1, 2, i3, . . . ) then M(I)(Λ2) = M2,2 is the
matroid with set of circuits C(M2,2) = {{1, 5}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},
{2, 3, 5}, {2, 4, 5}, {3, 4, 5}}; whereas if I = (2, i2, i3, . . . ) then M(I)(Λ2) = M2,3 is
the matroid with set of circuits C(M2,3) = {{1, 4}, {2, 5}, {1, 2, 3}, {1, 3, 5}, {2, 3, 4},
{3, 4, 5}}.

- the T -matroidal completions of Λ3 areM(I)(Λ3) =M3,1 = U2,5 the uniform matroid
if I = (1, 1, i3, . . . ); while if I = (1, 2, i3, . . . ) thenM(I)(Λ3) =M3,2 is the matroid
with circuits C(M3,2) = {{1, 2}, {1, 5}, {2, 5}, {1, 3, 4}, {2, 3, 4}, {3, 4, 5}}; whereas
if I = (2, i2, i3, . . . ) then M(I)(Λ3) = M3,3 is the matroid with set of circuits
C(M3,3) = {{3, 4}, {1, 2, 3}, {1, 2, 4}}.

Then we have that the T -matroidal completions of Λ1 form a chain M1,1 6M1,2, while
there are T -matroidal completions of the clutters Λ2 and Λ3 that are not comparable. To
be precise, for the clutter Λ2 we have M2,1 6M2,2 and M2,1 6M2,3, but M2,2 
M2,3

and M2,3 
M2,2, while for the clutter Λ3 we have M3,1 6M3,2, but M3,i 
M3,3 and
M3,3 
 M3,i for i = 1, 2. Observe that the clutters Λ1 and Λ2 have only one minimal
T -matroidal completion, but the clutter Λ3 has two minimal T -matroidal completions.

4 Minimal matroidal completions of a clutter

The set Mat(Λ) of all the matroidal completions of a clutter Λ is a non-empty partially
ordered set, the poset of matroids of the clutter Λ. Therefore, the minimal elements of

the electronic journal of combinatorics 21(1) (2014), #P1.11 11



this poset will be the minimal matroidal completions of the clutter. In this section we
present two results concerning minimal matroidal completions. The first one (Theorem 12)
deals with the number of minimal matroidal completions of a clutter, while in the second
(Theorem 13) we focus our attention on how the minimal matroidal completions can be
obtained.

In general, the poset Mat(Λ) is not a totally ordered set (see Example 11). Therefore,
we do not know how many minimal elements this poset has. Our first result states that
the non-matroidal clutters have at least two minimal matroidal completions.

Theorem 12. Let Λ be a clutter. Then, the poset
(
Mat(Λ),6

)
has a unique minimal

element if and only if Λ is a matroidal clutter.

Proof. If Λ is a matroidal clutter, then there exists a matroidM0 such that C(M0) = Λ,
and hence min

(
Mat(Λ)

)
= {M0}. Let us show that the converse is true. So let Λ be a

clutter and assume that there exists a matroid M such that min
(
Mat(Λ)

)
= {M}. In

such a case, it is necessary to demonstrate that Λ is a matroidal clutter.
To do this we consider the blocker b(Λ) of the clutter Λ. The blocker of the clutter Λ

is defined as the clutter b(Λ) = min{B ⊆ Ω : B ∩A 6= ∅ for all A ∈ Λ}. It is well known
that b(b(Λ)) = Λ (see for instance [6, Proposition 2.1.12]). Thus, if X is a subset of Ω
such that X ∩B 6= ∅ for all B ∈ b(Λ), then X ∈ Λ+.

Let us denote b(Λ) = {B1, . . . , Bs}. For 1 6 i 6 s let us consider the matroid MBi

with ground set Ω and set of circuits C(MBi
) = {{x} : x ∈ Bi}. Since Bi ∈ b(Λ), then

A ∩ Bi 6= ∅ for all A ∈ Λ. Thus, Λ 6 MBi
, and therefore M 6 MBi

because we are
assuming min

(
Mat(Λ)

)
= {M}. Let C ∈ C(M) be a circuit of the matroid M. Since

M 6 MBi
, there exists a circuit Ci ∈ C(MBi

) such that Ci ⊆ C, and so C ∩ Bi 6= ∅.
Therefore, if C ∈ C(M) then C ∩ Bi 6= ∅ for i = 1, . . . , s. Hence, it follows that C ∈ Λ+

because b(Λ) = {B1, . . . , Bs}. Therefore we have that C(M) ⊆ Λ+, and thus C(M) 6 Λ
(see Lemma 1). But the matroid M is a matroidal completion of Λ, so Λ 6 C(M).
Therefore Λ = C(M), as we wished to prove.

The following result concerns non-matroidal clutters; namely, it states that any mini-
mal matroidal completion of the clutter can be obtained by combining the transformations
of the previous section.

Theorem 13. Let Λ be a non-matroidal clutter on a finite set Ω and let M be a minimal
element of the poset of matroids

(
Mat(Λ),6

)
. Then there is a monotone increasing

sequence of clutters Λ = Λ0 � Λ1 � · · · � Λr = C(M) such that for i > 1, either Λi is an
I-transformation of Λi−1 or Λi is a T -transformation of Λi−1.

Proof. It suffices to prove that if Λ′ is a non-matroidal clutter on Ω, and ifN is a matroidal
completion of Λ′, then either there exists an I-transformation Λ′1 of Λ such that Λ′1 6 N ,
or there exists a T -transformation Λ′1 of Λ′ such that Λ′1 6 N .

So, let Λ′ be a non-matroidal clutter on Ω and let N be a matroidal completion of
Λ′. Let us assume that there exists no T -transformation Λ′1 of Λ′ with Λ′1 6 N . In such
a case, we must demonstrate that there exists an I-transformation Λ′1 of Λ′ such that
Λ′1 6 N .
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By assumption, there exists no T -transformation Λ′1 of Λ′ with Λ′1 6 N . In particular,
we get that T (1)(Λ′) 
 N . Therefore, we have that T (1)(Λ′) 
 N and Λ′ 6 N , and hence
it follows that there exists X ∈ T (1)(Λ′) \ Λ′ such that C * X if C ∈ C(N ). Since
X ∈ T (1)(Λ′) \ Λ′, then there are two different subsets A1, A2 ∈ Λ′ and there exists an
element x ∈ A1∩A2 such that X = (A1∪A2)\{x} ∈ T (1)(Λ′). On one hand, we have that
Ai ∈ Λ′ 6 N for i = 1, 2. On the other, C * X = (A1∪A2)\{x} if C ∈ C(N ). Therefore,
for i = 1, 2 there exists a circuit Ci ∈ C(N ) with Ci ⊆ Ai and such that x ∈ Ci. At this
point, notice that if C1 6= C2, then there exists C ∈ C(N ) such that C ⊆ (C1 ∪C2) \ {x},
and so there exists C ∈ C(N ) such that C * (A1 ∪ A2) \ {x} = X, a contradiction.
Therefore, we conclude that C1 = C2. Let us denote C0 = C1 = C2. Then we have that
C0 ⊆ A1 ∩ A2. Therefore, Λ′1 = min

(
Λ ∪ {A1 ∩ A2}

)
6 N . Now the proof of our claim

will be completed by showing that IΛ′(A1∪A2) 6= ∅. If IΛ′(A1∪A2) = ∅, then there exists
A3 ∈ Λ′ with A3 ⊆ A1 ∪ A2 and such that x 6∈ A3. Thus, A3 ⊆ (A1 ∪ A2) \ {x} = X,
which is a contradiction because A3 ∈ Λ′ and X ∈ T (1)(Λ′) \Λ′. This completes the proof
of our claim, and thereby the proof of the theorem.

To conclude we provide two examples. In the first one the clutter has two minimal ma-
troidal completions and they are obtained by I-transformations or by T -transformations,
while in the second the clutter has four minimal matroidal completions, one of which is
obtained by combining both kinds of transformations.

Example 14. First let us consider the clutter Λ = {{1, 2, 3}, {1, 2, 4}} of the finite set
Ω = {1, 2, 3, 4}. In this case, the I-transformation of Λ is Λ1 = {{1, 2}}, the first elemen-
tary transformation of Λ is Λ2 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, and the second
elementary transformation is Λ3 = {{1, 2, 3}, {1, 2, 4}, {3, 4}}. Observe that Λ1,Λ2 and
Λ3 are matroidal clutters. Therefore, from Theorem 13 it follows that the minimal ma-
troidal completions of Λ are the minimal elements of {Λ1,Λ2,Λ3}. In this case, Λ2 6 Λ3,
and so min

(
Mat(Λ)

)
= {M1,M2} where Mi is the matroid with set of circuits Λi.

Example 15. Finally, on the finite set Ω = {1, 2, 3, 4, 5}, we consider the clutter Λ =
{{1, 2, 3}, {1, 2, 4}, {1, 5}, {4, 5}}. In such a case, eleven matroidal clutters Λ1, . . . ,Λ11 can
be obtained by using or by combining I-transformations and T -transformations. Namely,
by using only I-transformations we obtain the matroidal clutters Λ1 = {{5}, {1, 2}} and
Λ2 = {{1}, {4, 5}}. The matroidal clutters obtained by using only T -transformations
are the clutters Λ3 = {{1, 4}, {1, 5}, {4, 5}, {1, 2, 3}, {2, 3, 4}, {2, 3, 5}} and Λ4 = {{1, 3},
{1, 4}, {1, 5}, {3, 4}, {3, 5}, {4, 5}}, whereas the matroidal clutters obtained by combining
the I-transformations and the T -transformations are the clutters Λ5 = {{1}, {5}}, Λ6 =
{{1}, {2, 4}, {2, 5}, {4, 5}}, Λ7 = {{5}, {1, 2}, {1, 4}, {2, 4}}, Λ8 = {{1, 2}, {1, 4}, {1, 5},
{2, 4}, {2, 5}, {4, 5}}, Λ9 = {{5}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, Λ10 = {{5}, {3, 4},
{1, 2, 3}, {1, 2, 4}}, and Λ11 = {{4}, {1, 5}, {1, 2, 3}, {2, 3, 5}}. Therefore, if we denote
by Mi the matroid with set of circuits Λi, then by applying Theorem 13 we get that
the set of minimal matroidal completions of Λ is min

(
Mat(Λ)

)
= min{M1, . . . ,M11} =

{M1,M2,M3,M9}.
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