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Abstract

Let A be a finite set of integers. We show that if k£ is a prime power or a product
of two distinct primes then

[A+ k- Al = (k+1]A] - [k(k +2)/4]

provided |A| > (k — 1)%k!, where A+ k- A= {a+kb: a,b € A}. We also establish
the inequality |[A +4- A| > 5|A| — 6 for |A| > 5.

Keywords: Additive combinatorics, sumsets

1 Introduction
For finite subsets A1, ..., A of Z, their sumset is given by

Ai+- -+ Ac={ar+-+ap: ag € Ay,...,a, € A},
which is simply denoted by kA if Ay =--- = Ay = A. It is known that

A+ -+ A > A+ + A — K+ 1,

*Supported by the National Natural Science Foundation (grant 11201233) of China.
TSupported by the National Natural Science Foundation (grant 11171140) of China.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(1) (2014), #P1.13



and equality holds when Aj,..., Ay are arithmetic progressions with the same common
difference (see, e.g., Nathanson [7, p.11]).
Let A be a finite set of integers. For k € ZT = {1,2,3,...}, we define

k-A:={ka:ae A}

which is called a dilate of A. Let ki, ko,...,k € ZT. Recently lower bounds for |k -
A+ ky- A+ -+ k - A were investigated by various authors [1, 2, 8, 9]. In the case
(k1,ka, ..., k) =1 (where (ky, ..., k) refers to the greatest common divisor of kq, ..., k),
Bukh [2] obtained the following inequality:

|ky - A+ ko - A4+ k- Al = (k1 + ko + - + k) |A] — o(JA]).

For [ = 2 there are better quantitative results in this direction, see [3, 4, 5, 7, 9]. It was
conjectured in [4] that for any k € Z* if | A| is sufficiently large then

A+ k- Al > (k+1)|A| — [k(k +2)/4].

This was proved in [3] with k& prime. In this paper we confirm the conjecture for k& = p*
as well as k = ppy, where p, pi, po are prime numbers and o € Z*. Motivated by
the preprint form of our paper posted to arXiv, Ljuji¢ [6] obtained similar results for
|2+ A+ k- A| with k a prime power or a product of two distinct primes.

We remark that there are also some researches on sums of dilates in Z, = Z/pZ with
p a prime, see Plagne [10] and Pontiveros [11].

Now we state our main theorems.

Theorem 1. Let k = p® with p a prime and o € Z". Let A be a finite subset of Z with
|A] > (k —1)%k!. Then

[ A+ k- Al = (k+D]A] = [k(k +2)/4]. (1)

Theorem 2. Let p; and py be distinct primes and k = p1ps. And let A be a finite subset
of Z with |A| > (k — 1)?k!. Then

A+ k- Al = (k+ 1)|A[ = [k(k +2)/4]. (2)
By Theorem 1, if £ = 4 then (1) holds when |A| > 216. In fact, we have the following
refinement.
Theorem 3. For any finite set A C Z with |A| > 5, we have
|A+4-A| >5|Al—6. (3)

We remark that the lower bound given in (1) is optimal when |A| is large enough.
Moreover, equality holds if A has the form k- {0,1,...,n} +{0,1,...,h}, where

. k/2 or (k+2)/2 if k is even,

ol (B+1))/2 if k is odd.
Our proofs of Theorems 1-3 are based on the technical approach of [3]. Our key new
idea is to employ Chowla’s theorem to handle the case when k£ is a prime power, and use a

lemma similar to Chowla’s theorem to handle the case when £ is a product of two distinct
primes.
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2 Preliminaries

Throughout this paper we use the following notations. For a finite set A C Z with |A| > 1
and a positive integer k, we define

~

A={a=a+kZ:a€ A}
Let h = |fl| and let Ay, Ao, ..., Aj, be the distinct classes of A modulo k. Write A; =
k-X;4+r;with0<r <kfori=1,2... h. Clearly |A;| = |X;| and

h h

A=A =k Xi+r).

Define . .
F={1<i<h:|Xi|=k}, E={1<i<h:0<|X;|<k}
and
Nps = (A + k- A\A, +k-Ay) for r,s=1,2,... h.
Without loss of generality, we make the following assumptions:
(I) ged(A) = ged({a:a € A}) = 1.
If d = ged(A) > 1, then replace A by A" = {a/d : a € A}. Obviously |A'| = |A| and

A +k-A|=|A+k- Al

(II) T = 0 and ’A1| 2 |A2| 2 2 |Ah|

In fact, for A" = A —r, we have |A'| = |A| and A"+ k- A | =|A+ k- Al

(IIT) h = |A| > 2.

When h =1 we have A = A, =k - X, +r; and |AA—|—/€‘A\ = |X1+ k- X;|. So we may
replace A by X, and continue this process until | X;| > 1.

Lemma 4 (cf. [4]). For arbitrary nonempty sets B and A =\J!", (k- X; + r;), we have
(i) |A+k-Bl="|X,+B|.

(ii) |A+k-B|>=|Al+ h(|B| —1).

(#ii) Furthermore, if equality holds in (ii), then either |B| = 1 or |X;| = 1 for all i =
1,...,h or B and all the sets X; with more than one element are arithmetic progressions
with the same difference.

Lemma 5 (I. Chowla, see [7]). Forn > 2, let A and B be nonempty subsets of Z/nZ. If
0 € B and (b,n) =1 for all b € B\{0}, then

|A+ B| > min{n, |A| + |B| — 1}.
Lemma 6 (cf. [3]). For each subset I C {1,2,...,h}, we have

D12l = (1) 1),

el
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3 Proof of Theorem 1

In this section, we fix kK = p® where p is a prime and o € Z*. Let A be a nonempty finite
subset of integers. Note that the set {1 < i < h:p4r;} is nonempty since ged(A) = 1.
Define m = min{l < i< h:pfr}.

Lemma 7. Suppose that A is a nonempty finite subset of integers.
(i) In the case i € E\{m}, we have | Ay; | = [An].
(ii) If | Xon| + m — 1 < k, then

| A | 2 [As] + - A (4)
Else if | Xn| +m — 1 > k, then we have
[Am + Al Z (k + D] Ap| +m(JAr] = [Ap]) — k. (5)

Proof. (i) Suppose i € E\{m}. Noting that p { r,,, we have (r,,, — r;,k) = 1 when p | r;.
Applying Lemma 5, we get
X + {0, 7 — ri}| = min{k, | Xi| +2 - 1} = [ X[ + 1

since 1 € E. It follows that

and hence,

A+ k- AN(A; + k- 4)|

Xi+ A\X; + Ay

Xi + Am)\(Xi + A))]

Xi+ An)\(Xi + A)| - |Am|
An|  (since |A;| = |An] = 1).

P

In the case p 1, using Lemma 5 we obtain
X +{0,7,}| > min{k, | X;[ +2 - 1} = | X + 1,
hence |(X; + A\ (X, + A;)| > 1 and
| Aii] = 1(Ai + k- AN(As + k- A = (X + AN + Ai)| = [Ai] = [Anl.
(ii) Recall that p | ry,..., p| 7m-1 and p{ry,. Thus
(r1 —rm, k) == (rm-1—rm, k) = L.
It follows from Lemma 5 that

|Xm +{0,71 — Ty T2 — Ty ooy — T | = mindk, |Xm| +(t+1)—1]}.
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So we have
| X+ (A U---UA UA)| > min{k, |X,|+t} for t=1,2,...,m—1.
It |Xm| +m — 1 < k, then by induction on ¢ we deduce that
(X + A U - UAUAINX + An)| 2 AL+ -+ A
fort =1,2,...,m — 1. Consequently,
Al = 1(Xom = AN + A)| > A1 + .+ [ A

If X, +m — 1>k, then | X,, + (A; U...UA,,)| = k. With the help of Lemmas 4
and 5, we get

| X + Al 2| X0 + A1) + (X + AU - U A\ (X + A

> | X4 k- Xa| + (X + A U UADN (X + A - | A
> [ Xon| + [ X (JAL] = 1) + (5 = [ X)) A
=

(k + D[ Ap| + | Xl (|A] = |An]) — k.
The definition of m implies that m < p®~! + 1 and hence

Xp| >k+1—m=p*+1—p* ' —1>2p*>m—1.

Thus,
[ X + Al 2 (K + D] Ap| +m(|Ai] — [An]) — k.
m
Lemma 8. Let A be a nonempty finite subset of Z.. Then
|[A+k-Al > (k+1)A| — k!
Proof. 1t suffices to prove by induction that
A+ Ek-Al > (t+1)|Al — (t—1)k. (6)

holds for every t =1,... k.
Clearly (6) is true for ¢ = 1 since it is known that

A+ k- Al > 2|4 — 1> 2|4 — k.

Now suppose that (6) holds for some 1 < ¢t < k. We want to deduce (6) with ¢ replaced
by t 4+ 1, i.e., the inequality

A+ k- Al > (t+2)|A] —tk.
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If h > t, then applying Lemma 4 we immediately get
A+ k- Al = [Al+h(JA] = 1) = [Al + (¢ + 1)(JA] = 1) = (¢ + 2)[A] - ¢!k
Below we assume h < t. By Lemma 4, for i € F' we have

|A;+ k- Al > | X+ k- X

> | X+ k| Xq| -k

> A+ (t+ 1A -k
P

(t 4 1)|As] + |Ay| = K.
By the induction hypothesis and Lemma 7, for i € E \ {m} we get
|A; + k- Al = A+ k- Al + D] =+ DA — (t =Dk + A

Therefore,

STAi+k-Al= > |Ai+k-Al+ D |Aitk-Al

i#m icF\{m} icE\{m}
> (t+1) ) AL+ [F\{m}||A] + [E\{m}||Ap|
= (KP\{m}| + [B\{m}|(t - 1)!k).

We divide the following discussion into two cases.
Case 1. | X,n| +m —1< k.
In this case, by (4) and the induction hypothesis, we have

A + k- Al = A+ k- An| + | D]

> (t+ DA — (6= D)k + A+ 4 [Ani].

It follows that

A+ kA= [Ai+k-Al+|Ap + k- Al
2 (t+ DA} + [F\N{m}H|Ar] + [EAN{m}|Am| + [Ar] + ..+ [Anei ]

= (KIF\{m} + [B\{m}(E = 1)tk + (¢ = 1)lk).

Clearly,
[EN{m [ Au] + [EN{m}[Am| + [As] + o 4 [Ama| = [A]
and
k| F\{m}| + |E\{m}(t — D)k + (t — Dk < (t — 1)Ikh < k.
Hence

A+ k- Al > (t+2)|A] — k.
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Case 2. |Xp| +m —1> k.
We obtain from (5) that

Atk A= |Ai+k-Al+ A, +k- A
>3 A+ kAl 4 (k+ DA +m(| Ay — [Anl) — &
i#Em
z (t+ DA+ [F\{m}|[Ar] 4+ [E\{m}|Am| + [Am] + m(|Ar] — [An])

- <k|F\{m}| | E\{m}|(t — 1)k + k;)
As |Ay| = |As] = -+ > |As|, we have

[EN{m [ AL + [EN{m [ Am] + [Am| + m([As] = [An])
Z([F] + [ED[Am| +m(|Ar] = [An])
=hlAm| +m(|As| = [An]) = m|As] + (h —m)| Ay
2l A+ [Ag| + -+ [Am] + [Ampa | + - + [An] = [A]

and
E|[F\{m}| + |E\{m}|(t — )k + k < (t — 1)\kh < tk.
Consequently,
A+ k-Al > (t+2)|Al -tk
as desired. This concludes the induction step. ]

Proof of Theorem 1. Now suppose |A| > (k — 1)?k!. When h = k, Lemma 4 shows
|A+ k- Al > (k+ 1)|A| — k, which means that (1) is valid. Below we assume h < k, and
thus |A| > (k — 1)%k! > h?k!, from which we have |A;| > |A|/h > hk!.

Casel. 1€ Fforalll <i<h.

Due to Lemmas 4 and 6 we conclude that

h h
|A+k:-A\:Z|Ai+k-A|:Z<|Xi+k-Xi|+|Aii|)
=1 1

1=

>

> >~ (100 + k(X = 1)+ 14])

=1
> (k+1)|A| — hk + h(h —1)
=(k+1)|A| — h(k+1—h).
If k£ is odd then
k+1 k+1 (k+1) k(k+2)
— <— e = pr— .
hk+1—h) < = (k+1 2) ; { y ]
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if £ is even then

h(k+1—h)<§<k+1—§> _ W“j” _ [k’(kZQ)].

Therefore,
|A+k-Al > (k+1)|A| — [k(k+2)/4].

Case 2. m € E; R ) R
We have | X, + A; U A, = | Xn| + 1 from Lemme 5 and hence

| B | = [(Am + K- A)\ (A + k- Ap)| 2 (X + Ar) \ (X + A | 2> [Ad].
Then using Lemma 8 we conclude that

A+ k-Al=|An+k- A+ A+ k- Al

= |Am + k- Ap| 4 | Do + D |Ai + k- A
> (k1) Aw] = K+ |41+ ((k+ D] - &)

> (k+ 1)|A] — hk! + | Aq].
By the fact |A;| > hk!, we have
A+ k- Al > (k+1)[A]

Case 3. m € F and there exists s # m such that s € E.
In this case, Lemma 7 implies |Ag| = |A;m|. Then applying Lemmas 4 and 8, we see
that

Atk Al=|An+k- A+ A+ k- A
i#m
> |Am+k'A1|+Z|Ai+k'Ai|+|Ass|
im
> | A + kAL — k + Z ((k+ )] A,] — k:!) A
(k+ 1)|A| — hk! + |Z:ﬁ
(k + 1) A].

VoWV

In view of the above discussions we have completed the proof of Theorem 1. m
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4 Proof of Theorem 2

Lemma 9. Let k be a positive integer and let A be a nonempty subset of
ZJk7Z ={0,1,...k —1}. Fora e {1,2,...,k —1}, we have A+ a = A if and only if

for some nonempty set I C {0,1,...,(k,a)— 1} .

Proof. In the case (k,a) = 1, it is easy to get that A + & = A holds if and only if
A = 7Z/KZ, which yields the Lemma. Below we assume (k, ) > 1.
Let A= A°UAtU...UAFY~1 with

A'={yeA:y=1i (mod (k,a))}.

Note that A +a& = A implies A" + & = A’. Then by the fact (ﬁ, (ko‘a)> = 1, we obtain

Thus

for some nonempty set I C {0,1,..., (k,a) — 1}.
The sufficiency is obvious, and the claim follows. m

Lemma 10 (cf. [7]). Let A and B be nonempty subsets of the abelian group G, and let
g be any element of G. Let (A(g), B(g)) be the e-transform of the pair (A,B), defined by
A(g) =AU (B+g) and B(9) = BN (A—g). Then

Alg)+ B(g) CA+B

and
Alg)\ A =g+ (B\ B(g)).
If A and B are finite sets, then

[A(g)l +1B(g)| = [Al + |BI.
Ifge Aand 0 € B, then g € A(g) and 0 € B(g).
The following lemma is a variation of Lemma 5.

Lemma 11. Let k > 2 be a composite integer. And let A,B be nonempty subsets of Z./kZ
with A # Z/KZ. Assume 0 € B and 0 # ¢ € B with (¢,k) # 1. If (b,k) = 1 for all
b € B\{0,q}, then

|A+{0,3}| > |A|+1= |A+ B| > min{k, |A| +|B|] — 1}.
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Proof. Obviously it is true in the case |A| 4+ |B| > k. Now we suppose |A| + |B| < k. It
is easy to deduce that the lemma holds for |A| = 1 or |B| < 2. Next suppose |A| > 2 and
|B| > 3. If the claim fails, then there exist sets A, B such that |A+ B| < |A| + |B| — 1.
Choose the pair (A, B) such that | B| is the smallest. Since |B| > 3, we have b* € B\{0, ¢}.
Then (b*,k) = 1. Due to A # Z/kZ, there exists g € A such that g+ b* ¢ A by Lemma
9. Applying the g-transform to the pair (A4, B) we have

[A(9) + B(9)| < [A(g)| + |B(g)| — 1
and
|B(g)| < |B.

If ¢ € B(g), then it contradicts the minimality of |B|. If ¢§ ¢ B(g), then we have
|A(g) + B(g)| = |A(g)| +|B(g)| — 1 from Lemmas 5 and 10, which is also a contradiction.
This completes the proof. n

From now on we fix £k = pips in this section with py,p, distinct prime numbers.
Suppose that A is a nonempty finite subset of Z. In the case (12, k) > 1, we may suppose
(re, k) = p1 without loss of generality. Then denote

n=min{ 1 <i< h:p{r}.

Lemma 12. Let A be a nonempty finite subset of Z.
(i) If (ro, k) = 1, then |Nga| = |A1] for 2 € E and |ANy| = |As| for i € E\{2}.
(ii)Suppose (r2, k) = p1. Then

|A11| 2 |A2| or p2|An| Zf 1 € E,

1Nl = A or polAn|  for i€ EN{2,3,...,n—1}

and

When n € E, we have |Ay,| = |Aa|. Moreover,

|A, | + A — K if | Xnl = p1 > po,
| X0+ A| > S |An| + p2| AL — K if 1 Xn| = p2 > 1,
|An|+|XN|'|A1|+|A2|+~--+|Al|_k if p1 < |XN| < P2,

where | = min{n — 1,py + 1 — | X,,|}, and
Proof. (i) Note that 7 = 0 and (72, k) = 1. Applying Lemma 5 we get

1 X; + {0,720} > min{k, | X;| +2 -1}
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and hence ) R X )
Xl—i—Al#Xl—i—AQ for all 1€ B

So we have that |Aq;] > |As] for 1 € E and that |Ag| > |Ay| for 2 € E.
For i € E\{1,2}, if (r;, k) = 1 then by Lemma 5 we have

X4+ A # X+ A
Now suppose (14, k) # 1. In the case (r; — rq, k) = 1, we have
Xi+ A, # X + A,
If (r; — 7o, k) # 1, then (r;, k) # (r; — r9, k), and hence by Lemma 9 we obtain
Xi+ A #X,+A or Xi+ A # X+ A,.

Consequently,
| Aii| = [(Xi + A) \ (Xi + Ai)| > [As].

(i) Suppose 1 € E. If X, + 4, + X, + Ay then
A > [(Xi + A2) \ (Xi + Ar)| > [Aq].

In the case Xl = Xl + Al = Xl + A2, by Lemma 9 there is a proper subset [ of
{0,1,...,p1 — 1} such that

Xi=U(p- 01 1) +5)

Bel

since p; = (re, k) and 1 € E. Recall that p; 1 r,, and thus we have
(X1 + A )\(X1 + A))| > po
because of I # {0,1,...,p; — 1}, from which we get
|A11| = po|Anl.
Similarly, for i € EN{2,...,n — 1}, we have
|Aiil = |A1] or  pe]A,l
If : > n and i € F/, then we also have
|Ai| = A1 or po|An] = A

when (r;, k) = 1 or p;. In the case po|r;, we have (r; — 9, k) = 1, and hence X, + A, =+

A

X;+ A4; by Lemma 9. So |Ay| > |As| > |A,].
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Below we discuss |A,,| and | X, + A| for n € E. Since p; 1 r, and k = p;pe, we have
(rn, k) =1 or (r, — re, k) = 1. Therefore

A

X, 4+ A, £ X, + A or X,+ A, #X, + A,

which states
|Ann| = |(Xn + A)\(Xn + An)| > |A2|-

Moreover with the help of Lemma 4, we get
|Xn +A| > |Xn + A1| > |Xn| + |XN|(|A1| - 1) 2 |Xn| + |Xn||A1| - k?

and hence the claim holds for the case | X,| = p1 > p2 or |X,| = p2 > p1.
Now we turn to the last two cases.
Case 1. p1 < | X, | < po. A
Since | X,| < pa, we have [{z (mod p2) : x € X,,}| < |X,| < pa. Observing that
(p2,72) = (P2, 73) = ... = (P2, 1) = 1

and that
[{ri (mod p2) :2<i<n—1} =n-2,

in light of Lemma 5 we get
X, 4+ (AU UA)| > min{py, | X,| +t—1} for t=1,2,....n—1.
Hence

(Xn+A1U---UA, 1)\ (X, + A

[(Xn + A\ (X + A1)| >
> [Ag] +--- + |A1|,

|
A
where [ = min{n — 1,p; + 1 — |X,,|}. Consequently,

| X0 + Al 2| X, + Ay + |Ag] + ... + A

=
> [ Ap] + | X0 || AL+ Ao + -+ A — &

Case 2. | X,| < p1.
By the definition of n, we have n < py + 1 and hence

|Xn|+n—1<p1+pz<p1p2=k.

Recall that p; | r; for 1 <7 < n —1 and that p; t r,. If there exists 1 < s < n — 1 with
(rs —rn, k) # 1, then we have po | (rs —ry). It follows that
H1<i<n—1:(r;—ryk)#1} <1

Since | X, | < p1, in view of Lemma 9, we have

A

|(Xn + (Ts - rn))\Xn| > 1.
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Then using Lemma 11, we get
X, 4+ (AU UAUA)| > |Xa|+t for 1<t<n—1,
and consequently,
[ D] = [(Xn + ANXn + An)| = [Ar] + -+ Ao
Combining the above we have completed the proof. n
Lemma 13. Let A be a nonempty finite subset of Z.. Then
|[A+k-Al > (k+1)|A| — k!
Proof. We use induction to show that
A+ k-Al > (t+1)|A — (t - 1)k (7)

holds for every t =1,... k.
Clearly (7) is true for t = 1.
Now assume that (7) holds for a fixed 1 < t < k. We want to deduce (7) with ¢
replaced by ¢t + 1, i.e.,
A+ k- Al > (t+2)|A] —tlk. (8)

As discussed in Lemma 8, we only need to deal with the case h < t. By Lemma 4 and
the induction hypothesis, we have

and
Atk A] = [X 4 Al > | Xk X M| > (DA —(t—1)1k+]Ag| for i€ E. (10)

Case 1. (rq, k) = 1.
If 2 € F, then 2 ¢ E. By Lemma 12, we have |A;| > |As| for i € E. Combining (9)
and (10), we have

A+ kAl =D [Ai+k-Al+ ) |Ai+k-Al

1eF i€ER
> (t+ DIA|+ | Fll A + |Bl|As| — (KIF| + |EI(¢ = 1)tk)
> (t+2)|A| — k.

When 2 € E, we have |Agy| > |Ay|. Furthermore, |A;;| > |As| for i € E'\ {2}. Hence

A+ kA= |Ai+k-Al+) A +k-A

ieF el
> (t+ 1)|A| + |F||AL| + |A1] + (|E| — 1)]|As| — (k:|F| + |B|(t — 1)!k>
> (t+2)|A| — tlE.
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Case 2. (ro, k) = py.
Observe that

A+k-Al=]A,+k-Al+ Y |A+k-Al+ > [Ai+k-A

i€F\{n} i€E\{n}
> X, + A+ YD (Al +HEA =R+ Y JAi+k-Al+ Y Al
> |Xn+ A+ D)) A+ P\ {n}A]+ D 1Al

= (KE\{n} + B\ {n}(t — 1)1k)

> [ Xo + AP\ A+ Y0 [Dal + (1) YAl = (= 1)t — 1)tk

For convenience we denote

S =X, + A+ [F\{n}A|+ > Al
i€B\{n}

In order to get (8), it is sufficient to prove
S=(t+1)|A+|Al - (t—1)k.
If n € F, then
| X+ Al 2 [ Xo| + kAL =k = (¢ + 1)[An| + (| A1 = [An]) + [A1] — &
Notice that |A;| > |A,| for every i € E and that h < ¢t. Thus

S = (t+ D|An] +t(|A1] = [An]) + [FI|AL] + [E||An] — &
> (t+ D]AL +|A] — (= 1)k,

Below we assume n € F.
When |A;| < ps|A,|, by Lemma 12 we get

S=(t+ 1A = (t = 1)k +|As| + |FI|A4]
+ A EN{1H + [Af[EN{2,- n =1} + [AJ[EN{n+ 1, A}
> (t+1)]|A,] + |A] = (t = 1)lk.

Now suppose |A;| > po|Ap|. If |X,| < p1, then from Lemma 12

S+ DA — =D+ A+ -+ A + | FIJAL + (|E| — 1)] A4
> (t+ 1) A + 4] = (= 1)k
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It |Xn| > p1 > po, then

[ X + Al = | An| + pr|Ar| = B = (B + D[ An]| + pr(JAr] = paf An]) — &
> (14 D[Au] + [Anl + (n = D([A1] = po|An|) — F

since p; > po > n — 1. When |Xn| > py > p1 we also have

[ Xn + Al = | An| + po|Ar| = k= (b + )| An| + po(|Ar] = pr] An]) — £

>

2 (t+ D]An| + [An| + (n = 1)([A1] = po| An]) — F.
With the help of Lemma 12, we deduce that

S>(t+1)A+ A - -1k

when [X,| = p1 > ps or | X,| = p2 > p1.
If py < [Xa| < po, then

l
S = |An| + [ XallAr] + ) Ai| — k + | F|| Ay
=2
+ Pl An||[EN{2, - sn =1} + [A]|[EN{n+1, - A}

> A+ (1Xa] = n+ DIAL| + (n = 2)pa| An| + (h = n)|An| — &
=1

Observe that K )
| Xy +1—2=min{|X,,| +n—3,p2 — 1} > p1.

Therefore

SZ|Al+ kA — k= A+ 4+ 1D)]A, — (t = 1)k
This concludes the proof. O

Proof of Theorem 2. Suppose |A| > (k — 1)%k!. As discussed in the proof of Theorem 1,
(2) is valid when h = k or | X;| = k for all 1 < i < h. Below assume h < k and E # 0.
Then |Ay| > |A|/h = hE!

Case 1. (rq, k) = 1.

If | X5| = k, then there exists s € E'\ {2} since E # (). From Lemma 12, |A,,| > |Ay|.
Then in light of Lemmas 4 and 13

A+ k-Al=|Ay+ k- A+ A+ k- A+ A+ k- Al
1#£2,8
> [Ag] + K| Ai] = K+ (k+ DA, = K+ 4+ 3 ((k+ 1)]4i] - &)
1#£2,8
> (k+ 1)|A| = hk! + A1 > (k+ 1)|A].
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Else if | Xo| < k, then |Ag,| > 4] and

A+ kAl =[Ay+ k- A+ |Ai+k- A

i#2
= |A2+k’-A2|+|A22|—I—Z|Ai—l—k-A|
i#£2
> (k+ 1) As| — K+ Ay + 3 ((k: 4 1)[A] - m)
i#£2

> (k+ 1)|A| — hk! + | Ay > (k+ 1)|A].

Case 2. (ra, k) = p1.
When | X,,| = k, using Lemma 12 we have s € E with s # n such that |Ag| > A,
which states

Atk Al =[Ay+k-Al+ A +k-Al+ Y |Ai+k- Al
1#£n,s
> |Aul 4+ KlAd] =k + (s DA = K+ A+ 30 (R + D)4 - &)
1#£n,s
> (k+ 1)|Al.

Below suppose 1X,| < k.
Subcase 1. ]Xp\ > pp and |A;| < pol Ay
In the case |X3| = k, by Lemma 12 we have |A,,| > |As| and

A+ kAl =[Ay+ k- Al +|A, +k-Al+ Y |Ai+k- A
1£2,n
> [Ag] + k| Ai] = K+ (k+ DA = KU+ 4] + > ((k+ 1]y - &)
1#2,n
> (k+1)|A].

When | Xs| < k, we obtain [Ag,| > |4] from Lemma 12 and hence

A+ k- Al = Ay + k- Aof + | Do + ) |Ai+ k- Al
i£2
> (k1) Aol = KU+ [Ad] + 3 (6 + D)lA — k1)
i£2
> (k+1)]Al.

Subcase 2. 1 X,| > p1 and |Ay] > py| Ayl
If | X,,| > p1, then

X+ Al = [An] + | Xall A1 = k= [Au] + p1| A + | A2] = k.
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For | X,| = pi1, using Lemma 9, we have |(X,, + A;)\X,,| > 1 and then
[ X + Al > [Xo + Ai| + [A2] = [An] + pr|Ai] + [A2] — k.
Applying the above, if |X2| =k, then
At kAl =[Ay+ k- Al +|A,+k-Al+ Y |Ai+k- A

1#2n

> [Ag] + k|A1] =k + [Aa] 4 prlAs] + [Ao] =k + >0 (R + D)4 - k)

i#£2n
> (k+1)|A]

In the case | X,| < k, clearly |Ag| > po|A,| from Lemma 12 and therefore,
Atk Al =[Ay+ k- Al +]A,+k-Al+ Y |Ai+k- A
1#2,n
> |Ngg| + |An] + 01| A1 + [Ag] — Kk + Z ((k‘ + 1)| A — k!)
i#n
> (k+1)|A]

Subcase 3. | X,| < p1.
In this case we get

A+ kAl = [Au+ k- A+ Dol + D 1A+ k- A
> 1Bl + 30 (R + DA = K) > (k+1)]4]

1<i<h

because of |A,,| = |A1| from Lemma 12.
Combining the above we complete the proof of Theorem 2.

5 Proof of Theorem 3

Lemma 14. Let A C Z, then

(i) |A+4-Al=4,if|Al =2.
(ii)) |[A+4-Al =8, if |A| =3.
(iii) |[A+4 - A| > 12, if |A| = 4.

Proof. Lemma 14 can be proved easily by a direct analysis.
Observing that
[(Xi+ AD)\ (X +42)| =21 or [(Xi+ A) \ (X;+ A1) 21

when |A;| = |As]|, so in this case, we may suppose |[(X; + A2) \ (X; + 41)| > 1 without
loss of generality. Below we fix A C Z with |A| > 5, and use the notations in Section 2.
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Lemma 15. When h = 3, fori =1,2,3 we have
|Ail <4=[A4+4- Al = A +2/A4] -2

Proof. Recall that A; =4 - X; + 1y, [A1] > [As] > [As] and [A; +4- Al = |X; + Al
(I) If |X;| =1, in light of Lemma 4 we have

> | X+ A — 1+ | X+ Az — 1+ | X+ |As] — 1
> |A| + 3|A;] -3
> |A| + 2|A;] — 2.
(II) When |X;| = 2, Lemma 5 implies |X; + A| = 4.
In the case |X; + A; U Ay| > 3,
| X; + Al = | X; + A + |(Xs + A)\ (X + Ay)|
> |Ail + 2| Ay — 2+ |As| + |As]
> |A| + 2|A;] — 2.
When \)A(l + A, U/igl = 2, we have

| X+ Al = | X + Ay U Ag| + | X; + Aj
= | Xi + Ag| + [(Xi + A2) \ (X + Ay)| + | X + As|
|Ail + 2| A1 = 2+ 0y, |4y + [Ai| +2[A5] — 2

Z
> |A] + 2|A;] — 2,

where the Kronecker symbol 5, takes 1 or 0 according to s = ¢ or not.
(III) If |X;| = 3, then

| X; + Ai1| = 3|Ay| for |A;] =3 and | X;+ Ai| = 3]A1| + 1 for |A;| = 4.
Clearly |(X; + A3) \ (X; + A1) > 1 and hence in the case |A;] > |As| we have
X+ A > | X+ A+ |As| > Al + 24 — 2.
In the case |A;| = |As| = |As3], the reader can get directly that
| X; + Al > 131if |A;] =3 and |X;+ A| > 18 if |A;| = 4.

Thus we also have | X; + A| > [A| + 2|A;] — 2.
(IV) If | X;| = 4, then we have |A4;| = 4 since |A4;| < 4. Let a be the minimal number of

X; and let b be the maximal one of A. Because |X;| = 4 and |A| = 3, we have |{&}+A| =3
and |X; + (4; \ {0})] = 4. Then
(X + (ANPDN\ (@ + A) U (b + Xi))[ = 3.

18
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It turns out that

|1X;+ Al =2 a4+ Al + b+ X — 1+ (X + (AN\{b})\((a + A) U (b + X3))|
> |Al+4—-1432> A+ 2|4 — 2.
The proof is complete. n

Lemma 16. When h = 2, we have for i = 1,2 that
|A;| <4=|A;+4- A > |A| + 3|A;] — 3.

Proof. We divide the proof into four parts.
(I) When | X;| = 1, we use Lemma 14 to obtain for |A;| < 4 that,

| X + Al = | X; + Ai| + | X; + (A\A4))|
> |X; +4- Xi| + |A] — A + A =1
> |A| + 3|A;| — 3.

(IT) If | X;| = 2, then we have 3 < |X; + A| < 4 from Lemma 5. Then we distinguish
two cases.

Case 1. |X; +121| = 4.

Since |X; + A;| = 2, by Lemma 14 and |A| > 5, we get

| Xs + Al = | X; + A + | X, + (A\A)]
> X +4- X5+ 2(]4] — |A4i])
> |A| + 3|A4;] — 3.

Case 2. |X; + A| = 3.
Define n = | {z € X; : ({z} + A\A) € (X; + 4;)} |. When n > 2, by Lemma 14 we
have

X+ Al > | X+ A + |A] — |4 +1
|

>
> |A| + 3|4 — 3.
Below suppose n = 1. It is easy to see that

| X + Al = |A[ +[A] = [Ai] > |A] 4 3]Ai| =3

for |A;| = 2 since |A| >
For [A;] = 3, we erte X; = {s1, 82,83} with 51 = so (mod 4) and s; < s. Then we
have {s3} + A; = {81} + A\ A; because of n = 1. Now we show

[((s1Us2) + A\A)\(s3 + A;)| > 1. (11)

Clearly (11) holds for |A| > 6. If |A] = 5, then |A;] = 3. Let A; = {a1,a2,a3} with
a; = 481, ay = 4sy and az = 4s3. And let Ay = {ay, a5} with ay < as. If a; < ay < a3
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and (11) fails, then s3 + a1 = s1 + a4, s3+ as = s1 + a5 = so + a4 and s3 + azg = s9 + as,
and hence as — a; = sy — s1, which contradicts a; — as = 4(s1 — s2). When az < a; < as
or a; < ag < ag, we also get (11). From (11) and Lemma 14 we have

|1 X: + Al 2| X + Ai| + |A] — |A] + 1
>8+|Al—3+1>|A|+ 3|4 - 3.

For |A;| = 4, we have | X; 4+ 4 - X;| > 13 in the case |X;| = 2 and n = 1, and therefore

| Xi +A| > | X+ Ai| + |A] = A

=

> 13+ |A| — 4 > |A| + 3|4 - 3.

Now we give the reason for | X;+4-X;| > 13. We write X; = X;; UX;y with X;; =4-Y1+r;

and Xjz = 4-Yy+7ry. The fact n = 1 allows us to assume |Y;| = 3 and [Y[ = 1. To discuss

| Xi + 4 - X;|, we may suppose 0 € X; and ged(X;) = 1 without loss of generality. Then

with the help of Lemma 5 we have |(Y; + X;2)\(Y1 + Xi1)| = 1 since [Y;] < 3 and hence
[ X +4- X = Y1+ Xi| + [Y2 + X

> Y1+ Xa| + 1+ X

= V1 +4- Y|+ 1+ [Xj]

>8+1+4=13.

(ITT) In the case |X;|=3, we have | X; + A| = 4. Applying Lemma 14 we get

| Xi + Al > [Xi + A + |A] — A4
> 3| A + [As] — 3+ [A] — |Ai] = |A] + 3|A4;| — 3.

(IV) If |X;| = 4, then |4;] = 4. For |A| = 8, we have |A;| = |4y] = 4 and [(X; +
A)\(X; + A1)| = 1 by the assumption. Note that | X; + A;| = 4| A;| since | X;| = 4. Thus

| X; + A|

[
Proof of Theorem 3. 1f |A| = 4, then |[A+4- A| > 5|A] — 4 and hence (3) holds. Below

we assume |A| < 3.
We prove (3) by induction on |A|. Clearly, (3) holds for |A| = 5 with the help of
Lemmas 15 and 16. Now we let |A| > 5 and assume that

|B+4-B|>5|B]—6 forany B CZ with 5<|B| <|A|.

We divide our proof of (3) into three parts.
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Claim I. (3) holds when h = 3 and |A43| < 4.

To prove Claim I, we distinguish three small cases.
Case I.1. |A;] < 4.

We use Lemma 15 to obtain

A+4-Al = [ X1+ Al + | Xo + A| 4 | X3 + Al = 5|A] — 6.

Case 1.2. |A;| > 5 and |Ay] < 4.
For | X;| =4, by Lemmas 4 and 15, we have

|A+4-Al=|X1+ A+ [Xo+ Al + [ X5+ A
> [ X1+ Ar] + [ Xo + Al + | X5 + A4
> 5|A;| — 4+ Al +2|As] — 2+ |A| +2|A3] — 2
> 5|A[ + [A1| = |Az] + [Ay] — |As| — 8 = 5|A| - 6.

For | X;| < 3, since |A| = 3, applying Lemma 5 we have | X; + A| > | X;| and then

|A+4-Al = X1+ A+ | Xo+ Al + | X5 + A
> | X1 +4- X0+ [As] + | Xy + Al + | X3 + A
> 5| Ay| — 6+ |As| + |A| + 2| As| — 2+ |A] + 2| As| — 2
> 5|A| + |Ay| — |Ag| + |Ay| — 10 = 5|A| — 6.

Case 1.3. |As| > 5 and |A3] < 4.
We have |A1] 4+ |Age| = 2 by Lemma 6 and hence

[A+4-Al =X+ A+ Xo+ Al + | X3+ A
> | Xg +4- X+ [Anl + [ Xo +4 - Xo| + |[Dgo| + [ X5 + A
> 5|A;| —4+5|As| — 4+ 2+ |A] + 2| A3] — 2
> 5|A[ + [A1| — |As| + [Ao| — |As] — 8 > 5|A| - 6

when | X;| = 4 and |X5| = 4. In the case [{1 <i < 2: |X;| =4} = 1 we obtain

IA+4-Al=|X1+ A+ |Xo+ Al + | X5 + A
> 5(|As] + [Ag]) — 6 — 4 + [As] + [A] + 2[A3] — 2
> 5|A| + |Ay| + |As] — |A3] — 12 > 5|A] — 6

in view of Lemma 5 and the induction hypothesis. o R o R
When | X;| < 3 and | X,| < 3, by Lemma 5 we have | X;+A| > | X;| and | Xo+A| > | X3
Then

[A+4-Al= X1+ A+ | Xo+ Al + | X5+ A4
> 5|A;| — 6+ |As| + 5| A — 6 + | As| + |A| + 2] A3| — 2
> 5|A| + |Ay] + |As| — 14 > 5|A| — 6.
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Claim II. (3) holds when h = 3 and |A43| > 5 A
By Lemma 5, when | X;| < 3, we have |X; + A| > | X;| and hence

| Xi + Al = [X; + Ai| + |A43].
If |X;| < 3, | X3| < 3 and |X;5| < 3, then we have

JA+4-Al=|X1+ A+ | Xo+ Al + | X5+ A
> 5|Aq| — 6+ |As| + 5| Az| — 6 + |As| + 5| Az| — 6 + |As]
> 5|A| + 3| A3] — 18 > 5|A| — 6.

When | {i : | X;] <3} | =2, by Lemma 4 we get
|A+4- Al = 5(|X1| + | X2 + | X35]) —6 — 6 — 44 2| A3]| > 5|A| — 6.

In the case |Xi| = |X3| = |X3| = 4, we have |Ay| + [Ags| + [Ags| > 6 in light of
Lemma 6. Then by Lemma 4 we get

A+4-Al = X1+ A+ | Xo+ Al + | X5 + A
> [Xi + Ai] + [Du| + | Xo + Ao| + [Dao| + | X5 + A3| + [ A3
> 5(|A1] + |Aa| + |A3]) —4—4—4+6 >5|A| — 6.

It remains to handle the case | {i : | X;| <3} | = 1, and we make detailed discussions.

Case IL1. |Ay| = [Ag| = [A3].

We may suppose | X3| < 3 and |X;| = | X,| = 4. Note that [ X + A4;] > 5/4;| — 4 and
| X2 4+ Ai| = 5|As| — 4 for all i. Now we prove

X) + A| > 5|41 — 2 and [Xs + A| > 5As] — 2.

Note that
min(X; +4;) ¢ X1 +A; or max(X;+A4;) ¢ X+ A4;

if | X74+A4;| = | X1+A4;|. When | X;+A4;| > 5|A;|—3 for some i, we have | X;+A| > 5|A;|—2
since | X7 + A\ A;| = 5|A;| —3. If | Xy + A;| = 5|A1| —4 for all 4, then A, Ay and A3 must
be arithmetic progressions with the same difference by Lemma 4, and therefore |Aq;| > 2
and

X0+ Al > [ Xy + Ay + [An| > 5|4 - 2.
Similarly, | Xy + A| > 5| 42| — 2. So
A+4-Al = X1 + A+ | Xo + A| + | X3 + A|
> 5|A1] — 2+ 5|Ay] — 2+ 5]A3| — 6+ | A5
> 5|A| + |As] — 10
> 5|A| — 6.
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Case 11.2. |A,| = |Ay| = | As] fails.
Note that ’A1’ > ‘Ag‘ = 5. If ’Al‘ > |A2’, then

[ Xz + Al 2 [Xo +4- Xy| > [Ao] + 4]A1| — 4 2 5| Ay

or
Xz + Al 2 [ X3 +4- Xy| > [As] +4]A1] — 4 > 5| A3
since | {i : | X;| <3} | = 1. Hence
A+4-Al = | X1+ A+ | Xo+ Al + | X5 + A
B(JAL] + [Az2| + |As]) — 6 — 4 + | As]

Now suppose |A;| = |Ay| > |As|. If | X3] < 3, then |X;| = |X;| = 4. As mentioned in
case II.1 we have

|A+4-A] 25|A)| —4+1+5|Ay| —4+1+5|A45] — 6+ |A;| = 5|4| — 6.
When | X3| = 4, it is clear that
|A+4- Al = 5(|A1| + |Az]) — 4 — 6+ |A3| + |As| + 4]A;| — 4 > 5|A] — 6.

Claim III. (3) holds for h = 2.

We first note that if |X;| < 3 then |X; + A| > |X; + 4;] by Lemma 5.
Case II1.1. |A;] < 4.

Applying Lemma 16 we get

|A+4-Al = [X1 + Al + [ Xo + A
> |A| + 3|A1| — 3+ |A| + 3|As| — 3 = 5|A] — 6.
Case I11.2. |A;| > 5 and |Ay| < 4.
When | X;| = 4, we have
|A+4-Al = [X0 + Al + [ Xo + Al > | X1 + Ay + [ X + A
> 5|A| —4+ Al +3]Az] — 3
=5|A| + |A1| — |A2| — 7 = 5]A| — 6.

If | X;] < 3, then

|A+4-Al = [X1 + Al + [ X2 + A
> | X1+ A+ D] + [ X2+ A
> 5| A1 — 6 + |As| + |A] + 3|Ay| =3
= 5|A| + |Ay| — |As] + |A2] =9 > 5|A] - 6.
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Case I11.3. |As| > 5.
For | X;| = | Xs| =4, if |A1| = | A2 then we have
|A+4- Al =|X1+ Al + | X2 + A
> | X1+ Ai| + [An| + [ Xe + Ag| + [Ag|
>5|A|—4—4+2>5/A4] 6
by Lemma 6. In the case |A;| > |As|, with the help of Lemma 4 we obtain

A4 4-Al =X, + Al + | Xo + A| > 5]A;] — 4+ |Ay] + 4] Ay — 4
= 5|A| + 4(|A:] — |A2]) —8 = 5|A| — 6.

When | {i : | X;] <3} | =1, it is easy to see that
[A+4- Al = 5(|A1| + [Az]) + [A2] — 4 — 6 > 5]A] — 6.
In the case | {i: |X;| <3} | = 2, we have
|A44-A] > 5[A1] — 6+ |Ay| + 5|Az| — 6 + |Ay| > 5|A| — 6.

Combining the above, we have completed the proof of Theorem 3. n
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