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Abstract

The biclique cover number (resp. biclique partition number) of a graph G, bc(G)
(resp. bp(G)), is the least number of bicliques—complete bipartite subgraphs—that
are needed to cover (resp. partition) the edges of G.

The local biclique cover number (resp. local biclique partition number) of a graph
G, lbc(G) (resp. lbp(G)), is the least r such that there is a cover (resp. partition)
of the edges of G by bicliques with no vertex in more than r of these bicliques.

We show that bp(G) may be bounded in terms of bc(G), in particular, bp(G) 6
1
2(3bc(G) − 1). However, the analogous result does not hold for the local measures.
Indeed, in our main result, we show that lbp(G) can be arbitrarily large, even for
graphs with lbc(G) = 2. For such graphs, G, we try to bound lbp(G) in terms of
additional information about biclique covers of G. We both answer and leave open
questions related to this.

There is a well known link between biclique covers and subcube intersection
graphs. We consider the problem of finding the least r(n) for which every graph
on n vertices can be represented as a subcube intersection graph in which every
subcube has dimension r. We reduce this problem to the much studied question of
finding the least d(n) such that every graph on n vertices is the intersection graph
of subcubes of a d-dimensional cube.

Keywords: biclique cover; biclique partition; local biclique cover number; subcube
intersection graphs;
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1 Introduction

1.1 Biclique covers and partitions

A biclique cover of a (simple) graph, G, is a collection of bicliques (complete bipartite
subgraphs) of G, the union of whose edges is E(G). A related notion is that of a biclique
partition: a collection of bicliques of G, whose edges partition the edges of G. We say
that a biclique cover (resp. partition) is a k-cover (resp. k-partition) if it contains at
most k bicliques. The biclique cover number of G, bc(G), is the least k for which there
exists a k-cover of G. Analogously, the biclique partition number of G, bp(G), is the
least k for which there exists a k-partition of G. The biclique cover number and biclique
partition number have been studied extensively, see for instance [16] and [11], motivated
by applications to many other areas such as combinatorial geometry [1], communication
complexity [13], network addressing [8] and even immunology [17].

One of the early results on the biclique partition number is the Graham-Pollak Theo-
rem [8]—see [20] for an elegant proof—which concerns Kn, the complete graph on n ver-
tices. More specifically, it states that bp(Kn) = n−1. In contrast to this, it is easy to show
that bc(Kn) = dlog ne. (Here and elsewhere, log refers to log2). These results demonstrate
that the trivial inequality bc(G) 6 bp(G) may be quite loose: bp(Kn) > 2bc(Kn)−1 − 1.

In Section 3, we investigate how large bp can be in terms of bc. Indeed, we prove that
if bc(G) = t, bp(G) 6 (3t − 1)/2 and exhibit a graph showing that this is tight.

We call a biclique cover (resp. partition) r-local if every vertex is in at most r of the
bicliques involved in the cover (resp. partition) of G. The local biclique cover number,
lbc(G), is the least r such that there exists an r-local cover of the graph. Similarly, the
local biclique partition number, lbp(G), is the least r such that there exists an r-local
partition of the graph. Variants of lbp and lbc have long been studied, starting in 1967
with Katona and Szemerédi [12] in connection with diameter 2 graphs with few edges.
An easy corollary of their result is:

lbc(Kn) = lbp(Kn) = dlog ne,

which was also shown in full by Dong and Liu [4]. This result is perhaps surprising given
that bc(Kn) and bp(Kn) differ so vastly.

One of the key results in the theory of the local biclique cover/ partition numbers, is
that of Lupanov [14] in 1956, stating that for all n, there exists a graph G on n vertices
with lbc(G) > c1n

logn
, where c1 is a positive constant. Indeed his result is slightly stronger

than stated—he actually showed the same bound holds if lbc(G) is replaced by w(G), the
minimum over all covers, κ, of G of the average number of bicliques in κ to which each
vertex belongs. This result was later reproved by Chung, Erdős and Spencer [3] in 1983
and Tuza [19] in 1984, among others.

Each of the above papers also included corresponding upper bounds for w(G), but it
was not until Erds and Pyber [6] in 1997 that a similar upper bound for lbp, or lbc, was
proved. More formally, they showed that for all n, lbp(G) 6 c2n

logn
, for some constant c2.

Combined with Lupanov’s result above, this means that if lbc(G) is large compared to
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the number of vertices of G, then lbp(G) is not too much larger.
This is one motivation for seeking to bound lbp in terms of lbc, hoping for a similar

result to our previously mentioned bound for bc in terms of bp. Perhaps surprisingly,
however, we find that no such bound is possible. More specifically, in Section 4 we
exhibit, for all k > 2, a graph G with lbc(G) = 2, but lbp(G) > k.

Given this, it is natural to ask ‘how fast’ can lbp(G) tend to infinity if lbc(G) = 2.
One way of formalizing this question to ask ‘if G has a 2-local m-cover, how large can
lbp(G) be?’ While we are able to answer this, up to a constant factor, in Section 5, we
leave open the equally natural question of ‘if lbc(G) = 2 and bc(G) = m, how large can
lbp be?’ A second question that we leave open is whether, loosely speaking, all graphs
have a single cover that is close to optimal for both bc and lbc.

1.2 Subcube Intersection Graph Representations

The biclique cover number discussed above has a natural interpretation in the setting of
hypercube intersection graphs.

The d-dimensional hypercube, Qd, is the graph with vertex set {0, 1}d and with two
vertices connected by an edge if and only if the vectors representing them differ in exactly
one coordinate. A subset, S, of the vertices of the hypercube, Qd, is called a subcube if
it induces a graph isomorphic to a hypercube of some dimension. In other words, there
is some set J ⊆ [d] = {1, 2, 3, . . . , d}, and constants aj ∈ {0, 1} for each j ∈ J such
that (x1, . . . , xn) ∈ S if and only if for all j ∈ J , xj = aj. Fixed coordinates are those
coordinates in J , whereas free coordinates are coordinates that are not fixed.

A subcube is said to have dimension r if it has r free coordinates. We shall write
subcubes as vectors in {0, 1, ∗}d, where the asterisks denote free coordinates and the 0’s
and 1’s denote fixed coordinates, j, with aj = 0 or 1 respectively.

An intersection graph of a family of subsets of some groundset has one vertex for
each of the sets, and an edge between two vertices if and only if the corresponding sets
intersect. See [10] or [15] for more on intersection graphs for various set families. In this
paper, we are interested in intersection graphs where all sets in the family are subcubes of
a hypercube. Such graphs are called subcube intersection graphs. Note that two subcubes
intersect if and only if they agree on all coordinates where both are fixed. See Johnson
and Markström [9] for some background.

Let I(n, d) be the set of all graphs on n vertices that are the intersection graph of some
family of subcubes of a d-dimensional hypercube. It is easy to see that G ∈ I(n, d) if
and only if its complement has a d-cover, as was apparently first pointed out by Fishburn
and Hammer [7], and also noted in [9]. Indeed, a representation of G ∈ I(n, d) assigns
a vector in {0, 1, ∗}d to each vertex. Generate a biclique for each of the d coordinates,
having as one class all the vertices with a zero in this coordinate, and as the other class
all vertices with a one in this coordinate. Then, the union of these bicliques has an edge
exactly where G does not have an edge. This produces a d-cover of Gc and the converse
is similar.

If G is a graph on n vertices, we write ρ(G) for the smallest d such that G ∈ I(n, d)—in
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other words, ρ(G) is the smallest d such that G may be represented as an intersection
graph of a family of subcubes of Qd. By the previous paragraph, ρ(G) = bc(Gc). We also
write ρ(n) = max{ρ(G) : |G| = n}, where |G| denotes the number of vertices of G.

Similarly, we define τ(G) to be the smallest r such that G may be represented as an
intersection graph of a family of r dimensional subcubes of some hypercube. We also let
τ(n) = max{τ(G) : |G| = n}. Using the relationship between subcube intersection graphs
and biclique coverings, we may see that τ(G) is the least r such that Gc has a biclique
cover where every vertex lies in all but r of the bicliques in the cover. (Note in this
interpretation, bicliques with one empty class are allowed). This is bears a resemblance
to, but is distinct from lbc(Gc)—the least r such that Gc has a cover with every biclique
in no more than r bicliques of the cover.

Many authors have placed various bounds on ρ—see for instance [2], [5], [18] and [19].
The best known bounds are:

n− c log n 6 ρ(n) 6 n− blog nc+ 1,

where c is some positive constant. The upper bound is due to Tuza [19] and the prob-
abilistically proved lower bound to Rödl and Ruciński [18]. The question of obtaining
similar bounds for τ(n) was posed by Johnson and Markström [9]. In Section 2, we shall
prove a very close relationship between τ(n) and ρ(n) and thus we obtain bounds on τ
similar to those on ρ.

We remark briefly that the other biclique covering/partitioning measures may be inter-
preted in this way. For instance, lbc(Gc) is the least r such that G can be represented as
the intersection graph of a family of codimension r subcubes of some hypercube. Equally,
bp(Gc) is the least d such that G can be represented in I(n, d) such that the subcubes of
non-adjacent vertices differ in only one coordinate.

2 Relationship between τ and ρ

We shall prove the upper bounds and lower bounds on τ separately.

Lemma 1. For any graph G, τ(G) 6 ρ(G), and hence τ(n) 6 ρ(n).

Proof. Let G be a graph on n vertices with ρ(G) = d. This means that there are subcubes
A1, . . . , An of Qd whose intersection graph is G. Let M (resp. m) be the maximum (resp.
minimum) dimension of these subcubes. For all i, replace Ai by A′i, a subcube of Qd+M−m
by appending 0’s and ∗’s to the vector of Ai. We ensure that we add as many ∗’s as
needed so the resultant vector has precisely M ∗’s and as many 0’s as needed to give the
vector length (d+M−m). The intersection graph of the A′i is G. This shows that G may
be represented as an intersection graph of a family of subcubes of dimension M. Since
M 6 d, the result follows.

Lemma 2. τ(n+ 1) > ρ(n).
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Proof. Let G be a graph with vertices v1, . . . , vn and with ρ(G) = ρ(n). Now form G′

from G by adding a single vertex, vn+1, adjacent to all vertices of G. Let A1, . . . , An, An+1

be r-dimensional subcubes of Qd such that G′ is the intersection graph of the Ai (the
vertex vi being represented by Ai) and such that r is equal to τ(G′). Without loss of
generality, let An+1 be free in the first r coordinates, and hence fixed in the other d − r
coordinates. Where An+1 is fixed, all the other Ai must be either free (have an asterisk in
that coordinate) or have the same fixed value as An+1, as vn+1 is adjacent to all the other
vertices. Thus restricting the first n subcubes to the first r coordinates does not change
which pairs of subcubes intersect. So the intersection graph of these restricted subcubes
is G, implying that G ∈ I(n, r).

Therefore, using the definition of ρ, τ(n+ 1) > τ(G′) = r > ρ(G) = ρ(n).

Combining these two lemmas with the bounds on ρ gives:

Theorem 3. There is some absolute constant, c, such that for all n,

n− c log n 6 τ(n) 6 n− blog nc+ 1.

3 Bounding bp in terms of bc

As the earlier example of Kn shows, bp can be as large as exponential in bc. Here, we
show that bp grows no faster than exponentially in bc, and calculate the best upper
bound exactly. We do this by reducing the problem to proving the upper bound for a
single graph. In Theorem 6, we use ideas from Tverberg’s proof [20] of the Graham-Pollak
Theorem to calculate bp of this graph and show that the previous bound is tight.

Theorem 4. If bc(G) = m, then bp(G) 6 1
2
(3m − 1).

Proof. Fix an m-cover of G, κ = {B1, . . . , Bm}, and for each biclique Bi we label the
vertex classes as class 0 and class 1. We now represent each vertex of G as an element of
{0, 1, ∗}m, based on its membership of elements of κ. If v ∈ V (G), define ṽ ∈ {0, 1, ∗}m
by:

ṽi =


0 if v is in class 0 of Bi,

1 if v is in class 1 of Bi,

∗ otherwise.

If ũ = ṽ then u and v have the same neighbours. Therefore, if u 6= v, this would mean
that bp(G) = bp(G−u), so we could replace G with G−u and thus we may assume vertices
all have different representations. Using the identification v 7→ ṽ, V (G) ⊆ {0, 1, ∗}m.

Since the biclique partition number of a graph is at least that of each of its induced
subgraphs, we may assume that V (G) = {0, 1, ∗}m. Note that there is an edge between
two vertices u and v if and only if there is some i for which {ui, vi} = {0, 1}. In other
words, this is the complement of the intersection graph of all subcubes of anm-dimensional
cube. We write Gm for this graph.
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Before proceeding by induction on m, we introduce some notation. We write (α, β)
for the biclique with vertex classes α and β. If α ⊆ {0, 1}m and x, y ∈ {0, 1, ∗}, we define
the following subsets of {0, 1, ∗}m+1:

xα := {(x, v1, v2, . . . , vm) : (v1, . . . , vm) ∈ α} x
y α := xα ∪ yα

Let πm be an optimal partition of Gm—i.e. πm is a bc(G)-cover of G. Add B1 to πm+1.
For every (α, β) ∈ πm, place the following three bicliques in πm+1: ( ∗0α,

∗
0 β), ( ∗1α, 1β)

and (1α, ∗β).

Claim 5. πm+1 is a partition of Gm+1 and contains 3bp(Gm) + 1 bicliques.

Proof of claim. Let u = (u1, . . . , um+1) and v = (v1, . . . , vm+1) be two vertices that are
not joined by an edge of Gm+1. This means there is no i such that {ui, vi} = {0, 1} so uv
is not an edge of B1. Moreover, if we define u′ = {u2, . . . , um+1} and v′ = {v2, . . . vm+1},
i.e. u and v with the first coordinate removed, then u′v′ is not an edge of Gm. Hence u′v′

is not an edge in any biclique of πm; this implies uv is not an edge of any biclique of πm+1.
Conversely, let e be an edge of Gm+1. If e is also an edge of B1, it is contained in no

other bicliques of πm+1. If e is not an edge of B1, then removing the first coordinate from
each of its endpoints forms an edge e′ of Gm. As πm is a partition of Gm, e′ lies in exactly
one (α, β) ∈ πm. Then, by inspection, e must lie in exactly one of the corresponding
bicliques in πm+1.

As bp(G1) = 1, our proof is concluded by applying the above claim inductively.

Theorem 6. There is a graph G with bc(G) = m, but bp(G) = 1
2
(3m − 1).

Proof. For a graph G, we write A(G) for the adjacency matrix of the graph, and rank(G)
for the rank of A(G). Suppose P1, . . . , Pk form a biclique partition of G. Then A(G) =∑k

i=1A(Pi). Since rank is subadditive and bicliques have rank 2, rank(G) 6 2k. This
implies bp(G) > rank(G)/2.

We conclude the proof by calculating rank(Gm), where Gm is the same graph as defined
above. We define the following order: 0 < 1 < ∗ and use lexicographical order for the
product spaces {0, 1, ∗}m, for all m.

Note that Am = A(Gm) has 3m rows (and columns) and the final row (and column)
in the above order consists solely of 0’s. We shall show by induction on m that the first
3m − 1 rows of Am = A(Gm), together with the all 1 vector, form a linearly independent
set. This is trivial for m = 1.

In block matrix notation, and using the convention that A0 =
(
0
)
,

Am =

Am−1 1 Am−1
1 Am−1 Am−1

Am−1 Am−1 Am−1

→
 0 1− Am−1 0

1− Am−1 0 0
Am−1 Am−1 Am−1

 .
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The second matrix is obtained from the first by simple row operations. We define A′m
as the matrix formed by replacing the final row of this second matrix by a row of only 1’s.

A′m =

 0 1− Am−1 0
1− Am−1 0 0
A′m−1 A′m−1 A′m−1


Then our induction hypothesis is equivalent to the claim that A′m is of full rank—

in other words the linear span of the rows of A′m, span(A′m), is R3m . Since span(1 −
Am−1) = span(A′m−1) = R3m−1

, span(A′m) = Rm. Therefore, rank(Am) > 3m − 1 and
bp(Gm) > 1

2
(3m − 1). Combined with Theorem 4, this concludes the proof.

4 Relationship between lbc and lbp

As before, we write (α, β) for a biclique with vertex classes α and β.
In a contrast to the previous section’s results, we show that lbp cannot be bounded

by lbc, indeed, even for lbp(G) = 2, it is possible for lbc(G) to be arbitrarily large. More
concretely:

Theorem 7. For all m > 2, there is a graph G with a 2-local m-cover for which lbp(G) >
1
2

log(m−1
3

).

We explicitly construct graphs satisfying this inequality. For m > 2, let Gm have
vertex set

V (Gm) =
{
v ∈ {0, 1, ∗}m

∣∣ v has exactly m− 2 ∗’s
}
.

We let uv ∈ E(Gm) if and only if there is some i for which {ui, vi} = {0, 1}, where
u = {u1, . . . , um} and v = {v1, . . . , vm}. Although we do not use this fact, Gm is the
complement of the intersection graph of all codimension 2 subcubes of a cube of dimension
m. Our definition of Gm may appear strange but it arises from simple reverse engineering
of a graph with a 2-local m-cover. See the proof of Theorem 10 for more details.

The graph Gm may also be viewed as the union of m bicliques, B1, . . . , Bm, where
Bi is the subgraph induced by the vertex set {v ∈ V (G)| vi 6= ∗}. These Bi are known
henceforth as covering bicliques, as they form a 2-local cover, although not partition, of
Gm. Thus lbc(Gm) = 2.

A crown graph on 2t vertices, Ht, is Kt,t with a perfect matching removed. We may
label the vertices of Ht as u1, . . . , ut and v1, . . . , vt; uivj is an edge if and only if i 6= j,
and there are no other edges.

We shall show that an r-local partition ofGm can be altered to form an r-local partition
of Ht, for t linear in m. We then show that the local biclique cover number of crown graphs
tends to infinity as the size of the graph does, indeed, lbc(Ht) = Ω(log t). Since lbp > lbc,
this suffices to finish the proof.
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Proof of Theorem 7. Let Gm and its subgraphs B1, . . . , Bm be as above. We say that an
edge uv is shared if it is an edge in two of the covering bicliques; equivalently there are
two i such that {ui, vi} = {0, 1}.

Let π be a partition of G—we call bicliques in π partitioning bicliques. Let e be a
shared edge contained in Bi and let A = (α, β) be the partitioning biclique containing it.
Consider the graph A ∩ Bi—i.e. the graph with vertex set V (A) ∩ V (Bi), and edge set
E(A) ∩ E(Bi). It consists of up to two disjoint bicliques—let Ae

i = (αe
i , β

e
i ) denote the

one containing the edge e. We term this the restriction of A onto Bi (with respect to the
edge e). Note that all vertices in αe

i agree in the ith coordinate, as do all vertices in βe
i .

Lemma 8. Let e be a shared edge of Bi and Bj, and A = (α, β) a biclique containing it.
Then one of Ae

i or Ae
j is a star, or both Ae

i and Ae
j are K2,2.

This lemma, though slightly technical, is key to our approach. A more intuitive
formulation is that all bicliques containing an edge shared by two covering bicliques are
either ‘close’ to being contained in one of these covering bicliques or ‘very small’.

Proof. By permuting the coordinates and swapping 0 with 1 in the first two coordinates,
we may assume that, the endpoints of e are (0, 0, ∗, . . . , ∗) and (1, 1, ∗, . . . , ∗), with the
former being in α and the latter in β.

Notice that if any of αe
1, α

e
2, β

e
1 or βe

2 are singletons, we are done, so we assume the
contrary. Suppose at least one of (0, 1, ∗, . . . , ∗) and (1, 0, ∗, . . . , ∗) is in A—without loss
of generality (0, 1, ∗, . . . , ∗) is in α. Then every vertex in β must have a 1 in the first
coordinate. But any vertex in βe

2 has 1 in the second coordinate. Thus there is only one
vertex in βe

2, contradicting our earlier assumption.
Therefore neither (0, 1, ∗, . . . , ∗) nor (1, 0, ∗, . . . , ∗) is in A. A second vertex in αe

1 must
have a 0 in the first coordinate, a ∗ in the second coordinate and without loss of generality,
a 0 in the third coordinate. Equally, a second vertex in βe

2 must be (∗, 1, 1, ∗, . . . , ∗) in
order to be adjacent to the vertices we have assumed are in α.

A further vertex in αe
2 must start with ∗, followed by 0 and have a further non-asterisk

digit, in the ith place, say, (i > 2). Our previous assumptions determine that there is only
one further vertex in A—the vector with 1’s in the first and ith coordinates. It can be
seen that A1 and A2 are both K2,2.

We now define for each i, a colouring ci of the shared edges of Bi. If e is a shared edge
of Bi and Bj and A is the partitioning biclique containing it, ci(e) is red if Ae

i is a star
or a K2,2 and blue otherwise. Note that the preceding lemma shows that if ci(e) is blue
then Ae

j is a star.

A shared edge is blue in at most one colouring. Hence, each of the 2
(
m
2

)
= m(m− 1)

shared edges is red in at least one of the m colourings, implying that at least one of the
m covering bicliques, B1 say, must contain at least m− 1 shared edges coloured red.

All shared edges are vertex-disjoint—as seen by the form of the edges as vectors—so
we may label the edges as u1v1, . . . , um−1vm−1, where the ui and the vj are from different
classes of B1. We seek a large B ⊆ B1 such that all shared edges in B are in partitioning
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bicliques that restrict to stars on B1. Pick I ⊆ [m−1] as follows. Let 1 ∈ I. If the shared
edge e = u1v1 ∈ A ∈ π and Ae

1
∼= K2,2 then discard from I the (at most two) indices other

than 1 for which one of ui and vi is a vertex of this K2,2. Then proceed to the next index
not already discarded, and continue in the same way. Since at each stage, we throw away
at most two indices, the set of surviving indices, I, satisfies |I| > (m− 1)/3.

Let B be the induced subgraph of B1 with the ui and vj as vertices, for i ∈ I, j ∈ I.
Let H be the subgraph of B formed by removing all shared edges, uivi for i ∈ I. Clearly,
H is isomorphic to H|I|, the crown graph on 2|I| vertices. Let A be a biclique containing
one of these removed edges, e, and note that A ∩ B is the union of at most two disjoint
bicliques. By the construction of B, the component of A ∩ B containing e, Ae

1 ∩ B, is
a star. We label the other (possibly empty) biclique component A′. From π, we induce
a partition π′ of H as follows. If A ∈ π contains an edge of H, then place A ∩ H
inside π′. Now, A ∩ H = A ∩ B and is hence a union of bicliques, unless A contains a
removed edge. Using G − e to denote the graph G with the edge e deleted, in this case,
A ∩ H = A′ ∪ (Ae

1 ∩ B − e), the latter component remaining a star. Note that if π is a
k-local partition of Gm, then π′ is a k-local partition of H. This argument is valid for all
partitions π of G, so lbp(H) 6 lbp(Gm).

We now complete the proof in the following lemma:

Lemma 9. lbc(Ht) > 1
2
dlog te.

Proof. A biclique cover of Ht induces a biclique cover of Kt when two corresponding
vertices (i.e. ui and vi for each i) are identified as one. As mentioned earlier, lbc(Kt) =
dlog te so, there must be some vertex of the Kt in at least dlog te bicliques belonging to
the induced cover. This implies one of the vertices of Ht that are identified to it is in at
least 1

2
dlog te bicliques, in the original covering.

5 Bounding lbp(G), for lbc(G) = 2

The previous section showed that even for lbc(G) = 2, we cannot place an absolute
bound on lbp(G). In this section, we instead aim for bounds involving additional covering
information about G. One way of doing this is by looking at the number of bicliques in
a 2-local cover of G:

Theorem 10. If G has a 2-local m-cover then lbp(G) 6 2dlog(m− 1)e+ 2.

This upper bound is best possible up to a constant factor by Theorem 7. We proceed
by using an argument similar to the start of the proof of Theorem 4 to reduce proving the
upper bound for all graphs with a 2-local m-cover to proving it for one particular graph.
This ‘worst’ graph will turn out to be similar to the graph used in the proof of Theorem
7.
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Proof. Fix a 2-local m-cover of G. We may identify vertices v ∈ V (G) with vectors
ṽ ∈ {0, 1, ∗}m with exactly m− 2 ∗′s, similar to the proof of Theorem 4. As shown there,
we may assume no two vertices have the same representation, and that all such vectors
are the representation of some vertex, i.e. we assume that

V (G) ⊆ {v ∈ {0, 1, ∗}m| v has at least m− 2 ∗’s}.

Note that there is an edge between two vertices u and v if and only if there is some i for
which {ui, vi} = {0, 1}.

For i = 1, . . . ,m, let Bi be the induced subgraph on the vertices whose ith coordinate
is not ∗. We define shared edges in an identical manner to in Section 4 and we shall define
Ci, a subgraph of Bi, such that every edge of G is an edge in exactly one Ci.

Let Ci contain all non-shared edges of Bi. Additionally, for all i and j, let Ci contain
exactly one of the edges shared between Bi and Bj, and let Cj contain the other. Thus
any vertex is in at most two Ci, and the Ci are isomorphic, so lbp(G) 6 2lbp(C1). But
Ci is a complete bipartite graph minus a matching of size m− 1. It is easy to show that
lbp(C1) 6 lbp(Hm−1) + 1, where Hm−1 is the crown graph on 2(m− 1) vertices.

We now show that lbp(Ht) 6 dlog te, for any t. We name the classes of Ht U and
V . We assign to each vertex a unique label consisting of its class name and a binary
vector of length dlog te. For each position, i = 1, . . . , dlog te, we generate two bicliques
corresponding to the difference in the ith position of the binary vector. More specifically,
we let B1

i be the induced biclique formed by all the vertices of class U with a 0 in the ith

coordinate and all vertices of class V with a 1 in the ith coordinate. Similarly, we let B2
i

be the induced biclique formed by all vertices of class U with a 1 in the ith coordinate and
all vertices of class V with a 0 in the ith coordinate. The collection of all these bicliques
is a dlog te-local partition of Ht. This concludes the proof.

Since bc(G) is a measure of independent interest to local measures, one may try to use
the separate existence of a m-cover in a graph with lbc(G) = 2, rather than the existence
of a 2-local m-cover, to bound lbp(G). More formally, we ask:

Question 11. What is the smallest k(m) such that if the graph G has bc(G) = m and
lbc(G) = 2, we have lbp(G) 6 k?

Theorem 7 tells us that k(m) > 1+o(1)
2

logm. However, an upper bound does not follow
directly from Theorem 10 as the cover that shows lbc(G) = 2 may be genuinely different
from the cover that shows bc(G) = m. The following result shows this:

Theorem 12. For all m > 4, there is a bipartite graph, G, with lbp(G) = lbc(G) = 2
and bp(G) = bc(G) = m, but there are no (m− 1)-local m-covers.

Proof. First, we make a general observation about biclique covers. Two edges, {v1, v2}
and {u1, u2} ∈ E(G) are called strongly independent if they are independent and the
minimum degree of G[u1, u2, v1, v2] is 1—in other words, they are vertex disjoint and do
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not lie in the same K2,2 subgraph. No biclique can contain both edges so if E(G) contains
a set of k pairwise strongly independent edges, bc(G) > k.

Let X = {x1, . . . , xm}, Y = {yi,j : 1 6 i < j 6 m}∪{y[m]} and let V (G) = X ∪Y . Let
there be an edge from xi to yi,j and to yj,i for all appropriate j. Also, let y[m] have edges to
all of the xi. This defines a bipartite graph, G. Let the partition π consist of aK1,m with its
centre at y[m], and stars at each of the xi each with leaves at all adjacent vertices other than
y[m]. Thus lbp(G) = lbc(G) = 2. Note that I = {{x1, y1,2}, {x2, y2,3}, . . . , {xm, ym,1}} is a
set of strongly independent edges. Therefore bc(G) > m, and so bp(G) = bc(G) = m as
we can cover (indeed partition) with stars that have their centre in X.

Suppose κ is a biclique cover of G using just m bicliques. Each of these contains
exactly one of the strongly independent edges listed above.

We can see that I ∪{x1, y1,3} \ {x1, y1,2} is also a strongly independent set of m edges.
Therefore, x1 must be at the centre of a star in κ. Similarly, every xi must be the centre
of a star in κ, and these m stars account for all the bicliques in κ. So the star with centre
xi, must contain all vertices adjacent to xi. Thus y[m] is in m bicliques of κ.

So we can see that insisting that a cover of a graph G attains bc(G) may ensure the
cover is not close to being optimal for lbc. This leads to the following question—if we
insist that the cover of a graph attains lbc(G), could this ensure that it is far from being
optimal for bc? More formally:

Question 13. Suppose bc(G) = m, lbc(G) = k, what is the smallest r = r(m, k) such
that we can guarantee G has a k-local r-cover?

An answer to this for k = 2, combined with Theorem 10, would lead to a partial
solution of Question 11.

The following example of the hypercube is instructive, in giving bounds on the prob-
lem. In particular, it shows r(2d−1, d/2) > d2d−3, for d even.

Example 14. Consider Qd, for d even. It is easy to show that bp(Qd) = bc(Qd) = 2d−1.
Indeed, each biclique contains at most d edges, and e(Qd) = d2d−1, so bc(Qd) > 2d−1. On
the other hand, we may partition using |Qd|/2 = 2d−1 stars since Qd is bipartite. Dong
and Liu [4] showed that lbp(Qd) = lbc(Qd) = d/2. In fact, their proof showed that a
cover achieves this only if it consists solely of K2,2’s so every d/2-local cover contains at
least d2d−3 bicliques.
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