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Department of Discrete Mathematics

Adam Mickiewicz University
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Abstract

We study biased (a : f) Avoider-Forcer games played on hypergraphs, in the
strict and monotone versions. We give a sufficient condition for Avoider’s win,
useful in the case of games on hypergraphs whose rank is smaller than f . We apply
this result to estimate the threshold bias in Avoider-Forcer (1 : f) games in which
Avoider is trying not to build a copy of a fixed graph G in Kn. We also study
the d-degree (1 : f) game in which Avoider’s aim is to avoid a spanning subgraph
of minimal degree at least d in Kn. We show that the strict 1-degree game has
the threshold which is the same as the threshold of the Avoider-Forcer connectivity
game.

Keywords: combinatorial games, Avoider-Forcer games, Avoider-Enforcer games

1 Introduction

Let V be a finite set and E be a multiset of subsets of V . We consider two types of
two-person positional games played on the hypergraph H = (V,E) ; these are Avoider-
Forcer strict games (cf. [3] and [10]) and Avoider-Forcer games in the monotone version
(introduced in [9]). We will relate these games with the widely studied and well understood
Maker-Breaker games.

Let us recall that in Maker-Breaker (p : q) games, where p and q are natural numbers,
two players claim in turns previously unselected (free) elements of V until all elements of
V are selected. In every turn Maker selects p vertices and Breaker answers by selecting q
vertices of the hypergraphH. Maker wins if and only if by the end of the game he occupies
all elements of at least one edge of H. We will denote such games by MB(H, p, q).
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In Avoider-Forcer strict (a : f) game, denoted by AF(H, a, f), in each turn Avoider
selects exactly a elements and then Forcer selects exactly f elements of V . If in the last
turn there are fewer free vertices than a player has to select, he takes all the remaining
unoccupied elements. Avoider loses if by the end of the game he selects all elements in at
least one edge of the hypergraph, otherwise he wins.

The rules of Avoider-Forcer (a : f) games in the monotone version are almost the same
as those of AF(H, a, f). The only difference is that Avoider and Forcer select at least a
and at least f elements per turn respectively. We denote such games by AFmon(H, a, f).

Let us remark that we follow the game terminology of [3], while the authors of [6], [8],
[9], [10] and [12] call Forcer Enforcer. We also emphasize that by the ith turn we mean
the pair of Avoider’s ith move and Forcer’s ith move.

An important tool used in studying Avoider-Forcer games is the following winning
condition for Avoider, proved by Hefetz, Krivelevich and Szabó. The condition was proved
in [10] for AF(H, a, f), and the authors of [9] noted that it applies also to AFmon(H, a, f).

Theorem 1.1 ([10], Thm 1.1). If∑
D∈E(H)

(1

a
+ 1
)−|D|+a

< 1,

then for every f > 1, Avoider has a winning strategy for the games AF(H, a, f) and
AFmon(H, a, f).

If ∑
D∈E(H)

(1

a
+ 1
)−|D|

< 1,

f > 1 and Forcer makes the last move in AF(H, a, f), then Avoider has a winning strategy
for AF(H, a, f).

Let us define the rank of a hypergraph by setting

rank(H) = max
D∈E(H)

|D|.

In this paper we give the following Avoider’s winning condition, which is useful in games
played on hypergraphs of small rank.

Theorem 1.2. Let H be a hypergraph of rank r.

(i) If ∑
D∈E(H)

( f
ar

+ 1
)−|D|+a

< 1 ,

then Avoider has a winning strategy for both AF(H, a, f) and AFmon(H, a, f).
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(ii) Let ∑
D∈E(H)

( f
ar

+ 1
)−|D|

< 1 .

Then for every f ′ > f , in the course of AF(H, a, f ′) and AFmon(H, a, f ′), in each
position with at least a+ f free vertices, Avoider has a move after which no edge of
H is entirely occupied by him.

The first inequality in the above theorem, for a = 1, looks similar to the well known
Beck’s winning condition for Breaker in MB(H, 1, f) (cf. [2]):∑

D∈E(H)

(f + 1)−|D|+1 < 1. (1)

However, we cannot expect that (1) is in general a sufficient condition for Avoider’s win
in AFmon(H, 1, f). Furthermore, for any a > 1 we cannot improve the expression

(
f
ar

+1
)

in Theorem 1.2(i) more than up to
(
3f
ar

+ 1
)
. We express this fact by Theorem 1.3:

Theorem 1.3. Let a > 1 and r > 3a. There exists a constant c (depending on r and
a) such that for every f > c there exists a hypergraph H of rank r which satisfies the
condition ∑

D∈E(H)

(3f

ar
+ 1
)−|D|+a

< 1 ,

but Forcer has a winning strategy for AFmon(H, a, f).

The construction of a hypergraph described in the above theorem is very simple. We
will consider edge-disjoint, r-uniform hypergraphs and apply the results on Box games by
Ferber, Krivelevich and Naor [6].

In order to demonstrate how to use Theorem 1.2, we study the threshold properties
of Avoider-Forcer (1 : f) games. As observed in [9] and [10], for such games one can
consider three types of thresholds. Thus, given a hypergraph H, we denote by the lower
threshold bias f−H the largest integer such that for every f 6 f−H Forcer has a winning
strategy for AF(H, 1, f). We mean by the upper threshold bias f+

H the largest integer
f such that Forcer wins AF(H, 1, f). Both f−H and f+

H always exist, except for some
degenerate cases. If f+

H = f−H , then we call the number fH = f+
H = f−H the threshold bias

of the strict game. Finally, the threshold bias of the monotone game is the non-negative
integer fmon

H such that Forcer wins AFmon(H, 1, f) iff f 6 fmon
H . Throughout the paper

the (upper/lower/monotone) threshold bias is called shortly the (upper/lower/monotone)
threshold. Note that the monotonicity rules of AFmon(H, 1, f) guarantee the existence of
fmon
H , as opposed to the strict Avoider-Forcer games, in which the threshold fH may not

exist (cf. [10]).
The threshold properties of Avoider-Forcer games were studied extensively for graph

games. In such games the players select edges of the complete graph Kn, Avoider’s aim is
to avoid a graph from a given family of subgraphs of Kn (see e.g. [8],[9],[10],[12]). Let us
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mention some examples of graph games, studied before in both strict and monotone ver-
sions. In connectivity games Avoider is trying to avoid any connected spanning subgraph
of Kn. In other words, the connectivity games AF(C1,n, 1, f) and AFmon(C1,n, 1, f) are
played on the hypergraph C1,n, with vertex-set V (C1,n) = E(Kn), whose edges are con-
nected spanning subgraphs of Kn. In a similar way, the hypergraphs Cd,n, C ′d,n, Hamn and
Mn correspond to the families of all d-connected spanning subgraphs, d-edge-connected
spanning subgraphs, Hamiltonian cycles and perfect matchings in Kn respectively. To
avoid technicalities we always assume that n is even when considering Mn. We denote
by Dd,n, with 1 6 d 6 n− 1, the hypergraph corresponding to the family of all spanning
subgraphs of the minimum degree at least d. Finally, given a graph G, by HG,n we denote
the hypergraph corresponding to the family of all copies of G in Kn. We refer to games
played on the hypergraphs Hamn, Cd,n, Dd,n and HG,n, as Hamiltonicity, d-connectivity,
d-degree and small-graph games respectively.

Somewhat surprisingly the thresholds for monotone Avoider-Forcer Hamiltonicity,
d-connectivity and d-degree games (with d fixed) are very similar to their Maker-Breaker
counterparts. Krivelevich and Szabó [12] showed that if f 6 (1+o(1))n/ lnn, then Forcer
wins AFmon(Hamn, 1, f) (and therefore wins also AFmon(Mn, 1, f)). The same condi-
tion on f suffices to force Avoider to create a spanning d-connected subgraph of Kn, so
AFmon(Dd,n, 1, f) and AFmon(C ′d,n, 1, f) can be won by Forcer. On the other hand, Hefetz
et al. [9] proved that if f > (1 + o(1))n/ lnn, then Avoider wins AFmon(D1,n, 1, f). Hence
we have

fmon
Dd,n

, fmon
C′d,n

, fmon
Cd,n , f

mon
Hamn

, fmon
Mn

= (1 + o(1))
n

lnn
.

So the leading term of the threshold in all the above games is the same as in the corre-
sponding Maker-Breaker games ([5],[7],[11]).

The strict versions of the above Avoider-Forcer games are harder to study and we
know only partial results for some of these games. Hefetz, Krivelevich and Szabó [10]
proved that for the connectivity game AF(C1,n, 1, f) the threshold exists and

fC1,n =
⌊n− 1

2

⌋
. (2)

For the games AF(Mn, 1, f) and AF(Hamn, 1, f) the orders of the upper and the
lower thresholds are not known. Hefetz, Krivelevich and Szabó [10] proved that f−Mn

=
Ω(n/ lnn), and due to Krivelevich and Szabó [12] we have f−Hamn

= Ω(n/ lnn). As for the
upper threshold, a simple calculation of the number of edges needed to create a perfect
matching or a Hamilton cycle in Kn implies that f+

Mn
< n and f+

Hamn
< 0.5n. Although

in this paper we improve slightly these bounds (see Corollary 1.8 below), the questions
whether f+

Mn
= o(n) and f+

Hamn
= o(n) remain widely open.

Thresholds for small-graph Avoider-Forcer games, even in the monotone version, often
differ from the thresholds of Maker-Breaker games. Hefetz et al. [9] showed that for the
triangle game we have

fmon
HK3,n

= Θ(n3/2), (3)

while in the Maker-Breaker triangle game the threshold is of order
√
n (cf. [5]). In general,

for every graph G with at least two edges, the Maker-Breaker threshold is of order n1/m2(G),
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where m2(G) = max
{

(e(F ) − 1)/(v(F ) − 2) : F ⊆ G, e(F ) > 2
}

, and v(F ) and e(F )
denote the number of vertices and edges of F respectively (cf. [4]).

As for the strict version of small-graph games, the order of the upper or the lower
threshold is not known for any graph containing a cycle. Not much is known about
the thresholds for trees. For a path P3 on three vertices we have f−HP3,n

= Θ(n3/2) and

f+
HP3,n

=
(
n
2

)
− 2 ([9]). We should also mention that Ferber, Krivelevich and Naor [6]

considered strict Avoider-Forcer (a : f) small-graph games played on dense graphs with
n vertices. They found a condition sufficient for forcing Avoider to build a copy of a fixed
graph G, provided a and f are fixed and n is large. From their results we can infer that
if f + 1 is coprime to every number not greater than e(G) and f < cn2/e(G) with some
constant c depending on G, then Avoider in AF(HG,n, 1, f) is forced to build a copy of
G in Kn.

Here we will be primarily concerned with the upper and the lower thresholds in
d-degree and small-graph games played on Kn. For 1-degree strict game, the result (2)
implies that f−D1,n

> b(n− 1)/2c. We will show that b(n− 1)/2c is also the upper bound

for f+
D1,n

and hence f−D1,n
= f+

D1,n
; the only exceptions are n = 4 and n = 7.

Theorem 1.4. For every n > 3, if n 6= 4, 7, then

f+
D1,n

6
⌊n− 1

2

⌋
.

One can easily check that f−D1,4
= 1 and f+

D1,4
= 4. With some effort one can calculate

that f−D1,7
= f+

D1,7
= 4.

Corollary 1.5. Let n > 3. If n 6= 4, then the threshold fD1,n exists, and for n 6= 4, 7

fD1,n = fC1,n =
⌊n− 1

2

⌋
.

For fixed d > 2 the inequality f+
Dd,n

< n/d is obvious, while the best known lower

estimation of f−Dd,n
is f−Dd,n

> n/(2d) − 1, which is implied by the following result by

Hefetz, Krivelevich and Szabó [10]:

f−C′d,n
>

n

2d
− 1. (4)

Therefore n/(2d) − 1 6 f−Dd,n
6 f+

Dd,n
< n/d. It would be interesting to find the optimal

constants c, c′ > 0 (perhaps depending on d) such that f−Dd,n
> cn/d and f+

Dd,n
6 c′n/d.

We did not succeed in finding such constants even for d = 2, but we can prove that the
upper bound n/d on f+

Dd,n
is not optimal even asymptotically.

Theorem 1.6. Let d > 2 be a fixed integer. Then

f+
Dd,n

<
n√

(d− 1)2 + 1 + 1
+ o(n).
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As far as strict d-degree games with d = d(n)→∞ are concerned, the upper and lower
thresholds are close to n/d. It is a consequence of the obvious estimation f+

Dd,n
< n/d and

Beck’s results on discrepancy games, which we discuss in Section 3.

Theorem 1.7 (implicit in [3]). If d = d(n) = ω(
√
n) then

f−Dd,n
= (1 + o(1))

n

d
and f+

Dd,n
= (1 + o(1))

n

d
.

Theorems 1.4 and 1.6 imply some upper bounds on f+
Mn

and f+
Hamn

. They are far
from the known lower bounds Ω(n/ lnn), but are still a little bit better than the obvious
estimations f+

Mn
< n and f+

Hamn
< 0.5n.

Corollary 1.8.

(i) f+
Mn

6
⌊
n−1
2

⌋
for every even n 6= 4.

(ii) f+
Hamn

< 0.42n+ o(n).

Finally let us mention some new results on small-graph games. To this end we define
three graph parameters (here and below we assume that e(G) > 2):

m(G) = max
F⊆G: v(F )>1

e(F )

v(F )
, m′(G) = max

F⊆G: v(F )>1

e(F )− 1

v(F )
,

m2(G) = max
F⊆G: e(F )>2

e(F )− 1

v(F )− 2
.

Based on Theorem 1.2, we will derive the following upper bounds on the monotone/up-
per/lower thresholds of AF(HG,n, 1, f) and AFmon(HG,n, 1, f).

Theorem 1.9. Let G be a graph with at least two edges. Then the following holds.

(i) fmon
HG,n

= O(n1/m′(G)) and f+
HG,n

= O(n1/m′(G)).

(ii) f−HG,n
= O(n1/m(G) lnn).

(iii) f−HG,n
< cn1/m(G) for some constant c and infinitely many n.

(iv) For some constant c, sufficiently large n, and f > cn1/m(G), Avoider can avoid a
copy of G until the last but one turn of AF(HG,n, 1, f) and AFmon(HG,n, 1, f).

Note that (i) gives an alternative proof of the fact that fmon
HK3,n

= O(n3/2). In (ii) and

(iii) the constant exponent 1/m(G) cannot be improved in general, because for G = P3

we have f−HG,n
= Θ(n1/m(G)). For an application of (iv), consider the triangle monotone

game (1 : f), with f of order greater than n but less than n3/2. We know by (3) that
Forcer has a winning strategy; (iv) implies that Avoider can defend almost to the very
end of the game.
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Theorem 1.10.

(i) f−HK3,n
= Ω(n1/2).

(ii) f−HG,n
= Ω(n1/m2(G)/ lnn) and fmon

HG,n
= Ω(n1/m2(G)/ lnn) for every graph G with at

least two edges.

The first part of the above theorem is a consequence of a winning condition for Forcer,
which is presented in the next section. The second part is implied by Theorem 1.1 and
the recent hypergraph container theorem by Saxton and Thomason [13].

The paper is organized in the following way. In Section 2 we prove Theorems 1.2 and
1.3 and discuss some variants of Beck’s winning condition for Forcer. In Section 3 we
prove Theorems 1.4 and 1.6, and explain how Theorem 1.7 follows from Beck’s results on
discrepancy games. In Section 4 we prove Theorems 1.9 and 1.10.

2 Winning criteria for Avoider and Forcer

Apart from the definitions stated in the introduction, we will use the following notation.
By ∆(H) we denote the maximum degree of the hypergraph H, i.e.

∆(H) = max
x∈V (H)

|{D ∈ E(H) : x ∈ D}|.

Additionally, we set

∆2(H) = max
x,y∈V (H), x 6=y

|{D ∈ E(H) : x, y ∈ D}|.

Given a hypergraph H and X ⊆ V (H), we denote by H \X the hypergraph with the
vertex-set V (H)\X and the edge-multiset {D \X : D ∈ E(H)}. By H−X we mean the
hypergraph with the vertex-set V (H)\X and the edge-multiset {D ∈ E(H) : D∩X = ∅}.
We mean by HX the subhypergraph of H, induced by all edges D ∈ E(H) such that
X ⊆ D. For simplicity we write Hx1,x2,...,xt instead of H{x1,x2,...,xt}.

Suppose that at a given moment of a game played on a hypergraph H, the set X
consists of all vertices Avoider has selected so far and Y is the set of vertices which belong
to Forcer. Then we call the hypergraph (H \ X) − Y the position at that moment of
the game. The position after the ith turn will be denoted by H(i), with the technical
assumption that H(0) = H.

Given a hypergraph H and a real number µ > 0, we define the weight Tµ of the
hypergraph H as follows:

Tµ(H) =
∑

D∈E(H)

µ−|D|.

Notice that in the final positionH′ of an Avoider-Forcer game we have either E(H′) = ∅
and Tµ(H′) = 0 or ∅ ∈ E(H′) and Tµ(H′) > 1. Hence the final position is won by Forcer
if and only if its weight Tµ is positive.
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2.1 Winning condition for Avoider

Proof of Theorem 1.2. The proof of part (i) relies on the standard technique of minimizing
the weight of the position, used by Beck for proving the winning condition (1) for Breaker
in Maker-Breaker games. For completeness, we repeat briefly this argument and point
out where our proof is different from the proof of Theorem 1.1.

Consider the weight function T = Tµ with µ = f
ar

+ 1 and suppose that Avoider uses a
min-weight strategy. More precisely, for every i > 0, in turn i+1 Avoider selects a vertices
x1, . . . , xa such that x1 minimizes T (H(i)x) over all x ∈ V (H(i)) and for j = 1, . . . , a− 1
the vertex xj+1 minimizes T ((H(i) \ {x1, . . . , xj})x) over all x ∈ V (H(i) \ {x1, . . . , xj}).
We will show that the weight T of the position, evaluated after every Forcer’s move, does
not increase in the course of the game.

Suppose that the play has t turns and let 0 6 i 6 t − 2. Let X = {x1, . . . , xa} and
Y = {y1, . . . , yb} with b > f be the sets of all vertices selected in the (i + 1)st turn by
Avoider and Forcer respectively. Notice that based on the definition of the min-weight
strategy and the definition of T ,

T (H(i)x1) 6 T (H(i)xa) 6 T ((H(i) \ {x1, . . . , xa−1})xa),

and similarly, for j = 1, . . . , a− 2,

T ((H(i) \ {x1, . . . , xj})xj+1
) 6 T ((H(i) \ {x1, . . . , xj})xa)

6 T ((H(i) \ {x1, . . . , xa−1})xa).

Furthermore, the function T , evaluated after selecting the vertices by Avoider, equals

T (H(i)) + (µ− 1)
[
T (H(i)x1) + T ((H(i) \ {x1})x2) + . . .+ T ((H(i) \ {x1, . . . , xa−1})xa)

]
.

Hence Avoider’s move X increases T by not more than

a(µ− 1)T ((H(i) \ {x1, . . . , xa−1})xa).

Starting with T (H(i) \ {x1, . . . , xa}), we will estimate the decrease of T caused by
Forcer’s choice of Y . At this point our analysis veers away from the proof of Theorem
1.1.

After the move of Forcer, T decreases by∑
D∈E(H(i)\{x1,...,xa}) :

D∩Y 6=∅

µ−|D| >
1

r

∑
D∈E(H(i)\{x1,...,xa}) :

D∩Y 6=∅

|D|µ−|D| > 1

r

∑
y∈Y

∑
D∈E(H(i)\{x1,...,xa}) :

y∈D

µ−|D|

=
1

r

∑
y∈Y

T ((H(i) \ {x1, . . . , xa})y)

>
1

r

∑
y∈Y

T ((H(i) \ {x1, . . . , xa−1})y)

>
f

r
T ((H(i) \ {x1, . . . , xa−1})xa).
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In the last inequality we used the property that xa minimizes T ((H(i) \ {x1, . . . , xa−1})x)
over all x ∈ V (H(i) \ {x1, . . . , xa−1}).

Summarizing, the change of T in the (i+ 1)st turn is

T (H(i+ 1))− T (H(i)) 6 a(µ− 1)T ((H(i) \ {x1, . . . , xa−1})xa)

−f
r
T ((H(i) \ {x1, . . . , xa−1})xa),

which is nonpositive as µ = f
ar

+ 1. Consequently, we proved that T (H(i)) 6 T (H(0)) =
T (H) for i = 1, . . . , t− 1.

Consider the last, tth, turn; Avoider takes a set X of a elements (or less, if it is not
possible) and Forcer takes some remaining elements. Then

T (H(t)) 6
∑

D∈E(H(t−1))

µ|D∩X|µ−|D| 6 µaT (H(t− 1)) 6 µaT (H).

By the assumption of our theorem T (H) < µ−a, so the above inequality implies that
T (H(t)) < 1. It means that in the end position Avoider has no edge of H entirely
occupied.

The proof of part (ii) is almost the same. It is even easier since we do not have to
analyze the last turn separately.

Proof of Theorem 1.3. Suppose that a, f, r, n > 1 and H is a hypergraph with n pairwise
disjoint edges, each of size r. Ferber, Krivelevich and Naor [6] proved that if

N(a, f, k) =


f + 1 for k < a+ 1,

f + 1 +
⌈

f
a+1

⌉
for k = a+ 1,⌈N(a,f,k−1)

a

⌉(
a+

⌈
f
k

⌉)
for k > a+ 1,

and n > N(a, f, r), then Forcer wins AFmon(H, a, f).
Assume that n = N(a, f, r), r > 3a, and a, r can depend on f . Additionally, let

ra = o(f). We will show that

n <
(3f

ar
+ 1
)r−a

, provided f is sufficiently large. (5)

Clearly it will imply that H satisfies the assumption of Theorem 1.3. It will also complete
our proof because of the above mentioned result by Ferber, Krivelevich and Naor.

By the definition of N(a, f, k), we have N(a, f, k) > f and for k > a+ 1

N(a, f, k) <
(N(a, f, k − 1)

a
+ 1
)(
a+

f

k
+ 1
)

6 N(a, f, k − 1)
( f
ak

+ 2
)

+ a+
f

k
+ 1

< N(a, f, k − 1)
( f
ak

+ 2
)

+ a+
N(a, f, k − 1)

k
+ 1

< N(a, f, k − 1)
( f
ak

+ 5
)
,
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where in the last inequality we assumed that a < f . Hence, for ra = o(f) we obtain

N(a, f, r) < N(a, f, a+ 1)
(f + o(f)

a

)r−a−1 r∏
k=a+2

1

k

=
(
f + 1 +

⌈ f

a+ 1

⌉)(f + o(f)

a

)r−a−1 r∏
k=a+2

1

k

=
a+ 2

a+ 1
(f + o(f))

(f + o(f)

a

)r−a−1 r∏
k=a+2

1

k

=
(f + o(f)

a

)r−a
a(a+ 2)

r∏
k=a+1

1

k

=
(f + o(f)

a

)r−a
a(a+ 2)

a!

r!
.

Thus for sufficiently large f

N(a, f, r)(
3f
ar

+ 1
)r−a < (1 + o(1))r−a

a!a(a+ 2)rr−a

r!3r−a
<
a!a(a+ 2)rr−a

r!er−a

<
a!a(a+ 2)ea√

2πr · ra
<
a!a(a+ 2)√

6aπ · aa
,

where in the last inequality we used the assumption that r > 3a. By routine calculations
we check that the right-hand side of the obtained inequality is less than 1 for every a > 1.

Hence (5) holds and the proof of Theorem 1.3 is complete.

2.2 Winning criteria for Forcer

In this section we present a few winning criteria for Forcer in AF(H, a, f), which are
slight modifications of Beck’s winning condition from [3]. Let FA(H, a, f) denote the
game which differs from AF(H, a, f) by only one rule, in FA(H, a, f) Forcer is the first
player.

Theorem 2.1 (implicit in [3]). Suppose that

Tf/a+1(H) =
∑

D∈E(H)

(f
a

+ 1
)−|D|

>
f 2a2

(f + a)3
∆2(H)|V (H)| (6)

and f + a divides |V (H)|. Then Forcer has a winning strategy for FA(H, a, f).

Beck proved that (6) guarantees the win of Maker in MB(H, a, f) (cf. [3], Theorem
2.2) and remarked that by a very similar proof, one can show the analogous result for
Forcer in Avoider-Forcer games. It follows from the proof of Beck’s Theorem 2.2 in [3]
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that the divisibility assumption in Theorem 2.1 is quite important, though irrelevant in
the case of Maker-Breaker games.

We can formulate a theorem similar to Theorem 2.1 if Avoider is the first player,
provided he takes the last unoccupied vertex in the game. Forcer can simply ignore the
first move of Avoider, pretend he starts the game, and use a winning strategy guaranteed
by Theorem 2.1.

Corollary 2.2. Suppose that

Tf/a+1(H) >
f 2a2

(f + a)3
∆2(H)|V (H)|

and f + a divides |V (H)| − a. Then Forcer has a winning strategy for AF(H, a, f).

The technique of the proof of Theorem 2.1 allows us to solve the above divisibility
problems in the following way.

Theorem 2.3. If

Tf/a+1(H) >
f 2a2

(f + a)3
∆2(H)|V (H)|+ ∆(H)

fa

f + a
,

then Forcer has a winning strategy for AF(H, a, f), FA(H, a, f) and AFmon(H, a, f).

Proof. Let T = Tf/a+1. The key realization for the proof of Theorem 2.1 (and the proof
of Beck’s Theorem 2.2 in [3]) is that Forcer in FA(H, a, f) can play so that for every i,
if |V (H(i))| > a+ f , then

T (H(i+ 1)) > T (H(i))−
( fa

f + a

)2
∆2(H). (7)

Forcer in AF(H, a, f) can use this strategy as well by ignoring the first move of Avoider.
Furthermore, the same Forcer’s strategy guarantees the property (7) in AFmon(H, a, f)
since the assumption that Avoider can take more than a vertices per turn is not relevant
for the proof of Theorem 2.1.

Therefore, if H′ is the position before the last move of Forcer in AF(H, a, f), or
FA(H, a, f), or AFmon(H, a, f), we have

T (H′) > T (H)−
( fa

f + a

)2
∆2(H)

|V (H)|
f + a

.

Consequently, by the assumption of Theorem 2.3 we obtain

T (H′) > ∆(H)
fa

f + a
.

Now we consider the effect of Forcer’s last move. Every nonisolated vertex x of H′
belongs to at most ∆(H) edges of size at least one, so T (H′x) 6 ∆(H)/(f/a+ 1). Forcer
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in his last move takes at most f (remaining) vertices and hence the weight T of the
hypergraph obtained at the end of the game is not less than

T (H′)− f ∆(H)

f/a+ 1
= T (H′)−∆(H)

fa

f + a
,

which is positive.
We conclude that the end position is a win for Forcer.

3 Degree games

3.1 Big degree games

Let b be a natural number. We have two players; Balancer who takes exactly b free edges
of Kn per turn and Unbalancer who takes 1 free edge of Kn per turn. Let dB(v) denote
the number of Balancer’s edges incident to v ∈ V (Kn) at the end of the game. Balancer
tries to get the degree balance roughly b : 1, i.e. he wants to obtain the number

max
v∈V (Kn)

∣∣∣dB(v)− b(n− 1)

b+ 1

∣∣∣
as small as possible. We call this game the discrepancy (b : 1) game on Kn. By default
Balancer is the first player. However, we will also consider the discrepancy (b : 1) games
in which Unbalancer starts the game.

The discrepancy (b : 1) game on Kn belongs to a much more general class of discrep-
ancy (b : u) games on hypergraphs, with u > 1, studied by Beck [3]. Below we present a
special case of Beck’s result.

Theorem 3.1 ([3], Thm. 27.5). Let b = b(n) = o(n/ lnn) and b+ 1 |
(
n
2

)
. Then for some

constants c, c′ > 0 Balancer as the first player has a strategy in the discrepancy (b : 1)
game on Kn such that for every x ∈ V (Kn)

b(n− 1)

b+ 1
− c′

√
n lnn

b+ 1
6 dB(x) 6

b(n− 1)

b+ 1
+ c

√
n lnn

b+ 1
. (8)

Remark. In the cited theorem of Beck there is no divisibility assumption, however, the
method of the proof requires that every move of Balancer is followed by Unbalancer’s
move.

We can solve the problem of the last turn and get rid of the assumption b+ 1 |
(
n
2

)
by

replacing the condition (8) by

b(n− 1)

b+ 1
− c′

√
n lnn

b+ 1
− b 6 dB(x) 6

b(n− 1)

b+ 1
+ c

√
n lnn

b+ 1
+ b,

since in the last move Balancer cannot change degrees in his graph more than by b.
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If we assume that Balancer in the discrepancy game is the second player, we can ignore
the first move of Unbalancer and obtain almost the same condition (8) for Balancer’s
degrees, provided b+1 |

(
n
2

)
−1. The forgotten move of Unbalancer can influence Balancer’s

degrees only by one, which is asymptotically irrelevant. Again we can get rid of the
assumption b+ 1 |

(
n
2

)
− 1 if we change the degree bounds by b. Summarizing, we obtain

the following corollary.

Corollary 3.2. Let b = b(n) = o(n/ lnn). Then for some constants c, c′ > 0 Balancer as
the second player in the discrepancy (b : 1) game on Kn has a strategy such that for every
x ∈ V (Kn)

b(n− 1)

b+ 1
− c′

√
n lnn

b+ 1
− b 6 dB(x) 6

b(n− 1)

b+ 1
+ c

√
n lnn

b+ 1
+ b.

We are ready to justify Theorem 1.7, which says that for d = d(n) = ω(
√
n)

f−Dd,n
= (1 + o(1))

n

d
and f+

Dd,n
= (1 + o(1))

n

d
.

Proof of Theorem 1.7. Let d = d(n) = ω(
√
n). Since f−Dd,n

6 f+
Dd,n

< n/d, it is enough to

prove that f−Dd,n
> (1 + o(1))n

d
.

Assume that Forcer has a winning strategy for AF(Dd,n, 1, f). Of course f 6 f+
Dd,n

<

n/d. Additionally, by (4) we know that if f 6 n/(2d)− 1, then Forcer can force Avoider
to build a d-edge-connected spanning graph and therefore he can win AF(Dd,n, 1, f).
Therefore we assume that n/(2d) 6 f < n/d.

We have f = Θ(n/d) = o(
√
n) = o(n/ lnn), so Forcer in AF(Dd,n, 1, f) can use

the strategy of Balancer described in Corollary 3.2 with b = f . This way at the end
of the game AF(Dd,n, 1, f) the maximum degree of Forcer’s graph is not greater than
(n−1)f
f+1

+ c
√

n lnn
f+1

+ f for some constant c > 0. It means that the minimum degree of

Avoider’s final graph is not less than

n− 1

f + 1
− c

√
n lnn

f + 1
− f > n− 1

f + 1
− c
√

2d lnn− n

d
.

The latter expression is not less than d for

f 6
n− 1

d+ c
√

2d lnn+ n/d
− 1,

so for d = ω(
√
n) we obtain

f 6 (1 + o(1))
n

d
.

Consequently, Avoider loses AF(Dd,n, 1, f) for every such f , which means that f−Dd,n
6

(1 + o(1))n
d
.
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3.2 Proof of Theorem 1.4

Let n > 3 and f > bn−1
2
c. It is easy to calculate that at the end of the game AF(D1,n, 1, f)

Avoider will have at most n−2 edges occupied. We will show that Avoider wins by building
first a tree as big as possible and then by continuing the play almost arbitrarily.

Avoider starts with selecting any edge of Kn and then, in every position in which
Avoider’s edges span a tree T , he selects any free edge from E(V (T ), V (Kn) \ V (T )), if
possible; by E(A,B) we denote the set of all edges vv′ with v ∈ A and v′ ∈ B.

If he is able to continue to build his tree until the end of the game, then clearly at least
one vertex in Avoider’s graph remains isolated. By Avoider’s graph at a given moment
of the game we mean a graph with the vertex-set V (Kn) and with the edges selected by
Avoider so far. Therefore we can assume that in some turn Avoider cannot increase his
tree.

Let k, with 2 6 k 6 n − 2, be the first turn in which Avoider cannot extend his tree
T , i.e. |V (T )| = k and all the edges from E(V (T ), V (Kn) \ V (T )) have been selected by
Forcer. Then the number of edges Forcer has selected so far is

(k − 1)f > |E(V (T ), V (Kn) \ V (T ))| = k(n− k)

and hence n− k 6 f − 1. We will consider two cases: n− k > 2 and n− k = 2.
Suppose that n − k > 2. For i > k, in his ith move Avoider selects arbitrarily a

free edge from E(V (T ), V (T )) as long as there is any. Let t be the last turn in which
such free edges exist (and t > k − 1). Then we have at most

(
n−k
2

)
free edges left and

n − k isolated vertices in Avoider’s graph. By simple calculations one can check that if
3 6 n − k 6 f − 1, then

(
n−k
2

)
6 (f + 1)bn−k−1

2
c. Hence after turn t the game will last

at most bn−k−1
2
c turns. We infer that Avoider will leave one of his n− k isolated vertices

untouched, no matter how he plays in the remaining turns. Thus Avoider wins the game.
Now consider the case n− k = 2 . Since k > 2, we have n > 4. We have assumed that

after turn k − 1 the game has not ended yet, which implies that (k − 1)(f + 1) <
(
n
2

)
.

Additionally, the game lasts no more than n − 2 turns so the kth turn is the last one.
Let us recall that after k− 1 turns there are two isolated vertices in Avoider’s graph, say
v and v′. If there is any free edge except of vv′, Avoider in his last move selects it and
wins the game. Suppose that vv′ is the only free edge before the kth move of Avoider.
Then (k− 1)(f + 1) =

(
n
2

)
− 1. By solving this equation for k = n− 2 > 2 we obtain that

f + 1 = (n+ 1)(n− 2)/(2(n− 3)), so either n = f = 4 or n = 7 and f = 4.
In view of the above analysis, we conclude that Avoider wins AF(D1,n, 1, f) for every

f > bn−1
2
c, provided n 6= 4, 7. Hereby the proof is complete.

Remark. For n = 7 the above argument implies that f+
D1,n

6 4. It appears that

AF(D1,7, 1, 4) is a win for Forcer. Forcer wins the game if he stands by the following
rules.

1) As long as there are at least two isolated vertices in Avoider’s graph:

• He prevents Avoider from building any cycle.
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• In every move, if possible, Forcer selects free edges vv′ such that v and v′ have
positive degree in Avoider’s graph; if there are no more of these edges, he fin-
ishes his move by selecting edges with exactly one endpoint of positive degree in
Avoider’s graph.

2) At the moment the sixth vertex, say v6, of positive degree appears in Avoider’s graph
and there is still one isolated vertex v7 in Avoider’s graph, Forcer continues to play
arbitrarily, leaving v6v7 free as long as possible.

We skip the proof that such a strategy can be carried out by Forcer, but we will verify that
it is a winning strategy for him. Note that there are five edges in Avoider’s final graph,
and it contains no cycle by Forcer’s strategy. Therefore, it has at least six vertices of
positive degree. Consider the moment the sixth vertex, say v6, of positive degree appears
in Avoider’s graph. Then if no vertex is isolated in Avoider’s graph, Forcer wins the game.
Thus suppose there is still one isolated vertex v7 in Avoider’s graph. It follows from 1)
that the edge v6v7 is free. Forcer can continue to play arbitrarily, leaving v6v7 free until
Avoider selects a free edge incident to v7 (notice that Avoider selects the last free edge in
the game). Thereby Forcer wins AF(D1,7, 1, 4).

3.3 Proof of Theorem 1.6

Throughout this section we assume that d > 2. Additionally, we consider f > n/(2d)
only, because otherwise, in view of (4), Forcer wins AF(Dd,n, 1, f). Another assumption
is that f + 1 6 (n − 1)/d ; otherwise the game AF(Dd,n, 1, f) lasts less than nd/2 turns
and Avoider trivially wins.

The idea of the proof is quite simple. We will show that Avoider can build a spanning
tree with many leaves. If f is greater than, roughly, n√

(d−1)2+1+1
, there will be too few

moves left for Avoider to increase the degree of every leaf by d− 1.
Let us assume that Forcer has a winning strategy for AF(Dd,n, 1, f). In the lemma

below by a greedy algorithm we mean any strategy of Avoider such that after every his
move the graph induced by Avoider’s edges is a tree.

Lemma 3.3. If Forcer has a winning strategy for AF(Dd,n, 1, f), then Avoider can build
a spanning tree within the first n− 1 turns of the game by using any greedy algorithm.

Proof. Suppose for contradiction that Avoider builds greedily his tree, but after k − 1 <
n − 1 turns he got stuck. Then n − k 6 f − 1, as we already calculated in the proof of
Theorem 1.4. Avoider can win the game continuing the play in the following way. Let T
be his tree built within k− 1 first moves. Avoider takes free edges with both endpoints in
V (T ) as long as possible. Then he forgets about the set V (T ) and transforms the game into
AF(Dd,n−k, 1, f), played on the complete graph Kn−k with the vertex-set V (Kn) \ V (T ),
possibly with some edges of Kn−k occupied already by Forcer. Such a game, for d > 2 and
n− k 6 f − 1, has less than (n− k)d/2 turns. Therefore at the end of the game at least
one vertex of Kn−k will have degree less than d in Avoider’s graph, which contradicts the
assumption that Forcer wins.
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Now we describe how Avoider builds a rooted spanning tree in AF(Dd,n, 1, f). It is
a greedy, BFS-like algorithm. Starting with any vertex v0, the root, in consecutive turns
j > 1 Avoider increases his tree on the vertex-set {v0, v1, . . . , vj−1} by a vertex vj in the
following way. Avoider finds the smallest i 6 j−1 such that for some x 6∈ {v0, v1, . . . , vj−1}
the edge vix is free. Then he selects arbitrarily one such free edge and denotes its end
(other than vi) by vj. We know by Lemma 3.3 that Avoider can continue building his
tree for j = 1, . . . , n− 1.

Consider the situation after the (n− 1)st turn. Let T be the spanning tree of Avoider
and L be the set of its leaves. Throughout the rest of the proof the terms: leaves, parents,
children, internal vertices, refer always to T . By the level of a vertex of T we mean the
distance in T between x and v0. We say that vi is younger than vj if i > j. By Lk we
denote the set of k youngest leaves of T , for k = 1, . . . , |L|. Avoider’s degree of a vertex x
at a given moment of the game is the number of edges incident to x, selected by Avoider
so far.

The following two lemmata will allow us to prove that T has many leaves.

Lemma 3.4. Let k > 3. Suppose that
(
k
2

)
6 f + 1 and there are k vertices in L with at

most t free edges of Kn incident to each of them. If

t 6
(
d− 1− 2

k

)
(f + 1),

then Avoider has a strategy such that at the end of AF(Dd,n, 1, f) there is a vertex of
degree less than d in Avoider’s graph.

Proof. Let L′ ⊆ L be a set of k vertices satisfying the assumptions of the lemma. Avoider
continues the game in the following way. In the first stage, as long as possible, he selects
free edges not incident to any vertex from L′. After the first stage there are at most tk free
edges of Kn left. In the second stage Avoider selects free edges from E(L′, V (Kn)\L′), as
long as there are any. Note that every such move of Avoider increases the degree of only
one vertex in L′ and after the second stage there are at most

(
k
2

)
6 f + 1 free edges left.

Thus we have at most one turn left after the second stage. In that turn Avoider increases
by one the degree of two vertices of L′.

Summarizing, after the first stage the game lasts no longer than dtk/(f + 1)e turns
and the sum of Avoider’s degrees of vertices in L′ increases at most by dtk/(f + 1)e+ 1.
Therefore, if tk 6 ((d− 1)k − 2)(f + 1), then at least one vertex from L′ has degree less
than d at the end of AF(Dd,n, 1, f).

Lemma 3.5. Let 3 6 k 6 |L| and x ∈ Lk. Then there are less than 3k internal vertices
y such that the edge xy is free.

Proof. Let us start with the following observation, which is a result of the strategy of
Avoider. We omit its straightforward inductive proof.

Observation. Suppose that x, y ∈ V (T ) and y 6∈ L. If an edge xy is free, then y is younger
than the parent of x and the level of y differs from the level of x by at most one.
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Suppose now that x ∈ Lk and l is the level of x. Since there are less than k leaves
younger than x, at level l−1 we have less than k internal vertices younger than the parent
of x. Also there are less than k internal vertices at level l, and at level l + 1 too. Thus,
by the above Observation, there are less than 3k internal vertices y such that the edge xy
is free.

Observe that |L| > d + 1 > 3. This fact is obvious if d = 3 because of the greedy
strategy of Avoider and the assumption that d(f + 1) 6 n− 1. Also in the case of d = 2
Avoider’s tree has at least three leaves; from the greedy strategy of Avoider we infer that
if he has selected only two edges incident to the root v0, then the child v1 has degree
greater than two in Avoider’s graph. Therefore we can apply Lemmata 3.4 and 3.5 with
k = 3.

By Lemma 3.4 and the assumption that Avoider cannot win the game, we obtain that
for some x ∈ L3 the number of all free edges incident to x is greater than

(
d−1− 2

3

)
(f+1) =

(d− 5
3
)(f + 1) . Furthermore, by Lemma 3.5, less than nine free edges join x with internal

vertices. Consequently

|L| >
(
d− 5

3

)
(f + 1)− 9 > 5

√
f

for sufficiently big f or, equivalently, for big n (we assumed that n/(2d) 6 f < n/d).
In view of the above inequality we can apply Lemmata 3.4 and 3.5 again, with k =

d
√
f e. Hence for some x ∈ Lk there are more than (d−1− 2

k
)(f+1)−3k > (d−1)f−5

√
f

leaves adjacent to x with a free edge. We conclude that

|L| > (d− 1)f − 5
√
f.

Let us recall that so far we have analyzed (n − 1) turns, so in the game there are
d
(
n
2

)
/(f + 1)e − (n − 1) turns left. We also assumed that Forcer has a winning strategy.

Hence Avoider’s degree of every vertex in L has to increase during these remaining turns
from 1 up to d, which requires at least |L|(d− 1)/2 moves. Therefore⌈ (n

2

)
f + 1

⌉
− (n− 1) >

1

2
|L|(d− 1) >

1

2
(d− 1)2f − 5

2
(d− 1)

√
f ,

then we obtain
f <

n√
(d− 1)2 + 1 + 1

+ o(n),

which proves that f+
Dd,n

< n√
(d−1)2+1+1

+ o(n).

4 Small-graph games

In strict Avoider-Forcer games on Kn the number of free vertices before the last turn
usually plays an important role. We need the following number theory facts.

Fact 4.1. Let r < 2 be a rational number and c > 0 be an integer.
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(i) There are infinitely many natural numbers n such that q |
(
n
2

)
for some q with

cnr < q < 2cnr.

(ii) There are infinitely many natural numbers n such that q |
(
n
2

)
− 1 for some q with

cnr < q < 4cnr.

Proof. Let us fix natural numbers c, r1, r2 and let r = r1/r2 < 2.
In order to prove (i), for every integer k > 2 we put n − 1 = (4c)kr2 and define

q = 2c(n− 1)r = 2c(4c)kr1 if r < 1, or q = 2c(n− 1)r−1n = 2c(4c)k(r1−r2)n if r > 1. Then
we obtain cnr < q < 2cnr and q |

(
n
2

)
. Thus we have infinitely many n satisfying (i).

To show (ii), for every integer k > 2 we put n− 2 = (4c)kr2 and define q = 2c(n− 2)r

if r < 1, or q = 2c(n − 2)r−1(n + 1) if r > 1. By simple calculations one can verify that
cnr < q < 4cnr, and q |

(
n
2

)
− 1 since

(
n
2

)
− 1 = (n+ 1)(n− 2)/2 . This proves (ii).

Fact 4.2. Let δ ∈ (0, 1) and N, q > 0 be integers such that N δ < q < δN/(2 lnN). Then,
if N is sufficiently large, there exists an integer k such that q 6 k 6 2δ−1q ln q and the
remainder of the division of N by k is greater than q.

Proof. Suppose that for every integer k from the interval [q, 2δ−1q ln q] the remainder of
the division of N by k is at most q. In the interval [q, 2δ−1q ln q] there are more than
(q + 1)/δ primes (for big N), so more than 1/δ of them are equivalent modulo N . It
means that for some r 6 q, t > 1/δ and some primes p1, . . . , pt > q, we have pi | N − r
for i = 1, . . . , t. Hence p1 · . . . · pt | N − r and we conclude that N > qt > q1/δ. Therefore,
if q > N δ, we come to a contradiction.

4.1 Proof of Theorem 1.9

Let us begin by a trivial observation. If Avoider can avoid building a subgraph of G in Kn,
then he avoids building the graph G as well. Therefore, without loss of generality, while
proving (i) we can assume that the maximum m′(G) is attained by G. Furthermore, (ii)–
(iv) obviously hold if G is a matching (with at least two edges) so while proving (ii)–(iv)
we will assume that G contains two adjacent edges, and the maximum m(G) is attained
by G.

In order to prove (i), observe that there are O(nv(G)) copies of G in Kn. Hence
there exists a constant c > 0 (which depends on G) such that if f = dcn1/m′(G)e =
dcnv(G)/(e(G)−1)e, then ∑

A∈E(HG,n)

( f

e(G)
+ 1
)−e(G)+1

< 1.

We have rank(HG,n) = e(G) so Avoider has a winning strategy for both AF(HG,n, 1, f)
and AFmon(HG,n, 1, f), based on the first part of Theorem 1.2. This proves that fmon

HG,n
=

O(n1/m′(G)) and f+
HG,n

= O(n1/m′(G)).
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To prove (ii), similarly observe that there is a constant c > 1 such that if f =
dcn1/m(G)e = dcnv(G)/e(G)e, then∑

A∈E(HG,n)

( f

e(G)
+ 1
)−e(G)

< 1.

Note that m(G) > 1/2 for G containing two adjacent edges, and the assumptions of
Fact 4.2 are satisfied for δ = 1/(2m(G)), N =

(
n
2

)
and q = f , provided n is sufficiently

large. Thus there exists an integer f ′ such that f 6 f ′ + 1 6 4m(G)f ln f and the
remainder of a division of

(
n
2

)
by f ′ + 1 is greater than f . Hence, in the course of the

game AF(HG,n, a, f
′), before every move of Avoider there are at least f + 1 free vertices

of the hypergraph. By the second part of Theorem 1.2, we conclude that Avoider will
never occupy any edge entirely. It means that f−HG,n

< f ′ = O(n1/m(G) lnn).

The proof of part (iii) is similar to the previous one. We find an integer constant c > 0

such that if f > cn1/m(G) − 1, then
∑

A∈E(HG,n)

(
f

e(G)
+ 1
)−e(G)

< 1. Based on the first

part of Fact 4.1, we can argue that there are infinitely many natural numbers n such that
for some f with cn1/m(G) < f + 1 < 2cn1/m(G) we have f + 1 |

(
n
2

)
. For every such n and

f , in view of the second part of Theorem 1.2, Avoider wins AF(HG,n, 1, f). Therefore
f−HG,n

< 2cn1/m(G).

Finally, part (iv) is an immediate consequence of the second part of Theorem 1.2.

4.2 Proof of Theorem 1.10

To prove part (i), observe that for some constant c and every sufficiently large n, if
f < cn1/2, then the inequality in Theorem 2.3 holds with a = 1 and H = HK3,n. This is
why Forcer in AF(HK3,n, 1, f) has a winning strategy.

Now we will prove part (ii). Let G be a graph with at least two edges. The key ingre-
dient of the proof is a theorem by Saxton and Thomason [13] about H-free hypergraphs,
which is a consequence of their much more general result on the so-called hypergraph
containers. We should mention that another version of the hypergraph container theo-
rem was independently proved by Balogh, Morris and Samotij [1]. Below we present the
theorem by Saxton and Thomason in a simplified form, for G-free graphs.

Theorem 4.3 ([13], Thm 1.3). Let G be a graph with e(G) > 2 and let ε > 0. For some
constant c > 0 and sufficiently large n there exists a collection C of subgraphs of Kn such
that

(a) for every G-free subgraph F of Kn there exists C ∈ C with F ⊆ C,

(b) e(C) 6 (1− 1/(χ(G)− 1) + ε)
(
n
2

)
for every C ∈ C,

(c) ln |C| 6 cn2−1/m2(G) lnn.

the electronic journal of combinatorics 21(1) (2014), #P1.2 19



Let a family C and a constant c > 0 be as described in the above theorem for
ε < 1/(χ(G)− 1). Observe that if the end position ofAF(HG,n, 1, f) orAFmon(HG,n, 1, f)
is a win for Avoider, then Avoider’s graph is contained in some C ∈ C. Equivalently, Forcer
has selected all edges in the set E(Kn) \ E(C). Hence, Forcer has a winning strategy for
AF(HG,n, 1, f) (or AFmon(HG,n, 1, f)) if he can win playing Avoider’s role in AF(H, f, 1)
(or AFmon(H, f, 1)), where V (H) = E(Kn) and E(H) = {E(Kn) \ E(C) : C ∈ C}.

Let δ > 0 be a constant such that (1/(χ(G) − 1) − ε)
(
n
2

)
> δn2. By Theorem 4.3 we

have

ln |E(H)| 6 cn2−1/m2(G) lnn and |D| >
( 1

χ(G)− 1
− ε
)(n

2

)
> δn2

for every D ∈ E(H). Thus∑
D∈E(H)

( 1

f
+ 1
)−|D|+f

< |E(H)|
( 1

f
+ 1
)−δn2+f

< ecn
2−1/m2(G) lnn · 2−δn2/f+1,

provided that δn2 > f . Calculations show that the right-hand side of the above inequality
is less than 1 if f < c′n1/m2(G)/ lnn, where c′ > 0 is some constant and n is sufficiently
large.

Therefore, for f < c′n1/m2(G)/ lnn, the assumption of the first part of Theorem 1.1
is satisfied (with a = f), so Avoider in AF(H, f, 1) and AFmon(H, f, 1) has a win-
ning strategy. It means that Forcer has a winning strategy for AF(HG,n, 1, f) and
AFmon(HG,n, 1, f), which completes the proof of Theorem 1.10.
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[10] D. Hefetz, M. Krivelevich, and T. Szabó. Avoider-Enforcer games. J. Combinatorial
Theory Ser. A, 114:840–853, 2007.

[11] M. Krivelevich. The critical bias for the Hamiltonicity game is (1 + o(1))n/ ln n.
Journal of the American Mathematical Society, 24:125–131, 2011.
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