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Abstract

For all m > 1 and k > 2, we construct closed 2-cell embeddings of the complete
graph K8km+4k+1 with faces of size 4k in orientable surfaces. Moreover, we show
that when k > 3 there are at least (2m − 1)!/2(2m + 1) = 22mlog2m−O(m) noniso-
morphic embeddings of this type. We also show that when k = 2 there are at least
1
4π

1
2m− 5

4

(

4m
e2

)

√
m
(1− o(1)) nonisomorphic embeddings of this type.

1 Introduction and motivation

Consider an embedding of a simple graph G in an orientable surface. If each of the faces
of the embedding is homeomorphic to an open disk, then the embedding is said to be a
2-cell embedding of G. Moreover, if no vertex appears more than once in the facial walk of
any given face (that is, all the facial walks are cycles of G), then the embedding is said to
be a closed 2-cell embedding. Hence, if the faces of a 2-cell embedding of a simple graph G
with no degree one vertices are all of size less than six, then the embedding is necessarily
closed. Unless otherwise stated all the embeddings we discuss will be orientable.

the electronic journal of combinatorics 21(1) (2014), #P1.22 1



In this paper we will be interested in closed 2-cell embeddings of the complete graph
Kn in which all the faces have the same size. We will denote such an embedding, in which
all the faces have size s say, as an s-2CS(n) embedding (the etymology of this notation
being that the faces of such an embedding correspond to a twofold s-cycle system of order
n, an s-2CS(n)).

To date the only known results on s-2CS(n) embeddings either fix s and vary n, or
vary s but have n = f(s), where f is some fixed linear function. The aim of this paper is
to provide s-2CS(n) embeddings in which both s and n can vary independently.

In solving the Heawood Map Colouring Conjecture for orientable surfaces of genus
greater or equal to one, Youngs [14] and Ringel [13] provide triangulations of the com-
plete graph, Kn, whenever the obvious congruence conditions (n ≡ 0, 3, 4, 7 (mod 12))
are satisfied. In 2000, for n = 12s + 7 where s ≡ 0, 1 (mod 3), Bonnington et. al. [2],
showed that there are at least 2n

2/54−O(n) nonisomorphic orientable triangulations of Kn.
Since 2000 there have been over half a dozen research papers on constructing nonisomor-
phic triangulations of the complete graph. Currently the best known lower bounds on
the number of nonisomorphic triangulations of Kn in either orientable or nonorientable
surfaces are of the form nan

2
for suitable constants a > 0, although these bounds have

only been established for a sparse set of values of n [5, 7].
In [12], Korzhik and Voss constructed 24m−1 nonisomorphic 2-cell orientable embed-

dings, where all the faces have size four, of the complete graph K8m+5, i.e. quadrangular
embeddings. Recently Korzhik [11] improved this result by constructing 22m log2m−O(m)

nonisomorphic orientable quadrangular embeddings of K8m+5.
As mentioned earlier, if an embedding of a complete graph is a triangulation or a

quadrangulation (that is, all the faces either have size 3 or size 4), the embedding is
trivially closed 2-cell and hence is a s-2CS(n) embedding for either s = 3 or s = 4.

Ellingham and Stephens, in [3] and [4], constructed n-2CS(n) embeddings for all n > 5
in nonorientable surfaces and n-2CS(n) embeddings in orientable surfaces for n = 2p + 2
and p > 3. In [8], Griggs and McCourt constructed n-2CS(2n+1) embeddings in orientable
surfaces for all odd n > 3 and in nonorientable surfaces for all n > 4. By applying Theorem
3.1 of [6] to the results of [5] and [7], a lower bound of the form nan

2
on the number of

nonisomorphic n-2CS(n) embeddings may be obtained for certain values of n. For both
n-2CS(n) and n-2CS(2n+ 1) embeddings with n > 6, it is non-trivial to ensure that the
embeddings are closed 2-cell embeddings.

For an s-2CS(n) embedding to exist, a necessary condition is that an s-2CS(n) should
exist, so s 6 n and s must divide n(n− 1) [1]. We will construct embeddings for s = 4k
where k > 2 and where the corresponding 4k-2CS(n) has a cyclic automorphism of order
n so that the faces of the embedding appear in orbits of length n; a necessary condition
for this is that 4k divides (n−1). As we wish to construct orientable embeddings, a quick
calculation with Euler’s formula yields the condition that n = 8km + 4k + 1, for some
m > 0.

In Section 3, for all m, k > 1 we construct closed 2-cell embeddings of K8km+4k+1 with
faces of size 4k in orientable surfaces. In Section 4 we show that, if k = 2, there are

at least 1
4
π

1
2m− 5

4

(

4m
e2

)

√
m
(1 − o(1)) such embeddings and, if k > 3, there are at least
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(2m − 1)!/2(2m + 1) = 22mlog2m−O(m) such embeddings. First however, in Section 2, we
will discuss current graphs, the machinery of which we will use to prove the results in
Section 3.

2 Current graphs

We will construct the embeddings from index 1 current graphs and we assume that the
reader is familiar with these techniques. A good overview of current graphs can be found
in [10], and we will follow the notation established in that book.

Our construction makes extensive use of the following Theorem due to Gross and
Alpert [9] (we state a simpler version of the theorem in which all the edges in question
are orientation preserving).

Theorem 1 ([9]). Let e1 . . . ed be the rotation at vertex v of the current graph 〈G→ S,B〉,
and let ci be the current carried by the direction of the edge ei that has v as its initial
vertex. Let c = c1 . . . cd, and let r be the order of c in the current group B. Then the
derived embedding has |B| /r faces corresponding to vertex v, each of size rd, and each of
the form

(e1, b), (e2, bc1), (e3, bc1c2), . . . , (ed, bc1c2 . . . cd−1), (e1, bc), (e2, bcc1), (e3, bcc1c2), . . .

. . . , (e1, bc
r) = (e1, b).

In order for the derived embedding to be that of a complete graph it is sufficient for the
current graph to have (|B|−1)/2 edges and be a one-face embedding in which each edge is
labelled with an element of B \ {0}, such that for each element i ∈ B \ {0} either exactly
one edge is labelled i or exactly one edge is labelled i−1, i.e. 〈G → S,B〉 is an index 1
current graph; moreover, if S is an orientable surface, then the derived embedding is also
orientable; see [10]. In this paper our current graphs will only have type 0 (untwisted)
edges.

Set n := 8km+ 4k + 1. For the current graphs that are constructed in this paper we
set B := Zn, so, from here on, we will write the group operation additively. We make the
following observation on index 1 current graphs, which is a direct consequence of Theorem
1.

Observation 2.1. Suppose that the vertex v has degree 4k, rotation e1 . . . e4k, where edge
ei carries current ci directed away from v, and that

∑4k
i=1 ci = 0. Then the corresponding

faces in the derived graph have 4k edges and there are n such faces. Moreover, if the set
{∑16j6i cj : 1 6 i 6 4k} has cardinality 4k, then the boundary walk of each of these faces
is a cycle of length 4k.

Thus, in order to construct our desired embedding the construction of a current graph
〈G→ S,Zn〉 with the following properties would suffice.

(i) The graph G has 2m+ 1 vertices and is regular of degree 4k.
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(ii) There is a circuit of the embedding G→ S in which every edge is traversed exactly
once in each direction, i.e. the embedding is an orientable one-face embedding.

(iii) Each edge in G → S is assigned a direction and a distinct current from Zn \ {0},
moreover, if some edge is labelled i, then there does not exist an edge labelled −i.

(iv) For every vertex v, if e1 . . . e4k is the rotation of the vertex, where edge ei carries
current ci directed away from v, then

∑4k
i=1 ci = 0 and the set {∑16j6i cj : 1 6 i 6

4k} has cardinality 4k.

The graph G that we will employ is the (multi-)graph 2kC2m+1, this graph clearly
satisfies Property (i). See Figure 1 for an example with k = m = 2.

b b

b b

b

Figure 1: The graph 4C5.

3 Constructing doubly even embeddings

We will construct a rotation of 2kC2m+1 that induces an orientable one-face embedding
(such an embedding satisfies Properties (i) and (ii)). Then we give a current assignment
of 2kC2m+1 satisfying Properties (iii) and (iv).

Lemma 3.1. For m > 1, there exists an upper-embedding of 2C2m+1 in an orientable
surface.

Proof. Let V (2C2m+1) = {v0, v1, . . . , v2m}. Denote the two edges between vertices vi and
vi+1 (where subscripts are taken modulo 2m + 1) as ei and e2m+1+i. Now, we assign the
following edge rotations at each vertex
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v0 : e0 e4m+1 e2m e2m+1

v1 : e0 e1 e2m+1 e2m+2

v2 : e1 e2 e2m+2 e2m+3
...

vi : ei−1 ei e2m+i e2m+1+i
...

v2m : e2m−1 e2m e4m e4m+1

It is easy to check that the embedding described has precisely one facial walk, namely

e2m+1, e2m+2, e2m+3, . . . , e4m, e4m+1, e2m, e4m, e2m−2, e4m−2, . . . , e2, e2m+2, e0,

e4m+1, e2m−1, e4m−1, e2m−3, . . . , e1, e2m+1, e0, e1, e2, e3, . . . , e2m−1, e2m,

and that each edge is traversed precisely once in each direction in this walk. (We have
suppressed the vertices from this sequence as they are implicit from the edges.)

Figure 2 shows the one-face embedding when m = 2 (in the figure the vertices have
an anticlockwise orientation).

b v0

b v1 bv4

b v2 bv3

e4

e9

e0

e5

e1e6

e2

e7

e8e3

Figure 2: The embedding from Lemma 3.1 when m = 2.

Lemma 3.2. Suppose we have a graph G and a rotation D of G inducing an orientable
one-face embedding of G. Suppose that u and v are distinct vertices of G and the edge
rotation at u is Du = . . . , a, b, . . . and the edge rotation at v is Dv = . . . , c, d, . . .. Then if
we add two parallel (type 0) edges f1 and f2 joining u and v, and define the rotation D′

of the obtained graph as D′
u = . . . , a, f1, f2, b, . . ., D

′
v = . . . , c, f1, f2, d, . . ., and D

′
w = Dw

for all w /∈ {u, v}, then D′ induces an orientable one-face embedding.

See Figure 3 for an illustration of Lemma 3.2.

the electronic journal of combinatorics 21(1) (2014), #P1.22 5



u

f1

f2

v

Figure 3: Illustration of Lemma 3.2.

Proof. Without loss of generality the facial walk is of the form

a, u, b, . . . c, v, d, . . .

The addition of the edges f1 and f2 as described in the statement of the lemma yields an
embedding with the facial walk

a, u, f1, v, f2, u, b, . . . c, v, f1, u, f2, v, d, . . .

Hence, we have an orientable upper-embedding of G = (V (G), E(G) ∪ {f1, f2}).

Theorem 2. For k,m > 1, there exists an orientable 4k-2CS(8km+ 4k + 1) embedding.

Proof. When k = 1 the result follows from [12]. So we need only consider k > 2.
For each of the cases below we first construct an upper-embedding of 2kC2m+1 using

Lemmas 3.1 and 3.2. Starting with the embedding of 2C2m+1 from Lemma 3.1, for each
0 6 i 6 2m, we add the pairs of edges f 2j−1

i , f 2j
i , where 1 6 j 6 k−1, between vertices vi

and vi+1 (with subscripts taken modulo 2m + 1) using Lemma 3.2 to yield the following
edge rotations (the sign of the edge indicates the orientation of the edge, positive for an
edge directed into the vertex and negative otherwise).

v0 : −e0 e4m+1 f 1
0 f 2

0 . . . f
2(k−1)
0 e2m −e2m+1 −f 1

2m −f 2
2m . . . −f 2(k−1)

2m

v1 : e0 −e1 f 1
1 f 2

1 . . . f
2(k−1)
1 e2m+1 −e2m+2 −f 1

0 −f 2
0 . . . −f 2(k−1)

0

v2 : e1 −e2 f 1
2 f 2

2 . . . f
2(k−1)
2 e2m+2 −e2m+3 −f 1

1 −f 2
1 . . . −f 2(k−1)

1
...

vi : ei−1 −ei f 1
i f 2

i . . . f
2(k−1)
i e2m+i −e2m+1+i −f 1

i−1 −f 2
i−1 . . . −f 2(k−1)

i−1
...

v2m : e2m−1 −e2m f 1
2m f 2

2m . . . f
2(k−1)
2m e4m −e4m+1 −f 1

2m−1 −f 2
2m−1 . . . −f 2(k−1)

2m−1

We denote this embedding as 2kC2m+1 → S. By Lemmas 3.1 and 3.2, 2kC2m+1 → S is
an orientable upper embedding and so Property (ii) is satisfied.

We begin with the case where k > 3. The edges of 2kC2m+1 → S are labelled as
follows:

ei : 4km− 2ki+ 2k, for 0 6 i 6 2m;

ei : 2ki+ 2, for 2m+ 1 6 i 6 4m+ 1;
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f j2i : (−1)j−1(2ki+ j), for 0 6 i 6 m and 1 6 j 6 2(k − 1); and

f j2i−1 : (−1)j−1(4km− 2ki+ 2k + j), for 1 6 i 6 m and 1 6 j 6 2(k − 1).

Note that these currents (and their negatives) provide each of the elements of Zn \ {0}
exactly once; hence, Property (iii) is satisfied. This labelling, together with the above
edge rotations at the vertices, yields the following series;

v0 : (−(4km+ 2k)) + (8km+ 2k + 2) +





2(k−1)
∑

j=1

(−1)j−1j





+ (2k) + (−(4km+ 2k + 2)) +





2(k−1)
∑

j=1

(−1)j(2km+ j)





and, for 1 6 i 6 m;

v2i−1 : (4km+ 6k − 4ki) + (−(4km+ 4k − 4ki))

+





2(k−1)
∑

j=1

(−1)j−1(4km+ 2k − 2ki+ j)



+ (4km+ 4ki− 2k + 2)

+ (−(4km+ 4ki+ 2)) +





2(k−1)
∑

j=1

(−1)j(2ki− 2k + j)





v2i : (4km+ 4k − 4ki) + (−(4km+ 2k − 4ki)) +





2(k−1)
∑

j=1

(−1)j−1(2ki+ j)





+ (4km+ 4ki+ 2) + (−(4km+ 2k + 4ki+ 2))

+





2(k−1)
∑

j=1

(−1)j(4km+ 2k − 2ki+ j)





Hence, these labellings yield the following sequences of partial sums;

v0 : 4km+ 2k + 1, 4km+ 2, (4km+ 2 + j, 4km+ 2− j)k−1
j=1 ,

4km+ k + 3, 8km+ 3k + 2, (6km+ 3k + 2− j, 8km+ 3k + 2 + j)k−1
j=1

and, for 1 6 i 6 m;

v2i−1 : 4km+ 6k − 4ki, 2k, (4km+ 4k − 2ki+ j, 2k − j)k−1
j=1 , 4km− k + 4ki+ 3,

8km+ 3k + 2, (8km+ 5k − 2ki+ 2− j, 8km+ 3k + 2 + j)k−1
j=1

v2i : 4km+ 4k − 4ki, 2k, (2k + 2ki+ j, 2k − j)k−1
j=1 , 4km+ k + 4ki+ 3,

8km+ 3k + 2, (4km+ k + 2ki+ 2− j, 8km+ 3k + 2 + j)k−1
j=1 .
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It is easy to check that, as k > 3, for vertex vl, where 0 6 l 6 2m, the terms in the
sequence of partial sums are all distinct and that the final term is 0; hence Property (iv)
holds.

For k = 2 the labellings given above do not satisfy Property (iv); for example, the
partial sums for v0 given by 4km + 2k + 1 and 4km + k + 3 are equal. Instead, when
k = 2, the edges of 2kC2m+1 → S may be labelled as follows:

ei : 8m− 4i+ 4, for 0 6 i 6 2m;

ei : 4i+ 2, for 2m+ 1 6 i 6 4m+ 1;

f j2i : (−1)j(4i+ j), for 0 6 i 6 m and j = 1, 2; and

f j2i−1 : (−1)j(8m− 4i+ 4 + j), for 1 6 i 6 m and j = 1, 2.

Note that this labelling satisfies Property (iii). This time the labelling yields the following
series;

v0 : (−(8m+4))+(16m+6)+(−1)+ (2)+ (4)+ (−(8m+6))+(4m+1)+(−(4m+2))

and, for 1 6 i 6 m;

v2i−1 : (8m+ 12− 8i) + (−(8m+ 8− 8i)) + (−(8m− 4i+ 5)) + (8m− 4i+ 6)

+ (8m+ 8i− 2) + (−(8m+ 8i+ 2)) + (4i− 3) + (−(4i− 2))

v2i : (8m+ 8− 8i) + (−(8m+ 4− 8i)) + (−(4i+ 1)) + (4i+ 2)

+ (8m+ 8i+ 2) + (−(8m+ 8i+ 6)) + (8m+ 5− 4i) + (−(8m+ 6− 4i)).

Once again a modicum of checking shows that for each vertex in 2kC2m+1 → S the
sequence of partial sums is made up of 8 distinct elements and so Property (iv) is satisfied.

4 Constructing nonisomorphic embeddings

A pair of graphs, G1 and G2, are isomorphic if there exists a pair of bijections, (θV , θE) say,
where θV : V (G1) → V (G2) and θE : E(G1) → E(G2) such that an edge e ∈ E(G1) has
end vertices x, y ∈ V (G1), if and only if, θE(e) has end vertices θV (x), θV (y) ∈ V (G2). Two
2-cell embeddings of the complete graph Kn, say Kn → S and Kn → S ′, are isomorphic if
there is a bijection θ : V (Kn) → V (Kn) such that v1, v2, . . . , vk is a facial walk in Kn → S,
if and only if, θ(v1), θ(v2), . . . , θ(vk) is a facial walk in Kn → S ′.

Now consider a pair of 2-cell embedding of the complete graph Kn that are lifts of a
pair of two current graphs with edge labels from the same Abelian group. In [12] Korzhik
and Voss showed that a necessary condition for such a pair of embeddings to be isomorphic
is that the two underlying graphs must also be isomorphic (also see [11]). This result is
a key ingredient in our proofs of Theorems 3 and 4.
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Theorem 3. For k > 3 and m > 1, there are at least ((2m − 1)!)/2(2m + 1) =
22mlog2m−O(m) nonisomorphic orientable 4k-2CS(8km+ 4k + 1) embeddings.

Theorem 4. The number of nonisomorphic orientable 8-2CS(16m+ 9) embeddings is at

least
∑ŝ

s=1 s!p(2m− 5− s(s+1)
2

, s), where ŝ =
⌊√

16m−31−3
2

⌋

and p(n, s) denotes the number

of partitions of n into s positive integer parts.

In order to prove Theorems 3 and 4 we first make the following observation on the
proof of Theorem 2.

Observation 4.1. Let ψ ∈ S2m+1 be the permutation mapping i to i+1 modulo 2m+1, for
all 0 6 i 6 2m. Then, for any permutation φ ∈ S2m+1 conjugate to ψ where φ(2m) = 0,
suppose that we modify the construction from the proof of Theorem 2 so that the edges
f 1
i , f

2
i , . . . , f

2(k−1)
i are added between vertices vi and vφ(i) (instead of between vertices vi

and vψ(i)) so that the edge rotations at the vertices are now

v0 : −e0 e4m+1 f 1
0 f 2

0 . . . f
2(k−1)
0 e2m −e2m+1 −f 1

2m −f 2
2m . . . −f 2(k−1)

2m

v1 : e0 −e1 f 1
1 f 2

1 . . . f
2(k−1)
1 e2m+1 −e2m+2 −f 1

φ−1(1) −f 2
φ−1(1) . . . −f

2(k−1)

φ−1(1)

v2 : e1 −e2 f 1
2 f 2

2 . . . f
2(k−1)
2 e2m+2 −e2m+3 −f 1

φ−1(2) −f 2
φ−1(2) . . . −f

2(k−1)

φ−1(2)
...

vi : ei−1 −ei f 1
i f 2

i . . . f
2(k−1)
i e2m+i −e2m+1+i −f 1

φ−1(i) −f 2
φ−1(i) . . . −f 2(k−1)

φ−1(i)
...

v2m : e2m−1 −e2m f 1
2m f

2
2m . . . f

2(k−1)
2m e4m −e4m+1 −f 1

φ−1(2m) −f 2
φ−1(2m) . . . −f

2(k−1)

φ−1(2m)

Then the resulting embedding still satisfies Properties (i) to (iv).

Proof. Properties (i) to (iii) follow exactly as in the proof of Theorem 2. We just need
to check that all the new construction satisfies Property (iv); i.e. the sequences of partial
sums at each vertex is made up of 4k distinct elements. The sequence of partial sums
at v0 is unchanged so we need only to consider vertices vi, where 1 6 i 6 2m. We will
consider the two cases from the proof of Theorem 2 separately, namely k > 3 and k = 2.

Suppose that k > 3. First note that, in the proof of Theorem 2, for 0 6 i 6 m,
the (2k + 2)-th term of the sequence of partial sums for both v2i−1 and v2i is always
8km+ 3k + 2. Let

D = {2k − t, 8km+ 3k + 2 + t : 0 6 t 6 k − 1};

Dodd = {4km+6k− 4ki, 4km+4k− 2ki+ t, 4km−k+4ki+3 : 1 6 t 6 k− 1}; and

Deven = {4km+ 4k − 4ki, 2k + 2ki+ t, 4km+ k + 4ki+ 3 : 1 6 t 6 k − 1}.
Then, for all 1 6 j 6 m, and 1 6 ℓ 6 k − 1 the following all hold:

8km+ 5k − 2kj + 2− ℓ, 4km+ k + 2kj + 2− ℓ 6∈ D (Claim A.1 in Appendix A);

8km+ 5k − 2kj + 2− ℓ 6∈ Dodd (Claim A.2 in Appendix A);
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if i 6= j − 1, then 8km+ 5k − 2kj + 2− ℓ 6∈ Deven (Claim A.3 in Appendix A);

if i 6= j, then 4km+ k + 2kj + 2− ℓ 6∈ Dodd (Claim A.4 in Appendix A); and

4km+ k + 2kj + 2− ℓ 6∈ Deven (Claim A.5 in Appendix A).

Hence, for the case k > 3, Property (iv) is satisfied and the observation follows.
Now suppose that k = 2. This time, in the proof of Theorem 2, for 0 6 i 6 m, the

6th term of the sequence of partial sums for both v2i−1 and v2i−1 is always 1. For all
1 6 j 6 m, we have the following:

4j − 2, 8m+ 6− 4j 6∈ {8m+ 12− 8i, 4, 8m+ 8 + 4i, 5, 8m+ 3 + 8i, 1}

and
4j − 2, 8m+ 6− 4j 6∈ {8m+ 8− 8i, 4, 16m+ 12− 4i, 5, 8m+ 7 + 8i, 1}.

As for the previous case, the observation follows.

Let ψ be defined as in Observation 4.1 and put

S = {φ ∈ S2m+1 : where φ is conjugate to ψ and φ(2m) = 0}.

For each φ ∈ S, denote by Gφ the graph constructed in Observation 4.1. From such a
graph Gφ a further graph Gφ may be constructed on the same vertex set by identifying
the edge e2m+1+i with the parallel edge ei for 0 6 i 6 2m, and by identifying together all
the parallel edges f ji (1 6 j 6 2(k − 1)) as a single edge, denoted by fi, for 0 6 i 6 2m.
We will refer to the edges ei ∈ E(Gφ) as e-edges and the edges fi ∈ E(Gφ) as f -edges.
Clearly if Gφ1 and Gφ2 are isomorphic, then so are Gφ1 and Gφ2 .

We now deal with the case where k > 3 which is somewhat simpler than the case
k = 2.

Theorem 3. For k > 3 and m > 1, there are at least (2m−1)!/2(2m+1) = 22m log2m−O(m)

nonisomorphic orientable 4k-2CS(8km+ 4k + 1) embeddings.

Proof. Fix k > 3 and m > 1. Each φ ∈ S may be written in cycle notation as

φ = (2m, 0, a1, a2, . . . , a2m−1),

where {a1, a2, . . . , a2m−1} = {1, 2, . . . , 2m− 1}. So the cardinality of S is (2m− 1)!.
In Gφ, each pair of vertices is joined by 0, 2, 2(k − 1) or 2k edges. Vertices joined by

2 or 2k edges must be joined by e-edges in Gφ and vertices joined by 2(k− 1) or 2k edges
must be joined by f -edges in Gφ. Since k > 3, it is therefore possible to identify the cycle
(of length 2m+ 1) of vertices joined by the e-edges in Gφ.

Now suppose that φ1, φ2 ∈ S and that Gφ1 and Gφ2 are isomorphic. Then there must
be an isomorphism from Gφ1 to Gφ2 mapping the cycle of e-edges to itself. We can rotate
this cycle or reflect it, so the size of an isomorphism class of Gφ is at most 2(2m + 1).
Hence the number of isomorphism classes of Gφ is at least (2m− 1)!/2(2m+ 1).
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As mentioned at the start of this section, results from [12] show that nonisomorphic
graphs Gφ produce nonisomorphic embeddings. So the number of nonisomorphic ori-
entable 4k-2CS(8km+4k+1) embeddings is at least (2m−1)!/2(2m+1) = 22m log2m−O(m)

as m→ ∞.

We next consider the case k = 2. Our strategy is based on the following lemma

Lemma 4.1. Suppose that m > 4. Then two different ordered partitions of 2m − 5 into
distinct integer parts, each part of size at least 2, may be used to generate nonisomorphic
graphs Gφ. Hence the number of nonisomorphic orientable 8-2CS(16m + 9) embeddings
is at least the number of such partitions.

Proof. Suppose that R is a partition of r = 2m− 5 (m > 4) into s distinct integer parts
r1, r2, . . . , rs where r1 + r2 + . . . + rs = r and ri > 2 for i = 1, 2, . . . , s. With each ri
associate a graph Ri having ri + 1 vertices and ri − 1 pairs of parallel edges having the
form shown in Figure 4.

Figure 4: The graph Ri.

The graphs R1, R2, . . . , Rs may be joined end to end in order by identifying the vertex
of degree 1 in Ri with the vertex of degree 2 in Ri+1 for 1 6 i 6 s− 1 to form a graph R
on r + 1 vertices as shown in Figure 5.

R1 R2 Rs

Figure 5: The graph R.

For any graph G, let Π(G) be the subgraph induced by its parallel edges. For example,
Π(Ri) is isomorphic to 2Pri , where Pj denotes a path with j vertices. Similarly, Π(R) is
isomorphic to a graph with s components 2Pr1 , 2Pr2 , . . . , 2Prs . It follows that the partition
R may be recovered from the graph R, as may the ordering of the parts.

Further edges and five new vertices are now added to R to form a graph G which
is regular of degree 4 and whose edges may be labelled to form a graph Gφ. The new
edges and vertices are added in two stages and in such a way that no additional parallel
edges are created, so that Π(G) = Π(R), and the ordering of the partition R may also be
recovered from G. The placement of the additional edges depends on whether s is even or
odd. In both cases the first stage is to take the subgraphs Ri together in pairs, with Rs
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left over if s is odd. So, for each i = 1, 2, . . . , ⌊ s
2
⌋, join the vertex of degree 3 in R2i−1 to

the vertex of degree 3 in R2i, and the vertex of degree 1 in R2i−1 to the vertex of degree 1
in R2i (see Figure 6 where the additional edges are shown dashed). If s is odd, Rs receives
no additional edges at this stage.

R2i−1 R2i

Figure 6: Additional edges between R2i−1 and R2i.

It is not possible to recover the subgraphs Ri unambiguously from the new graph
because of the additional edges. However, both the partition R and the ordering of this
partition can still be recovered.

The second stage is to connect the end vertices of R, that is the vertex of degree 2
from R1 and the vertex of degree 1 from Rs, by adding five new vertices and 12 new edges
as shown in Figure 7, where six of the new edges are shown with dotted lines and six with
dashed lines.

Rs R1

(a) s even.

Rs R1

(b) s odd.

Figure 7: Completing the graph G.

The resulting graph G is regular of degree 4. The vertex of degree 2 in the subgraph
R1 lies in a triangle in G where the other two vertices of which are not in parallel edges,
while the vertex of degree 3 in the subgraph Rs does not lie in such a triangle in G. (This
latter vertex will lie in a triangle if rs = 2 and s is even, but the other two vertices of this
triangle are in parallel edges.) So the vertex, say v0, of degree 2 in R1 may be identified
and hence the direction of the ordering of the subgraphs Ri in G may be determined (that
is, (R1, R2, . . . , Rs) may be distinguished from (Rs, Rs−1, . . . , R1)).

Since r1 > 2, the subgraph R1 has a pair of parallel edges incident with v0. Label
the adjacent vertex of R1 as v2m. The graph G may be decomposed into two edge-
disjoint cycles of length 2m + 1 each having v0 and v2m as adjacent vertices. For ex-
ample, one cycle may be taken as comprising all the dashed edges together with one
edge from each pair of parallel edges, and the other cycle as comprising all the remain-
ing edges. Label all the unlabelled vertices v1, v2, . . . , v2m−1 so that one of these cycles
is (v0, v1, . . . , v2m). Then label the edges of this cycle e0, e1, . . . , e2m so that ei has end
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vertices vi and vi+1. The other cycle then determines a permutation φ ∈ S such that this
cycle is (v0, v2m, vφ(2m), vφ2(2m), . . . , vφ(2m−1)(2m)), and the remaining unlabelled edges may
be labelled f0, f1, . . . , f2m so that fi has end vertices vφ(i) and vi. The resulting labelled
graph may be denoted by Gφ. Finally each edge ei is replaced by parallel edges ei and
e2m+1+i, and each edge fi is replaced by parallel edges f 1

i and f 2
i , resulting in the graph

Gφ.
If Gφ1 and Gφ2 formed by this construction are isomorphic, then so are Gφ1 and Gφ2 ,

and so both correspond to the same ordered partition R. Applying Observation 4.1, the
number of nonisomorphic orientable embeddings of 8-2CS(16m + 9) systems is therefore
at least as great as the number of different ordered partitions of 2m − 5 into distinct
integer parts, each part of size at least 2.

We now derive an estimate for the number of different ordered partitions of n into
distinct integer parts with each part of size at least 2. We will denote this number by Q(n).
Let q(n, s) be the number of partitions of the integer n into s distinct integer parts with
each part of size at least 2. The number of ordered partitions of the integer n into s distinct
integer parts with each part of size at least 2 is s!q(n, s), and so Q(n) =

∑

s s!q(n, s).
Let p(n, s) denote the number of partitions of the integer n into s positive integer parts.

If
∑s

i=1 ni = n where ns > ns−1 > . . . > n1 > 1 are integers (so that n > s), then with n′
i =

ni + i we have
∑s

i=1 n
′
i = n′ = n+ s(s+1)

2
where n′

s > n′
s−1 > . . . > n′

1 > 1 (and n′ > s(s+
3)/2). Thus every partition of n′ > s(s+3)/2 into s distinct integer parts where each part
is of size at least 2 corresponds to a partition of n = n′− s(s+1)/2 into s positive integer

parts. It follows that q(n, s) = p
(

n− s(s+1)
2

, s
)

. Hence Q(n) =
∑ŝ

s=1 s!p
(

n− s(s+1)
2

, s
)

,

where ŝ = ŝ(n) =
⌊√

8n+9−3
2

⌋

, so that ŝ(ŝ+3)
2

6
1
2

(√
8n+9−3

2

)(√
8n+9+3

2

)

= n < (ŝ+1)(ŝ+4)
2

.

We can now state the following result.

Theorem 4. The number of nonisomorphic orientable 8-2CS(16m+ 9) embeddings is at

least Q(2m− 5) =
∑ŝ

s=1 s!p(2m− 5− s(s+1)
2

, s), where ŝ = ŝ(2m− 5) =
⌊√

16m−31−3
2

⌋

and

p(n, s) denotes the number of partitions of n into s positive integer part.

Despite the existence of various estimates for p(n, s), it has proved difficult to find a
good asymptotic estimate for Q(2m− 5). The following approach is very crude. Consider

the partition 2 + 3 + . . .+ ŝ+ (ŝ+ 1) of ŝ(ŝ+ 3)/2, where ŝ = ŝ(2m− 5) =
⌊√

16m−31−3
2

⌋

is as defined previously, so that ŝ(ŝ+ 3)/2 6 2m− 5. Put r = (2m− 5)− ŝ(ŝ+ 3)/2 and
replace the term (ŝ + 1) in the partition by (ŝ + 1 + r) so that it now forms a partition
of 2m − 5 into ŝ distinct parts with each part of size at least 2. The number of ordered
partitions of 2m− 5 into ŝ distinct parts with each part of size at least 2 is at least ŝ!, so
Q(2m− 5) > ŝ!.

It is easy to show that if m is sufficiently large then ŝ > 2
√
m− 3 = 2

√
m(1− 3

2
√
m
).
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Then, using Stirling’s Theorem, we have

Q(2m− 5) >
√

2π(2
√
m− 3)

(

2
√
m(1− 3

2
√

m
)

e

)2
√
m−3

= 2π
1
2m

1
4

(

4m
e2

)

√
m
(1− 3

2
√
m
)2

√
m
(

e
2
√
m−3

)3

(1− o(1))

= 2π
1
2m

1
4

(

4m
e2

)

√
m
e−3 e3

8m
3
2
(1− o(1)) = 1

4
π

1
2m− 5

4

(

4m
e2

)

√
m
(1− o(1)).

This is likely to be a considerable under-estimate for the number of embeddings.
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A Observation 4.1

Suppose that m > 1 and k > 3. For 0 6 i 6 m, in the proof of Observation 4.1, the
following sets are defined.

D = {2k − t, 8km+ 3k + 2 + t : 0 6 t 6 k − 1};

Dodd = {4km+6k− 4ki, 4km+4k− 2ki+ t, 4km−k+4ki+3 : 1 6 t 6 k− 1}; and

Deven = {4km+ 4k − 4ki, 2k + 2ki+ t, 4km+ k + 4ki+ 3 : 1 6 t 6 k − 1}.

Claim A.1. For all 1 6 j 6 m and 1 6 ℓ 6 k − 1; 8km + 5k − 2kj + 2 − ℓ, 4km + k +
2kj + 2− ℓ 6∈ D.

Proof. Let 0 6 t 6 k − 1. Suppose that, for some 1 6 j 6 m and 1 6 ℓ 6 k − 1;
{8km+ 5k − 2kj + 2− ℓ, 4km+ k + 2kj + 2− ℓ} ∩D 6= ∅. Then

8km+5k−2kj+2−ℓ = 2k−t, so 8km+3k+2+t = 2kj+2k+ℓ 6 2km+3k−1; or

8km+5k− 2kj +2− ℓ = 8km+3k+2+ t, so 2k = t+2kj + ℓ, hence 2k|(t+ ℓ); or

4km+ k + 2kj + 2− ℓ = 2k − t, so 4km+ 2kj + 2 + t = k + ℓ 6 2k − 1; or

4km+ k + 2kj + 2− ℓ = 8km+ 3k + 2 + t, so 2km > 2kj = 4km+ 2k + t+ ℓ.

Thus, in all four cases, we have a contradiction.

Claim A.2. For all 1 6 j 6 m and 1 6 ℓ 6 k − 1; 8km+ 5k − 2kj + 2− ℓ 6∈ Dodd.

Proof. Let 0 6 t 6 k − 1. Suppose that, for some 1 6 i, j 6 m and 1 6 ℓ 6 k − 1;
8km+ 5k − 2kj + 2− ℓ ∈ Dodd. Then

8km+5k−2kj+2−ℓ = 4km+6k−4ki, so 4km+4ki+2 = k+2kj+ℓ 6 2km+2k−1; or

8km+5k− 2kj +2− ℓ = 4km+4k− 2ki+ t, so 4km+ k+2ki+2 = 2kj + ℓ+ t 6
2km+ 2k − 2; or

8km+5k− 2kj+2− ℓ = 4km− k+4ki+3, so 4km+6k = 4ki+2kj+ ℓ+1, hence
2k|(ℓ+ 1).

Thus, in all three cases, we have a contradiction.

Claim A.3. For all 1 6 j 6 m and 1 6 ℓ 6 k−1; if i 6= j−1, then 8km+5k−2kj+2−ℓ 6∈
Deven.

Proof. Let 0 6 t 6 k − 1. Suppose that, for some 1 6 i, j 6 m where i 6= j − 1 and
1 6 ℓ 6 k − 1; 8km+ 5k − 2kj + 2− ℓ ∈ Deven. Then

8km+5k−2kj+2−ℓ = 4km+4k−4ki, so 4km+k+4ki+2 = 2kj+ℓ 6 2km+k−1; or

8km + 5k − 2kj + 2 − ℓ = 2k + 2ki + t, so 8km + 3k + 2 = 2ki + 2kj + t + ℓ 6

4km+ 2k − 2; or
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8km+5k− 2kj+2− ℓ = 4km+ k+4ki+3, so 4km+4k = 4ki+2kj+ ℓ+1, hence
2k|(ℓ+ 1).

Thus, in all three cases, we have a contradiction.

Claim A.4. For all 1 6 j 6 m and 1 6 ℓ 6 k− 1; if i 6= j, then 4km+ k+2kj+2− ℓ 6∈
Dodd.

Proof. Let 0 6 t 6 k − 1. Suppose that, for some 1 6 i, j 6 m where i 6= j and
1 6 ℓ 6 k − 1; 4km+ k + 2kj + 2− ℓ ∈ Dodd. Then

4km + k + 2kj + 2 − ℓ = 4km + 6k − 4ki, so, as i 6= j, 8k + 2 6 2 + 2kj + 4ki =
5k + ℓ 6 6k − 1; or

4km+ k+ 2kj + 2− ℓ = 4km+ 4k− 2ki+ t, so, as i 6= j, 6k+ 2 6 2 + 2kj + 2ki =
3k + t+ ℓ 6 5k − 2; or

4km+k+2kj+2−ℓ = 4km−k+4ki+3, so 2k+2kj = 4ki+ℓ+1, hence 2k|(ℓ+1).

Thus, in all three cases, we have a contradiction.

Claim A.5. For all 1 6 j 6 m and 1 6 ℓ 6 k − 1; 4km+ k + 2kj + 2− ℓ 6∈ Deven.

Proof. Let 0 6 t 6 k − 1. Suppose that, for some 1 6 i, j 6 m and 1 6 ℓ 6 k − 1;
4km+ k + 2kj + 2− ℓ ∈ Deven. Then

4km+ k + 2kj + 2− ℓ = 4km+ 4k − 4ki, so 4ki+ 2kj + 2 = 3k + ℓ 6 4k − 1; or

4km+k+2kj+2−ℓ = 2k+2ki+t, so 4km+2kj+2 = k+2ki+t+ℓ 6 2km+3k−2; or

4km+ k + 2kj + 2− ℓ = 4km+ k + 4ki+ 3, so 2kj = 4ki+ ℓ+ 1, hence 2k|(ℓ+ 1).

Thus, in all three cases, we have a contradiction.
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