
On the Kirchhoff and the Wiener Indices of
Graphs and Block Decomposition

Ashkan Nikseresht∗ Zahra Sepasdar
Department of Mathematics

Shiraz University
Shiraz, Iran

ashkan nikseresht@yahoo.com zsepasdar@yahoo.com

Submitted: Jun 25, 2013; Accepted: Jan 19, 2014; Published: Feb 7, 2014

Mathematics Subject Classifications: 05C12, 05C85, 05C50.

Abstract

In this article we state a relation between the Kirchhoff and Wiener indices of
a simple connected graph G and the Kirchhoff and Wiener indices of those sub-
graphs of G which are induced by its blocks. Then as an application, we define a
composition of a rooted tree T and a graph G and calculate its Kirchhoff index in
terms of parameters of T and G. Finally, we present an algorithm for computing
the resistance distances and the Kirchhoff index and a similar one for computing the
weighted distances and the Wiener index of a graph. These algorithms are asymp-
totically faster than the previously known algorithms, on graphs in which the order
of the subgraphs induced by blocks is small with respect to the order of the graph.

Keywords: Kirchhoff index; Wiener index; Resistance distance; Shortest path
problem; Block Decomposition

1 Introduction

In this article, all graphs are simple, we assume that G is a connected graph and by
V(G), n(G), E(G) and N(x) we mean the set of vertices of G, number of its vertices, the
set of edges of G and the set of neighbors of a vertex x, respectively. The concept of
resistance distance was first introduced by Klein and Randić [7]. Recently this concept
has got a wide attention from different authors especially those interested in applications
in quantum chemistry, see for example [1, 6, 2, 8, 5, 11, 10, 12].

If we view G as an electrical network and replace each edge e of G with a resistance
ρe, the resistance distance between vertices a and b, denoted by rab(G) or rab if there is no

∗Partially funded by the National Elite Foundation of Iran.

the electronic journal of combinatorics 21(1) (2014), #P1.25 1

ambiguity, is defined to be the effective resistance between vertices a and b as computed
by Ohm’s and Kirchhoff’s laws. To describe it more concretely, let I(x, y) = Ixy be a
positive real valued function defined on all pairs of adjacent vertices of G and P (x) be a
real valued function defined on V(G). Fix two vertices a and b of G and assume that I
and P satisfy the following conditions.

(i) Ixy = −Iyx,

(ii)
∑

y∈N(x) Ixy = (δax − δbx)I0 for all vertices x where I0 is a constant,

(iii) Ixyρxy = P (x)− P (y) for all pairs of adjacent vertices x, y.

Then we say that I is a flow function from a to b (or an (a, b)-flow function) with total flow

I0 and P a potential function for I. In this case we say rab = P (a)−P (b)
I0

is the resistance
distance between a and b (see [7]). Also we set raa = 0.

Note that we can replace (iii) above with

(iii′)
∑

16i<k Ixixi+1
ρxixi+1

= 0 for all cycles x1, x2, . . . , xk−1, x1 in G.

It is easy to see that if (iii′) holds, then a potential function satisfying (iii) exists and is
unique up to a constant summand. If a, b are two vertices lying in different components
of a graph H, we define rab(H) =∞. Now the Kirchhoff index of G is defined as:

Kf(G) =
1

2

∑

a,b∈V(G)

rab.

If we define the n× n weighted adjacency matrix A(G) = (aij) of G as:

aij =

{ 1
ρij

0

i ∼ j

otherwise

and the diagonal matrix of vertex degrees D(G) as D(G) = diag(
∑n

i=1 a1i, . . . ,
∑n

i=1 ani),
then the Laplacian matrix of G is L(G) = D(G) − A(G). Let λ1 6 λ2 6 · · · 6 λn
be the eigenvalues of L(G), called the Laplacian eigenvalues of G, then λ1 = 0 and for
k = 2, . . . , n, λk are nonzero real numbers (since G is connected, see [9]). Theorem F of
[7] implies that:

Theorem 1.1. For any connected n-vertex graph G (n > 2):

Kf(G) = n
n∑

k=2

1

λk

Now let w be a positive weight function on E(G). If d(x, y) denotes the weighted
distance of x and y (that is, min{∑e∈P w(e)} where P runs through all (x, y)-paths),
then W(G) = 1

2

∑
x,y∈V(G) d(x, y) is called the Wiener index of G.

Here in Section 2, we state a relation between the Kirchhoff and Wiener indices of
a simple connected graph G and the Kirchhoff and Wiener indices of those subgraphs

the electronic journal of combinatorics 21(1) (2014), #P1.25 2

of G which are induced by its blocks. As an application of this relation, we define a
composition of a rooted tree T and a graph G and calculate its Kirchhoff index in terms
of parameters of T and G. Also we show that using these technics one can compute the
Kirchhoff index of the weighted barbell graph easily.

In Section 3, we present an algorithm for computing the effective resistance distances
and the Kirchhoff index (or the weighted distances and the Wiener index) of a graph,
that is asymptotically faster than the previously known algorithms when the order of the
subgraphs induced by blocks is small relative to the order of the graph itself. Note that
in case of weighted distances and Wiener index, the presented algorithm enhances the
many algorithms for solving the well-known problem of finding all-pairs shortest paths in
a graph such as Johnson’s Algorithm.

2 Block decomposition and the Kirchhoff and Wiener

indices

We start with some lemmas, required to obtain a relation between Kf(G) and Kirchhoff
index of blocks of G. Assume that k is a cut vertex and H1 and H2 are subgraphs of G.
Here we say that (H1, H2) is a k-separation of G, when G = H1 ∪H2 and {k} = H1 ∩H2.

Lemma 2.1 ([7, Lemma E]). Let k be a cut vertex of a graph G and (H1, H2) be a
k-separation of G. If i ∈ V(H1) and j ∈ V(H2), then rij(G) = rik(H1) + rkj(H2).

Lemma 2.2. Let k be a cut vertex of G and (H1, H2) be a k-separation of G. If i, j ∈
V(H1) then rij(G) = rij(H1).

Proof. Let I be the (i, j)-flow function of H1 and extend it to G by setting I = 0 in H2.
Now clearly I is an (i, j)-flow of G and hence the result follows.

In what follows, for each i ∈ V(G), we set KfG(i) =
∑

i 6=j∈V(G) rij. Obviously Kf(G)

can be written as Kf(G) = 1
2

∑
i∈V(G) KfG(i). WG(i) is defined similarly.

Theorem 2.3. Suppose that G is a graph, B1, . . . , Br are its blocks and S is the set of its
cut vertices. For each x ∈ S, if the component of G − Bi that contains x is named Hix,
set Cix = n(Hix)− 1. Also let Gi = G[Bi]. Then

Kf(G) =
r∑

i=1

(
Kf(Gi) +

∑

x∈S∩Gi
CixKfGi(x) +

∑

x,y∈S∩Gi
CixCiyrxy(Gi)

)
. (1)

Proof. Let u ∈ V(Gi), v ∈ V(Gj). If i = j, then ruv(G) = ruv(Gi) by (2.2), hence the
sum of all such ruv(G)’s gives the term A =

∑r
i=1 Kf(Gi).

Thus suppose i 6= j and assume that i = i0, i1, . . . , ik = j are the indices of the blocks
in any path from u to v. Also suppose that x1, x2, . . . , xk are the cut vertices of G in any

the electronic journal of combinatorics 21(1) (2014), #P1.25 3

such path, that is, {xl} = Gil−1
∩Gil (1 6 l 6 k). We can assume that u 6= x1 and v 6= xk.

Then it follows from (2.1) and (2.2), that

ruv(G) = rux1(Gi0) + rx1x2(Gi1) + · · ·+ rxk−1xk(Gik−1
) + rxkv(Gik). (2)

Now we must sum up equations of the form (2), for all vertices u, v of G not lying
in the same block of G. Assume that x, y ∈ S ∩ Gi. If the term rxy(Gi) appears in (2)
for some such u, v, then clearly u, v are vertices of different components of G − Bi. In
fact u and v are in the same components as x and y (that is, Hix and Hiy), respectively.
Also by assumption u 6= x and v 6= y. Conversely, (2) contains rxy(Gi) for all such
u, v. Thus this term shows up in the sum for CixCiy times, and all such terms contribute
B =

∑r
i=1

∑
x,y∈S∩Gi CixCiyrxy(Gi) to Kf(G).

Now suppose x ∈ S ∩ Gi and x 6= u ∈ V(Gi). Then rux occurs in (2) (as the first or
the last term), exactly when v 6= x is in the same component of G−Bi as x, that is, Hix.
Therefore, summing up all the flanking terms of (2), we get

C =
r∑

i=1

∑

x∈S∩Gi

∑

x 6=u∈V(Gi)

Cixrux(Gi) =
r∑

i=1

∑

x∈S∩Gi
CixKfGi(x).

Now Kf(G) = A+B + C and the result is established.

Remark 2.4. Assume that in the above theorem Bi’s, instead of blocks, were unions of
blocks such that {B1, . . . , Br} were a partition of E(G) with each G[Bi] connected, and
S were the set of cut vertices of G which lie on at least two of the Bi’s. Then from the
proof of the theorem it can be seen that Formula (1) would still be true.

Remark 2.5. It is clear that Lemmas (2.1) and (2.2) remain true, if we replace rx,y with
the weighted distance function d(x, y). Therefore in (2.3), if we replace every occurrence
of Kf with W (Wiener index), then the same argument shows that the theorem will still
be true.

As an example for computing Kirchhoff and Wiener indices by (2.3) we define a new
composition of graphs and compute its Kirchhoff and Wiener indices.

Definition 2.6. Let T be a rooted tree, x, y ∈ V(G) and Gi’s be n(T) disjoint copies
of G with xi and yi denoting the copies of x and y in Gi, respectively. By T [G, x, y] (or
T [G] if there is no ambiguity) we mean the graph obtained by unifying yi and xj for each
i ∈ V(T) and each child j of i, in the disjoint union of Gi’s.

Figure 1, illustrates this composition of T and G.

Theorem 2.7. Let T be a rooted tree, G′ a connected graph and x, y ∈ V(G′). Set
G = T [G′, x, y], n = n(T), m = n(G′). Also assume that W(T) is the Wiener index of T
when all edges have unit weight. Then

Kf(T [G]) =nKf(G′) + WT (1)(m− 1)KfG′(y) +
(
n(n− 1)−WT (1)

)
(m− 1)KfG′(x)

+
(
W(T) + WT (1)− n(n− 1)

)
(m− 1)2rxy(G

′)

the electronic journal of combinatorics 21(1) (2014), #P1.25 4

Remark 2.5. It is clear that Lemmas (2.1) and (2.2) remain true, if we replace rx,y with the

weighted distance function d(x, y). Therefore in (2.3), if we replace every occurrence of Kf

with W (Wiener index), then the same argument shows that the theorem will still be true.

As an example for computing Kirchhoff and Wiener indices by (2.3) we define a new

composition of graphs and compute its Kirchhoff and Wiener indices.

Definition 2.6. Let T be a rooted tree, x, y ∈ V(G) and Gi’s be n(T) disjoint copies of G

with xi and yi denoting the copies of x and y in Gi, respectively. By T [G, x, y] (or T [G] if

there is no ambiguity) we mean the graph obtained by unifying yi and xj for each i ∈ V(T)

and each child j of i, in the disjoint union of Gi’s.

Figure 1, illustrates this composition of T and G.

(c)(a) (b)

x

y

Figure 1: (a) a rooted tree T ; (b) a graph G; (c) T [G].

Theorem 2.7. Let T be a rooted tree, G′ a connected graph and x, y ∈ V(G′). Set G =

T [G′, x, y], n = n(T), m = n(G′). Also assume that W(T) is the Wiener index of T when all

edges have unit weight. Then

Kf(T [G]) =nKf(G′) +WT (1)(m− 1)KfG′(y) +
(
n(n− 1)−WT (1)

)
(m− 1)KfG′(x)

+
(
W(T) +WT (1)− n(n− 1)

)
(m− 1)2rxy(G

′)

Proof. Suppose that V(T) = {1, . . . , n} and 1 is the root of T . Let G′
i denote the i’th copy

of G′ and xi and yi denote the copies of x and y in G′
i, respectively. According to (2.4), we can

apply (2.3) with Bi = E(G′
i) (and hence Gi = G′i) and S the set of all xi’s and yi’s. Assume

5

Figure 1: (a) a rooted tree T ; (b) a graph G; (c) T [G].

Proof. Suppose that V(T) = {1, . . . , n} and 1 is the root of T . Let G′i denote the i’th
copy of G′ and xi and yi denote the copies of x and y in G′i, respectively. According to
(2.4), we can apply (2.3) with Bi = E(G′i) (and hence Gi = G′i) and S the set of all xi’s
and yi’s. Assume that di denotes the number of descendants of i in T different from i
itself and Cix = Cixi and Ciy = Ciyi are as in (2.3). It is easy to see that Ciy = di(m− 1)
and Cix = (n− di − 1)(m− 1).

Now in
∑n

i=1 di a vertex i of T with level li is counted li = d(1, i) times. Therefore

n∑

i=1

di =
n∑

i=1

li = WT (1) (3)

and hence if we set ai = n− di − 1, then

n∑

i=1

ai = n(n− 1)−WT (1). (4)

Also (di + 1)ai is the number of paths in T which pass the edge connecting i and its
parent. So

∑n
i=1(di + 1)ai =

∑
{i,j}⊆V(T) d(i, j) = W(T). Consequently:

n∑

i=1

diai = W(T)−
n∑

i=1

ai = W(T) + WT (1)− n(n− 1). (5)

Therefore, the proof is concluded by substituting Cix’s and Ciy’s in Equation (1), apply-
ing Equations (3)–(5) and noting that Kf(G′i) = Kf(G′), KfG′i(xi) = KfG′(x), KfG′i(yi) =
KfG′(y) and rxiyi(G

′
i) = rxy(G

′).

Remark 2.8. By (2.5), we have a result similar to (2.7), for W(T [G]). But one must
makes a difference between the weighted Wiener index of a graph and the “unweighted”
Wiener index. The former is based on an arbitrary weight function on E(G), as in the

the electronic journal of combinatorics 21(1) (2014), #P1.25 5

introduction. But the latter assumes the weight of all edges to be unit. Suppose that
W(G) denotes the unweighted one and W′(G) the weighted one. Then to obtain a formula
for W(T [G]) one must replace all Kf’s in (2.7) with W′, the weighted wiener index. But
the W’s in the formula must remain unchanged as the unweighted Wiener index. Also
rxy(G

′) must be replaced with dG′(x, y) (weighted distance).

As another example we calculate the Kirchhoff index of the weighted barbell graph
using (2.3). This value has been calculated in [1] using another method but we will see
that (2.3) allows us to apply some elementary methods and hence makes the computation
easier.

The weighted barbell graph is a simple weighted graph G on n = k + m + r vertices,
where m > 2 and k, r > 1: start with a weighted path G2 on m vertices, labelled as
{xk+1, . . . , xk+m} and attach a complete graph G1 of order k + 1 at vertex y1 = xk+1 and
a complete graph G3 of order r + 1 at vertex y2 = xk+m. Denote by {x1, . . . , xk} the set
of new vertices of the complete graph attached to y1 and by {xk+m+1, . . . , xk+m+r} the set
of new vertices of the complete graph attached to y2.

Moreover, the weights are given by ρij = a, 1 6 i 6 j 6 k; ρi,k+1 = b, 1 6 i 6 k;
ρk+i,k+i+1 = ci, 1 6 i 6 m − 1; ρk+m,k+m+i = b′, 1 6 i 6 r, and ρk+m+i,k+m+j = a′,
1 6 i 6 j 6 r. It should be mentioned that in [1], the weights on the graph denote the
so called conductances not the resistances. The relation is: an edge with conductance c
has resistance 1

c
.

Note that when k = r = 1, then G is nothing than a weighted path on m+ 2 vertices
whose weights are b, c1, c2, . . . , cm−1, b′. Figure 2 shows a weighted barbell graph with
k = m = 3, r = 2, a = c1 = 1, b = c2 = 2, a′ = 4 and b′ = 3.

Moreover, the weights are given by ρij = a, 1 ≤ i ≤ j ≤ k; ρi,k+1 = b, 1 ≤ i ≤ k;

ρk+i,k+i+1 = ci, 1 ≤ i ≤ m − 1; ρk+m,k+m+i = b′, 1 ≤ i ≤ r, and ρk+m+i,k+m+j = a′,

1 ≤ i ≤ j ≤ r. It should be mentioned that in [1], the weights on the graph denote the

so called conductances not the resistances. The relation is: an edge with conductance c has

resistance 1
c
.

Note that when k = r = 1, then G is nothing than a weighted path on m+2 vertices whose

weights are b, c1, c2, . . . , cm−1, b
′. Figure 2 shows a weighted barbell graph with k = m = 3,

r = 2, a = c1 = 1, b = c2 = 2, a′ = 4 and b′ = 3.

x1 x2

x3

x4

22
2

33

4

x5 x6

x7 x8

2

Figure 2: A weighted barbell graph with k = m = 3 and r = 2. The resistances of the edges

without label is assumed to be 1.

We want to apply (2.3) and (2.4) on G with Bi = E(Gi) (i = 1, 2, 3) and S = {y1, y2}.
Thus first we need to compute Kirchhoff index and resistance distances of G1 and G3. We

can do this using some elementary technics, which could not be applied on the whole G at

once.

Lemma 2.9. Let 0 ≤ a, b ∈ R and assume that A = (aij) is an n×n matrix with n ≥ 2 such

that:

aij =





−a i 6= j, i, j 6= 1

(n− 2)a+ b i = j 6= 1

(n− 1)b i = j = 1

−b else

.

Then the eigenvalues of A are 0, nb with multiplicity one, (n−1)a+b with multiplicity (n−2).

Proof. Let B = λI − A. Then by adding the sum of rows 2, 3, . . . , n to the first row and

then factorizing λ, we see that detB = λ detC where C is the same as B except on the first

7

Figure 2: A weighted barbell graph with k = m = 3 and r = 2. The resistances of the
edges without label is assumed to be 1.

We want to apply (2.3) and (2.4) on G with Bi = E(Gi) (i = 1, 2, 3) and S = {y1, y2}.
Thus first we need to compute Kirchhoff index and resistance distances of G1 and G3. We
can do this using some elementary technics, which could not be applied on the whole G
at once.

Lemma 2.9. Let 0 6 a, b ∈ R and assume that A = (aij) is an n× n matrix with n > 2

the electronic journal of combinatorics 21(1) (2014), #P1.25 6

such that:

aij =





−a i 6= j, i, j 6= 1
(n− 2)a+ b i = j 6= 1
(n− 1)b i = j = 1
−b else

.

Then the eigenvalues of A are 0, nb with multiplicity one, (n − 1)a + b with multiplicity
(n− 2).

Proof. Let B = λI − A. Then by adding the sum of rows 2, 3, . . . , n to the first row and
then factorizing λ, we see that detB = λ detC where C is the same as B except on the
first row, where every entry of C is 1. Next by successively subtracting the i’th row of C
from its (i− 1)’th row for i = 3, . . . , n, we get that:

detB = λ

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 . . . 1
0 λ− (n− 1)a− b −(λ− (n− 1)a− b) 0 . . . 0
0 0 λ− (n− 1)a− b 0
...

...
...

...
. . .

...
b a a a . . . λ− (n− 2)a− b

∣∣∣∣∣∣∣∣∣∣∣

.

Now by dividing rows 2, . . . , n − 1 of the above matrix by λ − (n − 1)a − b and then
subtracting b times the first row from the n’th row, we see:

detB = λ(λ− (n− 1)a− b)n−2

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 . . . 1
0 1 −1 0 . . . 0
0 0 1 −1 . . . 0
...

...
...

...
. . .

...
0 a− b a− b a− b . . . λ− (n− 2)a− 2b

∣∣∣∣∣∣∣∣∣∣∣

.

At last, by successively adding (i − 1)(b − a) times the i’th row to the n’th row for i =
2, . . . , n−1, the last row of the above matrix transforms to 0, 0, . . . , 0, λ−nb. Consequently,
detB = λ(λ− (n− 1)a− b)n−2(λ− nb), as required.

In the rest of this section, we will fix the notations before Lemma (2.9).

Corollary 2.10. In the notations before (2.9), if 1 6 i 6= j 6 k, then:

Kf(G1) = b+ (k2 − 1)
ab

kb+ a
, ry1,xi(G1) =

ab+ b2

kb+ a
, rxi,xj(G1) =

2ab

kb+ a
.

Proof. Noting that L(G1) is in the form of the statement of (2.9) (with 1
a

and 1
b

instead
of a and b, respectively), the formula for Kf(G1) follows from (2.9) and (1.1).

Let I be an (y1, x1)-flow and P be the related potential function on G1. The situation
of x2, . . . xk are symmetrical, hence P (x2) = P (x3) = · · · = P (xk). So Ixixj = 0 for each
1 < i 6= j 6 k. Thus indeed, I consists of k− 1 parallel flows from y1 to x1 passing x2, x3,

the electronic journal of combinatorics 21(1) (2014), #P1.25 7

. . . , xk and one directly from y1 to x1. Therefore applying the well-known parallel and
serial formulas we get

ry1x1 =
1

k−1
a+b

+ 1
b

=
ab+ b2

kb+ a
.

Again by symmetry it is clear that ry1xi = ry1x1 and rxixj = rxi′xj′ for each 1 6 i 6= j 6 k

and 1 6 i′ 6= j′ 6 k. Consequently, if k > 1, then Kf(G) = kry1x1 +
(
k
2

)
rx1x2 and solving

this equation for rx1x2 = rxixj , we get the claimed formula.

Theorem 2.11. Let G be the weighted barbell graph. The Kirchhoff index of G is:

Kf(G) =
(n− 1)kab+ (n− k)kb2

a+ kb
+

(n− 1)ra′b′ + (n− r)rb′2
a′ + rb′

+
m−1∑

i=1

(k + i)(r +m− i)ci

Proof. By (2.10) we have:

Kf(G1) = b+ (k2 − 1)
ab

a+ kb
, Kf(G3) = b′ + (r2 − 1)

a′b′

a′ + rb′
,

KfG1(y1) =
k∑

j=1

ry1xj = k
ab+ b2

kb+ a
and KfG3(y2) =

r∑

j=1

ry3xk+m+j
= r

a′b′ + b′2

rb′ + a′
.

Also since G2 is a weighted path we have:

KfG2(y1) =
m∑

j=2

ry1xk+j =
m−1∑

i=1

(m− i)ci, KfG2(y2) =
m−1∑

j=1

ry2xk+j =
m−1∑

i=1

ici and

Kf(G2) =
m−1∑

i=1

i(m− i)ci.

Now according to (2.3), the result follows by substituting these quantities in

Kf(G) =
3∑

i=1

Kf(Gi) + (n(G1)− 1)KfG2(y1) + (n(G3)− 1)KfG2(y2)

+(n(G2 ∪G3)− 1)KfG1(y1) + (n(G2 ∪G1)− 1)KfG3(y2)

+(n(G1)− 1)(n(G3)− 1)ry1y2(G2).

the electronic journal of combinatorics 21(1) (2014), #P1.25 8

3 A fast algorithm for computing the Kirchhoff and

Wiener indices of a graph with small blocks

Let G be a graph with vertices {1, 2, . . . , n} and edge resistances (ρij). According to [7,
Theorem A & Corollary A], Kf(G) and the matrix (rij(G)) could be calculated using
a finite number of matrix operations such as taking inverses and multiplication. The
running time of algorithms for these two operations, is Θ(nt) where 2 < t 6 3 (see [4,
Sections 28.2 and 28.4] for algorithms with t = lg 7). Here we give an algorithm (see
Algorithm 3) for computing Kf(G) using (2.3). This algorithm first computes the terms
Kf(Gi), KfGi(x) and rxy(Gi) of Formula (1) using the previously known algorithms and
then calculates Kf(G) from this formula.

The procedure Block-dec(G) in Algorithm 3, takes as input a graph G and decomposes
it into its blocks. More concretely, it returns the list (B, (BLi)16i6B, (nBi)16i6B, C, CL)
where B is the number of blocks of G, BLi is the list of vertices occurring in Bi = block
i, nBi ’s are the number of vertices of Gi = G[Bi], C is the number of cut vertices and CL
is the list of cut vertices of G. It is well-known that this job could be done using a depth
first search with O(n2) time complexity (see for example [3, Section 6.1]).

Also in Algorithm 3, the procedure Direct-ERS(G) computes the Kirchhoff index of
its input graph G using matrix operations as marked above. In more details, it returns
((rxy(G))x,y∈G, (KfG(x))x∈G,Kf(G)).

An important part of computing Kf(G) using (2.3) is calculating Cix’s of Formula (1).
This job is done by the procedure compute-const-mult, which is described in Algorithm
1. Note that T in this procedure is the block tree of G (that is, a tree with blocks and
cut vertices of G as vertices and edges xb’s, where x is a cut vertex on a block b of G,
see [3, p. 121]), hence the running time of this procedure, which is in fact a breadth first
search (BFS), is Θ(n(T)) = Θ(B + C) = O(n), where B and C are as above. It should
be mentioned that in line 5 of Algorithm 1, the ending ‘−1’ is to avoid doubly counting

Algorithm 1 Compute-const-mult(T, b, (nBi)16i6B) (computes the constant multipliers
in Formula (1) for G).

Input: T = Block tree of G via the adjacency lists of “block vertices” and “cut vertices”
of G, an integer b with 1 6 b 6 B and nBi = the number of vertices in G[Bi], where
Bi is the i’th block of G (1 6 i 6 B).

Output: Cbx for all cut vertices which are on G[Bb], where (Cbx) is as in (2.3).
1: for each x adjacent to b in T do
2: remove the edge xb of T and set Cbx = 0
3: run a BFS on T starting with x
4: for each block Bi that is met in this search do
5: Cbx = Cbx + nBi − 1
6: end for
7: end for
8: return Cbx’s

the electronic journal of combinatorics 21(1) (2014), #P1.25 9

Algorithm 2 Compute-block-dist(T, b)

Input: T = Block tree of G via the adjacency lists of “block vertices” and “cut vertices”
of G and an integer b with 1 6 b 6 B.

Output: Outbb′ , Inbb′ and dbb′ for all 1 6 b′ 6 B as described above.
1: for each x adjacent in T to b do
2: remove the edge xb of T and set dx = 0
3: run a BFS on T starting with x and let P (z) denote the parent of z in this BFS

tree for each z ∈ V(T)
4: for all cut vertices y 6= x met in this search do
5: dy = dP (P (y)) + ry,P (P (y)

(
GP (y)

)

6: end for
7: for all blocks b′ met in this search do
8: Outbb′ = x, Inbb′ = P (b′) and dbb′ = dP (b′)

9: end for
10: end for
11: return ((Outbi)

B
i=1, (Inbi)

B
i=1, (dbi)

B
i=1)

cut vertices common in two or more Gi’s.
Since we want the procedure compute-const-mult to have linear running time, T must

be represented by its adjacency list not its adjacency matrix. Lines 6–25 of Algorithm 3,
construct this list. Also in these lines, block(x) is set to be a block on which x lies, for
each x ∈ V(G).

Another important procedure in Algorithm 3 is Compute-block-dist(T, b). This pro-
cedure (described in Algorithm 2) gets the block tree T of G and a block b as input. For
each block b 6= b′ of G, there are unique cut vertices x and y ∈ G, through which any
path in G from block b to block b′, exits block b and enters block b′, respectively. We set
Outbb′ = x and Inbb′ = y and also dbb′ = rxy(G). Note that if u ∈ Gb and v ∈ Gb′ where
Gb = G[Bb] and Gb′ = G[Bb′], then we have ruv(G) = rux(Gb) + dbb′ + rvb′(Gb′).

The output of Compute-block-dist(T, b) is Outbb′ , Inbb′ and dbb′ for all 1 6 b′ 6 B and
the specified b. These are computed using a BFS started from b in T , thus the running
time of this procedure is θ(n(T)) = O(n(G)). In line 5 of Algorithm 2, note that P (y) is
a block and P (P (y)) is a cut vertex of G and both y and P (P (y)) lie on GP (y).

Clearly, lines 6–16 and 17–25 of Algorithm 3, have running time O(Bn) and O(BC),

respectively. Moreover, lines 41 and 3 have running time O
(∑B

i=1 n
2
Bi

)
. Lines 26–29 are

O(Bn) and lines 30–40 are O(n2). Since line 4 is O
(∑B

i=1 n
t
Bi

)
, where 2 < t 6 3 and

the procedures Block-dec has O(n2) time complexity, we deduce that the running time of

Algorithm 3 is O
(∑B

i=1 n
t
Bi

+ n2
)

.

Theorem 3.1. Let 0 < c ∈ R and 0 6 α ∈ R with α < 1. Assume that F is a family of
graphs with the property that for each G ∈ F and each block Bi of G, the number vertices
lying on Bi is 6 c(n(G))α. On F, Algorithm 3 has a running time of O

(
n2 + n1+α(t−1)),

the electronic journal of combinatorics 21(1) (2014), #P1.25 10

Algorithm 3 Calculates effective resistance distances of G and Kf(G).

Input: A weighted graph G via the edge resistance matrix (ρxy).
Output: Effective resistance distances (rxy(G))x,y∈V(G) and Kf(G).

1: (B, (BLi)16i6B, (nBi)16i6B, C, CL) =Block-dec(G)
2: for i = 1 to B do
3: set Gi = G[BLi] and compute it’s edge resistance matrix
4:

(
((rxy(Gi))x,y∈V(Gi), (Kfx(Gi))x∈V(Gi),Kf(Gi)

)
=Direct-ERS(Gi)

5: end for
6: for i = 1 to B do
7: for all x on BLi do
8: M [i, x] = 1
9: if block(x) is not set then

10: block(x) = i
11: end if
12: end for
13: for all x on V(G)−BLi do
14: M [i, x] = 0
15: end for
16: end for
17: for all x on CL do
18: for i = 1 to B do
19: if M [i, x] = 1 then
20: add x to the list Li
21: add i to the list L′x
22: end if
23: end for
24: end for
25: set T to be the tree with adjacency list (Li)16i6B joint with (L′x)x∈CL
26: for b = 1 to B do
27: (Cbx)x =Compute-const-mult(T, b, (nBi)16i6B)
28: ((Outbi)

B
i=1, (Inbi)

B
i=1, (dbi)

B
i=1) =Compute-block-dist(T, b)

29: end for
30: for all x ∈ V(G) do
31: b =block(x)
32: for all y ∈ V(G) do
33: b′ =block(y)
34: if b 6= b′ then
35: rxy = dbb′ + rx,Outbb′ (Gb) + ry,Inbb′ (Gb′)
36: else
37: rxy = rxy(Gb)
38: end if
39: end for
40: end for
41: set Kf to be the sum in Formula (1)
42: return (rxy)x,y∈V(G) and Kf

the electronic journal of combinatorics 21(1) (2014), #P1.25 11

where t is as above. In particular, if α = 1
2
, then the time complexity of Algorithm 3 is

O(n2).

Proof. We use the notations in the above remarks. According to these remarks, we just

need to show that
(∑B

i=1 n
t
Bi

)
is O

(
n1+α(t−1)). First note that if x is a cut vertex of G,

then the number of blocks of G on which x lies, is degT (x) where T is the block tree of G.
But

∑
degT (x) = |E(T)| = B + C − 1 6 2n, where the sum is taken over all cut vertices

x of G. Since each non-cut vertex of G lies in exactly one block of G, we conclude that∑B
i=1 nBi 6 3n.
Let ai = nBi . By the binomial Theorem, at + bt 6 (a + b)t for each a, b > 0. Thus if

for some j 6= i, ai, aj <
cnα

2
, then by replacing ai and aj by ai + aj, the sum

∑
ai does

not change and
∑
ati does not decrease. Therefore by repeating this operation, we can

assume that for all except possibly one i we have cnα

2
6 ai 6 cnα. Consequently, if the

number of ai’s in the final sum is B′, then (B′−1) cn
α

2
6
∑B′

i=1 ai =
∑B

i=1 nBi 6 3n. Hence
B′ cn

α

2
6 (3 + c)n and so B′ 6 dn1−α, where d = 6+2c

c
. Finally:

B∑

i=1

ntBi 6
B′∑

i=1

ati 6 B′(cnα)t 6 (dct)ntα+1−α,

as required. The final assertion follows from t 6 3.

Note that, in the above notations, since 1 < t, we have 1 + (t − 1)α < t. Therefore
Algorithm 3 is asymptotically faster than the methods that use matrix operations (see
the starting paragraph of this section) on the family F of the above theorem.

Remark 3.2. According to (2.5), if we replace the procedure Direct-ERS(Gi) in Algorithm
3, with Direct-dist(Gi) which computes dGi(x, y), W(Gi) and WGi(x) for all x, y ∈ V(Gi)
(such as Johnson’s Algorithm, see [4, Section 25.3]), then the obtained algorithm will
return W(G) and dG(x, y) for each x, y ∈ V(G). Also if t is such that the procedure
Direct-dist(Gi) can be run in O(nt), then (3.1) remains true for the obtained algorithm.
Note that in particular, Johnson’s Algorithm has a time complexity of Θ(n2 lg n + mn)
where m = |E(G)|, and hence t = 3 works for this algorithm.

The problem of finding all-pairs shortest paths is a well-known problem and many
algorithms are devised to solve this problem (see [4, Chapter 25]). It should be mentioned

that the Johnson’s Algorithm has a running time of O
(
n2 lg n+ n

∑B
i=1 n

2
Bi

)
, because

m = |E(G)| 6 ∑B
i=1 n

2
Bi

. For example if we restrict ourselves to the family F of (3.1),

according to the proof of (3.1),
∑B

i=1 n
2
Bi

is O(n1+α), hence Johnson’s Algorithm runs in
O(n2+α) time but Algorithm 3 in O(n1+2α) time. Since α < 1, this means that Algorithm
3 is asymptotically faster on F.

References

[1] E. Bendito, A. Carmon, A. M. Encinas and J. M. Gesto. A formula for the Kirchhoff
index. Int. J. Quantum Chem., 108(6):1200–1206, 2008.

the electronic journal of combinatorics 21(1) (2014), #P1.25 12

[2] D. Bonchev, A. T. Balaban, X. Liu and D. J. Klein. Molecular cyclicity and centricity
of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances.
Int. J. Quantum Chem., 50:1–20, 1994.

[3] J. A. Bondy and U. S. R. Murty. Graph Theory, Springer, 2008.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms,
MIT press, New York, 2001.

[5] P. W. Fowler. Resistance distances in fullerene graphs. Croat. Chem. Acta, 75:401–
408, 2002.

[6] X. Gao, Y. Luo and W. Liu. Resistance distance and the Kirchhoff index in Cayley
graphs. Discrete Applied Mathematics, 46:1–8, 2011.

[7] D. J. Klein and M. Randić. Resistance distance. J. Math. Chem, 12:81–95, 1993.

[8] I. Lukovits, S. Nikolić and N. Trinajstić. Note on the resistance distances in the
dodecahedron. Croat. Chem. Acta, 73:957–967, 2000.

[9] Bojan Mohar. Some applications of Laplace eigenvalues of graphs. Graph Symmetry:
Algebraic Methods and Applications, 497:225–275, 1997.

[10] J. L. Palacios. Closed-form formulas for Kirchhoff index. Int. J. Quantum Chem.,
81:135–140, 2001.

[11] J. L. Palacios. Resistance distance in graphs and random walks. Int. J. Quantum
Chem., 81:29–33, 2001.

[12] H. Zhang, Y. Yang and Ch. Li. Kirchhoff index of composite graphs. Discrete Applied
Mathematics, 157:2918–2927, 2009.

the electronic journal of combinatorics 21(1) (2014), #P1.25 13

