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Abstract

We provide an explicit Dynkin diagrammatic description of the c-vectors and
the d-vectors (the denominator vectors) of any cluster algebra of finite type with
principal coefficients and any initial exchange matrix. We use the surface realization
of cluster algebras for types A,, and D,,, then we apply the folding method to D,
and As,_1 to obtain types B, and C,. Exceptional types are done by direct inspec-
tion with the help of a computer algebra software. We also propose a conjecture on
the root property of c-vectors for a general cluster algebra.

Introduction

.1 Background

For a given skew-symmetrizable integer matrix B, let A4(B) be the cluster algebra with
principal coefficients whose initial exchange matrix is B [26, 28]. Note that A4(B) de-
pends on B itself (not on its mutation equivalence class) due to the presence of principal
coefficients. There are two important families of integer vectors associated with A4 (B):

c_

vectors and d-vectors. The former are the column vectors in the bottom half square

matrices (C-matrices) of the extended exchange matrices of Aq(B). The latter are also

called the denominator vectors, they are the tuples of the exponents in the denomina-
tors of the Laurent expansions of the cluster variables of A4(B) in terms of the initial
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cluster. An alternative way to introduce them is: c-vectors are the tropicalized versions
of coefficients (y-variables) and d-vectors are the tropicalized version of cluster variables
(x-variables), respectively. See Section 2.1 for details.

Fix an indexing set /. Following [27], to each skew-symmetrizable matrix B = (b;;); jer,
we assign a symmetrizable matrix A(B) = (a;;); er called the Cartan counterpart of B,

by setting
2 =7 (1.1)
ij = . :
Tl i #

The matrix A(B) is a symmetrizable (generalized) Cartan matrix in the sense of Kac [34].
It has been partially recognized and proved that, the ¢- and d-vectors of A4(B) are roots
of the root system of the Cartan matrix A(B). When B is skew-symmetric, thanks to
Kac’s theorem [32], it is enough to prove that the vectors (or their negatives) are identified
with the dimension vectors of some indecomposable modules of the path algebra kQ(B)
for the quiver Q(B) corresponding to B. In fact, this is a common method of proving
many known cases. We are going to discuss this subject in more detail in Section 2.

Cluster algebras of finite type, i.e., the ones with finitely many seeds, form one of the
most basic and important classes of cluster algebras [27]. They have been intensively
studied in particular in the cases when B is skew-symmetric, i.e. when A4(B) is of one
of the simply-laced types A,, D,, Fs, E7, Eg according to the classification of [27]. In
these cases the cluster-tilted algebra A(B), introduced in [7] as a certain quotient of the
path algebra kQ(B), plays a key role in the study of A4(B) [12, 13, 4, 8, 6]. A c-vector
is said to be positive if it is a nonzero vector and its components are all nonnegative. A
d-vector is mon-initial if it is the d-vector of a non-initial cluster variable. It was proved
by [13, 7] that the set of all the non-initial d-vectors of A4(B) coincides with the set of the
dimensions vectors of all the indecomposable A(B)-modules. Moreover, it was recently
proved by [42, 40] that the set of all the positive c-vectors of A.(B) also coincides with
the same set. See Theorems 2.5 and 2.6.

In spite of this beautiful and complete, representation-theoretic description of ¢- and
d-vectors for finite type, little is known about their explicit form, except for type A,
[12, 44, 53]. The purpose of this paper is to fill this gap and to provide an explicit Dynkin
diagrammatic description of the ¢- and d-vectors of cluster algebras of any finite type with
any initial exchange matrix.

It is our hope that the lists presented here will be useful for studying cluster algebras,
as the appendix of [3] is for studying Lie algebras.

1.2 Main results

We present here the main results of the paper. Recall that, for a skew-symmetrizable
matrix B, the cluster algebra A, (B) is of finite type if and only if B is mutation equivalent
to a matrix B’ whose Cartan counterpart A(B’) is a Cartan matrix of finite type, A4,, By,
Cy, Dy, Es, E;, Eg, Fy, G5 [27]. We say that such a skew-symmetrizable matrix B is of
cluster finite type, and also, more specifically, of cluster type Z, according to the type Z
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of A(B') above. For any skew-symmetrizable matrix B of cluster finite type, we present
the Cartan matrix A(B) as a Dynkin diagram X (B) in the usual way following [34]. Note
that, in general, X (B) is not a finite type Dynkin diagram.

For each finite type Z, we provide the following two lists explicitly:

e the list X'(Z) of the Dynkin diagrams X (B) of all the skew-symmetrizable matrices
B of cluster type Z (for each B the vertices of X (B) are naturally identified with elements
of I),

e the list W(Z) of the “templates” of positive c-vectors and non-initial d-vectors in
the form of weighted Dynkin diagrams, namely, Dynkin diagrams with a positive integer
attached to each vertex.

For a pair X(B) € X(Z) and W € W(Z), an embedding of the diagram part of W
into X (B) as a full sub-diagram is denoted by W C X (B). Such an embedding is not
necessarily unique if it exists; we distinguish them up to isomorphism of W. To each
embedding W C X (B) corresponds an integer vector v = (v;);er: its i-th component v; is
the weight of W at i.

For each skew-symmetrizable matrix B of cluster type Z, let us introduce the sets

V(B):={W CX(B)|WeWlZ)},
C(B) :={ all c-vectors of A,(B) }, (1.2)
C.(B) :={ all positive c-vectors of A.(B) }, '
D(B) :={ all non-initial d-vectors of A,(B) }.
For finite type cluster algebras, it turns out that
e(B) = C,(B) U (~C,(B)), (13)

therefore, we can concentrate on Cy(B). Our main result is stated as follows.

Theorem 1.1. Let B be any skew-symmetrizable matriz of cluster finite type. Then, the
sets Co(B), D(B), and V(B) coincide.

Let us illustrate the content of Theorem 1.1 by mean of a baby example; the reader
can find slightly bigger examples at the end of Section 3.

Example 1.2. The matrix

0 1 -1
B = -1 0 1
1 -1 0
is of cluster type Az and the Dynkin diagram X (B) corresponding to it is

YA\

There are precisely three templates in W(Aj3):

[ ] *————o o ———o —o
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The first and second of them can be embedded as full sub-diagram into X (B) in three
different ways each while the third one can’t be embedded into X (B). We get therefore
6 vectors:

V(B) ={(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1)}

they are both the positive c-vectors and the non-initial d-vectors of A4(B).

An immediate and important corollary of Theorem 1.1 is that, for simply laced types,
the set V(B) also coincides with the set of the dimension vectors of all the indecomposable
modules of the cluster-tilted algebra A(B), thereby yielding a representation-theoretic
result.

To prove Theorem 1.1 we use the surface realization of cluster algebras [23, 24, 25]
for types A, and D,,. The case A, is easy, but the case D,, is (much) more involved.
Then we apply the folding method [21, 17] to types D,,.1 and As, 1 to obtain types B,
and C,,, respectively. Exceptional types are studied by direct inspection with the help of
the software by Keller [35] and the cluster algebra package [38] of Sage [50] written by
Musiker and Stump; we rely on Corollaries 2.7 and 2.11 to simplify computations in type
FEs. In classical types our derivation is purely combinatorial and does not refer to any
results from representation theory. On the one side, this may be unsatisfactory due to the
lack of a direct representation-theoretic explanation; on the other side, this is the reason
why we get the result easily. In particular, we obtain an alternative proof of the known
equality C, (B) = D(B) for types A,, and D,,, and also several results on non-simply laced
types, for which the representation-theoretic method is not yet fully available.

From the explicit list of positive c-vectors and non-initial d-vectors provided by Theo-
rem 1.1 we deduce the following result. The statements (1) and (3) generalize to all finite
types properties known only for simply-laced types (cf. Corollaries 2.8 and 2.11).

Theorem 1.3. Let B be any skew-symmetrizable matrix of cluster finite type.

1. All c-vectors and d-vectors of Ae«(B) are roots of the root system of A(B). For
simply-laced types they are Schur roots.

2. A c-vector (d-vector) of Ae(B) is a real root if and only if its support in X (B) is a
tree.

3. The cardinality |C(B)| = |D(B)| depends only on the cluster type Z of B and it is
equal to the number of positive roots in the root system of type Z. FExplicitly it is

equal to nh/2, where n and h are the rank and the Coxeter number of type Z (see
Table 1.1).

4. The set C(B) = D(B) only depends on A(B), the Cartan counterpart of B.

While proving Theorem 1.1 we also obtain the following interesting result. A skew-
symmetrizable integer matrix B is said to be bipartite if the corresponding valued quiver
has only sinks and sources; by extension a seed whose B-matrix is bipartite is also called
bipartite.
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Table 1.1: Coxeter numbers and numbers of positive roots.
Type An Bn Cn Dn E6 E7 Eg F4 GQ
h n+1 2n | 2n | 2n—2 |12 |18 | 30 |12 | 6
nh/2 || n(n+1)/2 | n? | n?* |n(n—1)]36 | 63120 |24 | 6

Theorem 1.4. Let B be any skew-symmetrizable matrix of cluster finite type. Any c-
vector (d-vector) of Ae(B) occurs in a bipartite seed.

This paper is structured as follows. In Section 2 we give more background and a short
survey of the known results on ¢- and d-vectors and their consequences in order to connect
our result to representation theory of quivers. In Section 3 we describe the sets X'(Z) and
W(Z) for all the classical finite type Z (i.e. for A, B,, C,, and D,,). We postpone the
exceptional types to Appendix B due to their length.

The proofs of Theorems 1.1 and 1.4 for classical types are split into several Propositions
and use different techniques. In Section 4 we use the surface realization ([23, 24, 25]) of
cluster algebras to prove the results for types A, and D,. In Section 5 we extend the
folding construction of [21] to deal with types B,, and C,,.

The paper is concluded by Section 6 where we prove Theorem 1.3. In Appendix A we
add the complete analysis needed in the proof of Propositions 4.10 and 4.11.

2 More background

Let us give more background and a short survey of the known results on ¢- and d-vectors
and their consequences in order to connect our result to representation theory of quivers.
We also propose a conjecture on the root property of c-vectors.

2.1 c-vectors and d-vectors

We quickly recall the definitions and the basic properties of c-vectors and d-vectors, which
are the main subject of this paper. All the formulas are taken from [28].

Let Q(z) be the rational function field of algebraically independent variables x =
{z;}icr over Q, and let Q(x) be the subset of Q(z) which consists of the functions
having subtraction-free expressions. The set Q. (z) is a semifield, and it is called the
unversal semifield of x. We also introduce the tropical semifield Pyqop(x) of x as the
multiplicative free abelian group generated by x with the addition & defined by

H T ® fol = Hx?lin(ai’b"'). (2.1)
iel icl icl

Let Trop : Q4 () = Pyop(z) be the canonical homomorphism, z; — x;, ¢ — 1 (c € Q).
We first describe the d-vectors. Since the presence of coefficients is irrelevant, for

simplicity, we describe them for a cluster algebra with trivial coefficients. As usual, we

start from the initial seed (B, x) with a given skew-symmetrizable integer matrix B and a
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tuple of algebraically independent variables = = {x;};c; called the initial cluster variables.

We obtain a new seed (B’, x’) by the mutation at k,

—b;; =k =k

b, =l terony (2.2
bij + bir[brs]+ + [=bir] by 1,7 # K,

-1 [bjr]+ [—bjk] _
o T <Hq;j3 —|—ij J +> 1=k (23>
jel jel :

where [a|ly = a for a > 0 and 0 otherwise. The elements obtained by sequences of
mutations from x are called cluster variables. They are in Q4 (z) since the right hand side
of (2.3) is subtraction-free. For any cluster variable x’; in some cluster 2’ = {}}icr, we
define the corresponding d-vector d; = (d;;)ics by
—d
71'trOp(x;') = sz 7. (2'4>

iel

The matrix D" = (dj;)i jer is called the D-matriz of 2’. This definition of the d-vector d;
agrees with an alternative and more familiar definition as the tuple of the exponents of
the “denominator” of the Laurent polynomial expression of 27,

,_ P
J d.’
[Lierz:”
where P(z) is a polynomial in x = {z;};c; not divisible by any x;. (Note that the
celebrated Laurent phenomenon [26] does not necessarily imply that the components of
the d-vector for a non-initial cluster variable are all nonnegative.) For cluster variables
2} and x; which are connected by a mutation (B”,2") = u(B’, 2'), we have a recursion
relation for the corresponding d-vectors, which is the tropicalization of (2.3),

(2.5)

, ) —dip +max ngf[%k]-&-azd;[[_ wle | =k
&l = (2.6)

el Lel

2z j# k.

Next we describe the c-vectors. We need another tuple of algebraically independent
variables y = (y;)ies called the initial coefficients. They mutate, along with the mutation
of the exchange matrix B, with the exchange relation at k given by

v i=k
Y 1 g Dbl

(2.7)

/
& 1 # k.
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The elements of Q. (y) obtained by successive mutations are called coefficients. For any
coefficient ¢’ in a coefficient tuple y' = (y;)ic;, we define the corresponding c-vector

c; = (¢ij)ier by

7Tt’,rop(y;') - Hyzcu (28)

il

The matrix C" = (cj;)i jer is called the C-matriz of y'.

For coefficients y7 and y’ which are connected by a mutation (B",y") = ux(B',y’), we
have a recursion relation for the corresponding c-vectors, which is the tropicalization of
(2.7),

o _c;] j = k 2 9
Cij = / /o o b : k ( ’ )
Chj + Cplbiile + [l by 7 # k-

This definition of c-vectors agrees with an alternative and more familiar definition as
column vectors of the bottom half square matrix of the extended exchange matrices of

Au(B) (cf. (2.2)).

2.2 Sign-coherence Conjecture

Fomin and Zelevinsky made the following fundamental conjecture on ¢- and d-vectors,
which plays an important role in the structure theory of cluster algebras (e.g., [28, 43]).

Conjecture 2.1 (Sign-coherence Conjecture). Let B be any skew-symmetrizable matrix.
(i) [28, Conjecture 5.5 & Proposition 5.6] Any c-vector of A.(B) is a nonzero vector,
and its components are either all non-negative or all non-positive.
(ii) [28, Conjectures 7.4 & 7.5] Any non-initial d-vector of A,(B) is a nonzero vector,
and its components are all nonnegative.

The first part of the conjecture is equivalent to the fact that the constant term of any
F-polynomial of Ae(B) is one [28], which is proved for any skew-symmetric matrix B
[19, 39, 45], and also for a large class of skew-symmetrizable matrices [16], in particular,
for any skew-symmetrizable matrix which is mutation equivalent to an acyclic one.

The second part of the conjecture is proved, for example, for any skew-symmetric
matrix B arising from a surface [24], and more cases follow from the results in the rest of
this section.

2.3 Root Conjecture

Recall that a skew-symmetric matrix B = (b;;); jer can be identified with a quiver Q(B)
without loops and 2-cycles by attaching b;; arrows from vertex i to vertex j if b;; > 0.
This correspondence can be extended to the one between skew-symmetrizable matrices
and valued quivers (see [20]).
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Let A(A) be the root system associated with a symmetrizable Cartan matrix A, and
let {c}ier be its simple roots [34]. A root o = Y., c;a; of A(A) is naturally identified
with, either all nonnegative or all non-positive, nonzero integer vector (¢;);cs. It is said
to be real if there is an element w of the Weyl group of A(A) such that w(«) is a simple
root; otherwise it is said to be imaginary. It is known that a root « is real if and only
if (a,a)ra = 'aTAa > 0, where T is any diagonal matrix with positive diagonal entries
such that T'A is symmetric. See [34] for details.

In the study of cluster algebras, it becomes more and more apparent that there is some
intimate interplay among three kinds of algebras, namely, cluster algebras, path algebras,
and (quantized) Kac-Moody algebras. Naturally, root systems provide the common un-
derlying structure. The starting point of the interplay is Kac’s theorem, which generalizes
celebrated Gabriel’s theorem. Let £ be an algebraically closed field below.

Theorem 2.2 (Kac’s Theorem [32, 33]). Let B be any skew-symmetric matriz. Then,
there exists an indecomposable module of the path algebra kQ(B) with dimension vector
a if and only if a is a positive root of A(A(B)).

In the above correspondence, if a positive root is the dimension vector of some inde-
composable kQ(B)-module M such that Endrgpy (M) = k, then it is called a Schur root.
We use this notion later.

In view of cluster algebras, the extension of Theorem 2.2 to the valued quivers is
desired and expected. Unfortunately, it is not fully achieved yet [31, 18]. Nevertheless,
the perspective presented above guides us to the following natural refinement of Conjecture
2.1, jointly proposed with Andrei Zelevinsky.

Conjecture 2.3 (Root Conjecture). For any skew-symmetrizable matrix B any c-vector

of A.(B) is a root of A(A(B)).

As for d-vectors, they also satisfy the same root property in many known cases. How-
ever Marsh and Reiten recently found, in cluster affine type A, an example of a d-vector
which is not a root of A(A(B)) [36]. We thank Robert Marsh and Idun Reiten for sharing

with us this counterexample.

2.4 Results for finite type

Cluster algebras of finite type were studied in detail by various authors. Here we collect
some of the known properties of their ¢- and d-vectors along with some consequences which
are relevant to the present paper. For simplicity, we assume that a skew-symmetrizable
matrix B is indecomposable in this section.

The connection between the d-vectors and the root systems of finite type was first
discovered by Fomin and Zelevinsky [27]. Recall that a skew-symmetrizable integer matrix
B is said to be bipartite if the corresponding valued quiver has only sinks and sources.

Theorem 2.4 ([27, Theorem 1.9]). For any skew-symmetrizable bipartite matriz B whose
Cartan counterpart A(B) is of finite type, the set D(B) coincides with the set of all the
positive roots of A(A(B)).
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The requirement of B being bipartite was lifted later on in [55]. In particular, in the
skew-symmetric case, combining the above result with Gabriel’s theorem, we get that the
set D(B) also coincides with the set of all the dimension vectors of the path algebra kQ(B).
This result triggered the intensive representation-theoretic study of cluster algebras in the
past decade.

For a skew-symmetric matrix B of cluster finite type, let A(B) be the corresponding
cluster-tilted algebra, which is the path algebra of the quiver Q(B) modulo the relations
described by [6, Theorem 4.2]. Note that any indecomposable A(B)-module can also
be regarded as an indecomposable kQ(B)-module. Let Dim(A(B)) be the set of the
dimension vectors of all the indecomposable A(B)-modules.

The following theorem by Caldero, Chapoton, and Schiffler [13], and by Buan, Marsh,
and Reiten [7], extended Theorem 2.4 to any skew-symmetric matrix B of cluster finite

type.

Theorem 2.5 ([13, Theorem 4.4 & Remark 4.5], [7, Theorem 2.2]). For any skew-
symmetric matriz B of cluster finite type, the sets D(B) and Dim(A(B)) coincide.

On the other hand, Najera Chéavez recently proved a parallel theorem for c-vectors.

Theorem 2.6 ([42, Theorem 4],[40]). For any skew-symmetric matriz B of cluster finite
type, the sets C;(B) and Dim(A(B)) coincide.

The inclusion C;(B) C Dim(A(B)) is a special case of [42, Theorem 4] (see Theorem
2.16), while the opposite inclusion is due to a yet unpublished result communicated to us
by Alfredo Néjera Chéavez [40].

We have the following immediate corollary of Theorems 2.5 and 2.6.

Corollary 2.7. For any skew-symmetric matriz B of cluster finite type, the sets C,(B)
and D(B) coincide.

It is known that, for any indecomposable A(B)-module M, Endyz) (M) = k holds
(and therefore Endyop) (M) = k) [4, Section 8]. Thus, we have another corollary of
Theorems 2.5 and 2.6.

Corollary 2.8. For any skew-symmetric matriz B of cluster finite type, all positive c-
vectors and all non-initial d-vectors are Schur roots of A(A(B)).

For any skew-symmetric matrix B of cluster finite type, let us introduce the set
Ind(A(B)) = { all indecomposable A(B)-modules }. (2.10)

The following remarkable fact holds.

Theorem 2.9 ([7, Corollary 2.4]). For any skew-symmetric matriz B of cluster finite
type, the cardinality |Ind(A(B))| only depends on the cluster type Z of B; it is equal to
the number of positive roots of the root system of type Z.
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The dimension map
dim : Ind(A(B)) — Dim(A(B)) (2.11)
is surjective by definition. Actually, it is bijective by the following theorem.

Theorem 2.10. /47, Theorem 1] For any skew-symmetric matriz B of cluster finite type,
the map dim in (2.11) is injective.

We have an immediate corollary of Theorems 2.5, 2.6, 2.9, and 2.10.

Corollary 2.11. For any skew-symmetric matriz B of cluster finite type, the cardinality
|IC+(B)| = |D(B)| only depends on the cluster type Z of B, and it is equal to the number
of positive roots of the root system of type Z.

2.5 DMore general results

For completeness, we summarize some general results on ¢- and d-vectors beyond finite
type and also give some examples, though we do not use them in the rest of the paper.

A skew-symmetrizable matrix B is acyclic if the corresponding valued quiver Q(B)
is acyclic, i.e., without oriented cycles. Let us first discuss the case of an acyclic skew-
symmetric matrix B. Under this hypothesis, the cluster tilted algebra A(B) is the path
algebra kQ(B) itself because there is no relation to be imposed. A kQ(B)-module M is
said to be rigid if Ext,va(B)(M, M) =0.

The following two theorems completely describe the ¢- and d-vectors in this case:

Theorem 2.12 ([14, Theorem 4], [10, Theorem 2.3]). For any acyclic skew-symmetric
matriz B, the set D(B) coincides with the set of the dimension vectors of all the rigid
indecomposable kQ(B)-modules.

Theorem 2.13 ([42, Theorem 1]). For any acyclic skew-symmetric matriz B, the set
C.(B) coincides with the set of the dimension vectors of all the rigid indecomposable

kQ(B)-modules.
Recall that, when Q(B) is acyclic, the following formula holds [1]:

1
§(di_m M, dim M) ap) = dim Endygs) (M) — dim Extyo g (M, M). (2.12)

It follows that a is the dimension vector of a rigid indecomposable kQ(B)-module if and
only if it is a real Schur root. Therefore, we have an alternative form of Theorems 2.12
and 2.13.

Corollary 2.14 ([42, Theorem 1]). For any acyclic skew-symmetric matriz B, both the
sets D(B) and C.(B) coincide with the set of all the real Schur roots of A(A(B)).

Both Theorem 2.13 and Corollary 2.14 are partially extended to the acyclic skew-
symmetrizable matrices. (The sign-coherence of c-vectors is covered by [16].)
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Theorem 2.15 ([46, Theorem 1.1}, [49, Theorem 1]). For any acyclic skew-symmetrizable
matriz B, any positive c-vector is a real positive root of A(A(B)); moreover, it is the
dimension vector of a rigid indecomposable representation of the valued quiver Q(B).

Finally, beyond finite type and the acyclic case, the following result is so far the most
general result on c-vectors; in particular, it ensures and strengthens Conjecture 2.3 for
any skew-symmetric matrix B.

Theorem 2.16 ([42, Theorem 4|). For any skew-symmetric matriz B, any positive c-
vector of A«(B) is the dimension vector of some rigid indecomposable module M of the
Jacobian algebra J(Q(B),W) of the quiver Q(B) with generic potential W such that
Endyqyw)(M) = k. In particular, any positive c-vector of Ae(B) is a Schur root of
A(A(B)).

On the other hand the behavior of the d-vectors is rather complicated as studied in
9, 5, 36]. What was observed therein is a deficiency phenomenon: in some situations
the d-vector of a cluster variable x} is smaller than the dimension vector of the rigid
indecomposable A(B)-module associated with .

We conclude this short survey by presenting two illuminating examples beyond finite
type and the acyclic case.

Example 2.17. Type Agl). Consider the skew-symmetric matrix B corresponding the

following non-acyclic quiver:
2
O

1l o==o03

It is mutation equivalent to the following acyclic quiver whose Cartan counterpart is the

Cartan matrix of affine type AS).
2
o

1 o—o0 3

This cluster algebra A(B) is studied in detail by [15]. In particular, the non-initial
d-vectors of A(B) are given by [15, Lemma 3.3]:

(0,1,0),(1,1,1),(a,0,a 4+ 1), (a+ 1,0,a), (a,1,a+ 1), (a+ 1,1,a), a > 0. (2.13)

Moreover, it is not difficult to show that the positive c-vectors of A4(B) are also given
by the same list. Therefore, in this case C.(B) = D(B) holds, even though B is not
acyclic. Thus, any non-initial d-vector is a Schur root of A(A(B)) by Theorem 2.16. Note
that the d-vector (1,1,1) in (2.13) is the simplest example which shows the deficiency
phenomenon [9, Example 7.2], where the dimension vector of the corresponding represen-
tation is (1,2,1). Nevertheless, the d-vector (1,1,1) is still a Schur root. We also note
that among the vectors in (2.13), the last two are imaginary roots for a > 1.
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Example 2.18. Markov quiver. We consider the skew-symmetric matrix B such that the
corresponding quiver is the following non-acyclic one.

2

A\

1] o=o0 3

This is known as the Markov quiver, and the positive c-vectors of A.(B) are given by the
permutations of the following vectors [41, Theorem 3.1.2]:

(1,2,2),(a+ 1,0+ 1,a+b+1),(a—1,b—1,a+b—1), (2.14)

where 1 < a < b, and a and b are coprime. The cluster algebra A,(B) has a surface
realization by a once-punctured torus. Using the same technique as in Section 4, it can

be shown that the non-initial d-vectors are given by the permutations of the vectors in
(2.14) of the form

(a—1,b—1,a+b—1). (2.15)

So this gives the first example in which the sets D(B) and C, (B) do not coincide. Nev-
ertheless, D(B) C C4(B) so any non-initial d-vector is still a Schur root of A(A(B)) by
Theorem 2.16.

The above examples may suggest that the property D(B) C C,(B) holds in general
but this is not true due to the counterexample of [36].

3 The sets X(Z) and W(Z) for classical types

Let Z be any type in one of the four infinite families (i.e. Z is one of A,, B,,, C,, or D,
for some positive integer n). In this section we provide a description of all the diagrams
in X(Z) and define the list W(Z) of allowed weighted diagram for each type required
by Theorem 1.1. The analogous sets for the remaining finite types will be presented in
Appendix B.

3.1 Type A,
The following is a direct consequence of Proposition 2.4 in [11].

Proposition 3.1. A diagram X is in X(A,,) if and only if the following conditions are
satisfied:

e X has n vertices, 1s simply laced and connected;
e cvery cycle in X is a triangle;

e cach vertex in X has at most four neighbours;
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e if a vertex has three neighbours then exactly two of them are adjacent;

e if a vertex has four neighbours then they can be partitioned into two disjoint sets,
containing two elements each, and such that the two neighbouring vertices i and j
are adjacent if and only if {i,j} is one of those sets.

An example of Dynkin diagram in X'(A,) is presented in Figure 3.1 to illustrate its
“quasi-tree” nature.

Figure 3.1: A typical element X in X'(Ag). The highlighted part is an element of W(As,)
embedded in X.

The set W(A,,) consists of type A Dynkin diagrams (strings) with at most n vertices.
All the multiplicities are 1. Elements of W(A,,) are pictorially presented as follows.

An example of an embedding of such a string in a diagram of X'(A4,,) is highlighted in
Figure 3.1. Note that, as explained in the introduction, an embedding of an element of
W(A,) in a diagram X is given by a full sub-diagram; therefore at most two vertices of
each triangle of X can belong to it. It follows that an embedding of a string is uniquely
determined by the positions of its endpoints [44]. Note that the equality D(B) = V(B) is
known in this case by [12, 44, 53].

The building block of Dynkin diagrams for classical types is given by diagrams of
type A,. While stating the analogous results for other types we will use the convention

X (Ag) = 0.

3.2 Type B,

As usual for Dynkin diagrams we put a;;a;; edges between 7 and j and the inequality sign
on the edges refers to the relation among the lengths of the corresponding simple roots.
This convention agrees with [34] and it is the opposite to the convention used in [3]. To
make it more explicit the Cartan matrix

2 -1
-2 2
corresponds in this paper to the following Dynkin diagram (labels correspond to the rows

of B).
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1 2

Proposition 3.2. A diagram with n vertices (n > 2) is in X(B,,) if and only if it is one
of the two in Figure 3.2 where X9 is any diagram in X (A,,) for a suitable m > 0.

We postpone the proof to Section 5.2.
The weighted diagrams in W(B,,) are those in Figure 3.3. As we will see they are
obtained from (some of) those in W(D,,41) by folding.

0'
).

Figure 3.2: Elements of X(B,) for n > 2; X is any diagram in X(A,,) for a suitable
m > 0. The nodes marked as red squares are the images of those permuted by o in
Proposition 5.4.

I - I
V D —=e
) [ — 2 e
m-— e
> p
Vv --—-- o - «e—e e 2
2 2

Figure 3.3: The set W(B,,). Dotted lines are strings of any length; multiplicity of all the
nodes of each such string are the same as their ending points. Solid lines can’t be omitted.
We will use the above drawing conventions thorough the rest of the paper.

3.3 Type C,

Proposition 3.3. A diagram with n vertices (n > 2) is in X(C,,) if and only if it is one
of the two in Figure 3.4 where X is any diagram in X (A,,) for a suitable m > 0.

We postpone the proof to Section 5.2.

Remark 3.4. The results of Propositions 3.2 and 3.3 were claimed in [38] and encoded in
the cluster algebra package of Sage. The details will appear in [51]. The same result also
appeared in [30].

The weighted diagrams in W(C,,) are those in Figure 3.5; as we will see they are all

the weighted diagrams that can be obtained by folding a string embedded on a diagram
in X(A2n—1)-
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Figure 3.4: Elements of X(C,) for n > 2; X@ is any diagram in X(A,,) for a suitable
m > 0. The nodes marked as red squares are the images of the fixed point under the
action of ¢ in Proposition 5.4.

m —
r -----—----------- —
2 VI >
v --——-- *~—o -~ =
272

Figure 3.5: The set W(C,,). We use the same drawing conventions of Figure 3.3.

3.4 Type D,

From Theorem 3.1 in [54] together with Proposition 3.1 we get the following description of
X(D,,). Note that the same result can also be obtained easily from the surface realization
we use in Section 4.

Proposition 3.5. A diagram with n vertices (n > 4) is in X(D,,) if and only if it is one
of the four in Figure 8.6 where X is any diagram in X(A,,) for a suitable m > 0.

Figure 3.6: Elements of X(D,) for n > 4; X is any diagram in X(A,,) for a suitable
m > 0. The nodes marked as red squares are the one permuted by ¢ in Remark 5.4. Case
(d) consists of a central cycle with, possibly, type-A components attached to its sides.

The set W(D,,) consists of all the weighted diagrams in Figure 3.7.
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Y D- —————— < VIIT D- ——————
7777777 22 2 2
Figure 3.7: The set W(D,,). We use the same drawing conventions of Figure 3.3.

3.5 Examples

To illustrate how to read the data presented in this section let us consider two examples.

Example 3.6. Let B be the matrix

o 1 0 0 O
-1 0 1 -1 0
0o -1 0 1 -1
o 1 -1 0 1
0o o0 1 -1 0

of cluster type Ds. The diagram X (B) and the set of positive c-vectors (and non-initial
d-vectors) of A.(B) are shown in Figures 3.8 and 3.9 respectively. Note that any skew-
symmetric matrix of cluster type Ds whose entries are the same as the entries of B in
absolute value produces the same X (B) and V(B).

1 215

4

Figure 3.8: X (B) for Example 3.6. Labels refer to the rows of B.
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V
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<D <
—D
— <
Figure 3.9: V(B) for Example 3.6,

Example 3.7. Let B be the matrix

2 -1 0 0 0
-1 2 -1 0 0
0o -1 2 -2 -1
0O 0 -1 2 -1
0O 0 -1 =2 2

of cluster type C5. The diagram X (B) and the set of positive c-vectors (and non-initial
d-vectors) of Aq(B) are shown in Figures 3.10 and 3.11 respectively.

1 2 3
5

Figure 3.10: X (B) for Example 3.7. Labels refer to the rows of B.

4 Types A, and D,: the surface method
In this section we prove Theorem 1.1 for types A,, and D,,.

4.1 The surface method for types A, and D,,.

To describe c-vectors and d-vectors in types A, and D,, we do not need to use the con-
struction of [24] in its full generality so we can slightly simplify the definitions; the reader
interested in the general theory can find a comprehensive review in [37].
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Figure 3.11: V(B) for Example 3.7.

Unless otherwise specified, by surface S we mean one of the following:
e (type A,) a disk with n + 3 marked points on its boundary (n > 1);

e (type D,) a disk with n marked points on the boundary (n > 4) and one, the
puncture, in its interior.

We denote the set of marked points by M.

Definition 4.1. A (tagged) arc is an homotopy class of curves « in the interior of S\ M
having no self intersections, connecting two distinct points of M, and not cutting out
(together with a boundary component of ) an unpunctured bigon. Due to the limitations
imposed on the kinds of surfaces we consider there are only two possible types of arcs:
chords, connecting two marked point on the boundary of S, and radii, connecting a point
on the boundary with the puncture. Radii comes in two flavours: plain and notched; to
distinguish them in figures we will put a cross on notched arcs.

Remark 4.2. Note that this is not the usual definition of tagged arcs, in particular for
general surfaces there is a tagging attached to each endpoint of any v. Another difference
from the general case is that we are not allowing loops (arcs with coinciding endpoints).

We need not consider ideal arcs as defined by [24] so we can drop the adjective “tagged”
without generating confusion. To any pair of arcs v and § we can associate an integer as
follows.

Definition 4.3 ([24, Definition 8.4]). The intersection pairing of v and ¢ is the integer
(7]9) defined according to these rules:

1. if v and ¢ coincide then (v|d) = —1;
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2. if v and § are homotopic radii with different tagging then (y|d) = 0;

3. if 7 and § are non-homotopic radii then (y|d) = 0 if they are tagged in the same
way and (v]d) = 1 if their tagging is different;

4. in any other case, set (7]|0) to be the minimal number of intersections between =
and 9.

Two arcs v and 0 are said to be compatible if their intersection pairing is non-positive.
A triangulation T of S is a maximal (by inclusion) set of pairwise compatible arcs.

Remark 4.4. Definition 4.3 is symmetric; this is not the case for a general surface where
loops are allowed (see [24, Example 8.5]).

In view of [24, Theorem 7.9] each triangulation of S has n arcs in it and given a
triangulation I' and one of its arcs =, there is a unique other arc 4’ such that

I'=T\{vHu{y}

is again a triangulation of S. The operation of replacing v with ~/ is called a flip.
To any triangulation I' associate a skew-symmetric matrix B(T') = (bL), ser setting

1 if v rotates counterclockwise to ¢
b5 :=4{ —1 if v rotates clockwise to 4 (4.1)
0 if both or none of the previous conditions hold

where v is said to rotate counterclockwise (resp. clockwise) to § if they are not homo-
topic, they share an endpoint and, in a neighbourhood of this point, v can be deformed
counterclockwise (resp. clockwise), without crossing any other arc of I, to coincide with

J.

|

Figure 4.1: In this triangulation le = b31 = b14 = b42 = b43 = 1 while b23 =0.

By [24, Theorem 7.11] the above assignment produces a bijection between triangula-
tions of a type A,, (resp. D,) surface and unlabeled seeds of the coefficient-free cluster
algebra of the same type. In particular cluster variables are in bijection with arcs and if
two seeds are obtained from one another exchanging the cluster variables x., and x., then
the corresponding triangulations are related by the flip of 7 into ~/'.

To keep track of principal coefficients we use laminations as explained in [25]. For
each marked point p on the boundary of S fix a neighbouring point p’ obtained sliding p
clockwise on the boundary.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(1) (2014), #P1.3 19



Definition 4.5. (see Figure 4.2) The elementary lamination A\, corresponding to an arc
v is the homotopy class of curves, contained in a neighbourhood of v, defined as follows:

e if v is a chord connecting p and ¢ then A, connects p" and ¢';

e if v is a radius tagged plain (resp. notched) starting from p then A, starts from
p’ and winds counterclockwise (resp. clockwise) infinitely many times around the
puncture.

Figure 4.2: Examples of elementary laminations.

The shear coordinates of an elementary lamination A with respect to a triangulation
I are the integers in the n-tuple (b} . )yer defined in terms of intersections between A and
the unique quadrilateral in I" of which ~ is the diagonal.

More precisely assume, at first, that I' contains at most one notched radius; each
segment of A cutting through the quadrilateral enclosing v as in Figure 4.3 contributes
either +1 or —1 to bgﬁ. All other crossings do not contribute. Note in particular that,
if 7 is a radius of a digon then, to have have nonzero shear coordinate, a lamination as
to "go around the puncture”. When the digon has two non homotopic radii this means
that the lamination has to intersect both of them; in the other case the lamination has
to cross the dotted line joining the puncture to the boundary. We will continue to draw
this dotted line whenever we have a digon with homotopic radii. Note also that flipping
~ interchanges positive and negative crossings.

To extend the definition to all possible triangulations it suffices to impose that, if I'V
is obtained from I' by changing all the tags at the puncture and A" is obtained from A\
inverting its winding direction (if any), then for any v € I’

by v = b (4.2)

Given a triangulation I' let A(I') = {A,}, ., be the multilamination associated to it,
i.e. the collection of the elementary laminations corresponding to the arcs of I'. Let
Br(I") be the extended B-matrix having top part B(I") defined by (4.1) and bottom part
given by the shear coordinates of A(I') with respect to I".
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+1

v

L+l 41

Figure 4.3: Intersections giving non-zero shear coordinates. The highlighted edges are
those crossed by laminations A giving positive coordinates bgn.

Proposition 4.6 ([25, Proposition 16.3]). In the principal-coefficients cluster algebra
Ao (B(T')) the extended exchange matriz corresponding to the triangulation T" is given by

the above Br(I).

We can now describe the sets C(B) and D(B). For the rest of this section fix a skew-
symmetric integer matrix B of type A, or D,. Let Ag = {\;},.; be the multilamination
corresponding to a triangulation I'y = {v;},., of S realizing B. In view of the last
Proposition the set of c-vectors of the principal-coefficients cluster algebra A,(B) is

C(B) = {C%F = (bl;\iﬁ)iel}

as [" runs over all possible triangulations of S and 7 is an arc in I'. The parametrization
of C(B) by pairs of arcs and triangulations is not one to one; indeed for any given c-vector
there are in general many pairs v, I' realizing it. We will see that I' can always be chosen
to be bipartite (see Proposition 4.11).

As we already noted, in a cluster algebra coming from a surface, cluster variables are
in bijection with tagged arcs. Their denominator vectors can be read directly from the
surface: they are given in terms of their intersection pairing with the arcs of the initial
triangulation.

Theorem 4.7 (|24, Theorem 8.6],[29, Theorem 3.4]). Let A4(B) be any cluster algebra
of type A, or D, and let Ty = {7;}ier be a triangulation corresponding to B.
If x, 1s the cluster variable corresponding to the tagged arc -y then its d-vector is

dy = ((vil7))ier -
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The set of non-initial d-vectors of A.(B) is therefore

D(B) = {d, = (%|7))ics}

as 7y runs over all arcs of S not in I'y.

4.2 Proof of Theorem 1.1
We begin by providing an alternative and immediate proof of (1.3) for types A,, and D,,.

Lemma 4.8. All the vectors in C(B) are sign-coherent.

Proof. By contradiction let ¢, r be a c-vector that is not sign-coherent i.e. there are two
elementary laminations in Ao, say A; and A; such that b} >0 and b} <O0.

Assume at first that I' contains at most one notched arc. From Figure 4.3 it is clear
that \; and \; intersect and if they both spiral to the puncture then they do not come
from homotopic radii. This is in contradiction with the hypothesis that Ay came from
a triangulation of S: the intersection pairing of the arcs corresponding to A; and A; is
positive.

The results extends immediately to all the possible triangulation if we observe that
changing the windings of all the laminations spiraling to the puncture does not affect the
intersection relations among elements of Ag. O]

Note that, if ¢, p is a c-vector and I is the triangulation obtained from I' by flipping
~ into v/, then
Cyr = —Cy1v.
From now on we concentrate on the set C(B) of positive c-vectors of A.(B).

Lemma 4.9. The weighted diagram of any positive c-vector in Ae(B) is connected.

Proof. By contradiction assume that the weighted diagram of ¢, r has two disjoint com-
ponents. Let i be a node in one of them and 7 a node in the other such that they are at
minimal distance in X (B). By hypothesis ¢ and j are not adjacent. Let A; and A; be the
corresponding elementary laminations in Ag.

Three cases are possible (in type A, only the last one occurs).

1. If A\; and A; have two endpoints in common then they spiral to the puncture in
opposite directions. In this case, since both bgm # 0 and bgm # 0, the arc v
cannot be incident to the puncture. The multilamination Ay contains then a bigon
enclosing A\; and \;; at least one side of this bigon (say \j) crosses positively the
quadrilateral enclosing ~.

2. If \; and )\, share exactly one endpoint, since 7 and j are not adjacent, there are
two possible configurations. If there is no other lamination sharing that endpoint
then they both spiral to the puncture and they are enclosed in a bigon; at least
one side of this bigon (again say ) intersects positively the quadrilateral enclosing
v. Otherwise at least one lamination \; among those sharing the same endpoint is

such that bgm > 0.
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3. Finally if A\; and \; do not share any endpoint then there is at least one lamination
Ak starting from one of those four points, lying in between A; and A; and crossing
positively the quadrilateral that encloses v (otherwise such an elementary lamination
could be added to Ag in contradiction to the assumption that the multilamination
corresponds to a triangulation).

In all of the cases there is a vertex k in between i and j such that the k-th component of
c4,r 1s non-zero in contradiction with the assumption of minimal distance between i and
j. O

Proposition 4.10. In types A, and D,, we have
C.(B) C V(B).

Proof. We deal first with type A,. It is clear that, having no puncture, any lamination
A € Ay can intersect any given arc v at most once so bgﬁ € {0,1}. In view of Proposition
3.1 it suffices to show that no c-vector can have a triangle in its weighted diagram. But
this follows directly from the fact that, since S has no puncture, at least one of the sides
of each triangle in Ay does not intersect any given arc ~.

A1

Figure 4.4: Any triangle in a lamination of a surface of type A,, intersects at most twice
any arc vy.

For type D,, the proof proceeds by case analysis. We need first some considerations.
In view of condition (4.2) we can assume that the quadrilateral enclosing v is one of those
in Figure 4.3.

Note that, given a multilamination Ay coming from a triangulation, a once punctured
disk can be decomposed into pieces: it will contain exactly one piece in which all the
elementary laminations spiral to the puncture (one of the five in Figure 4.5); all the other
pieces, if any, will contain only elementary laminations corresponding to chords. Any such
piece can only be glued to the one containing the puncture as shown in Figure 4.6.

Any elementary lamination of Ag not corresponding to a glued edge will be contained,
up to a small neighbourhood of one endpoint, in exactly one piece in this decomposition.
This implies that any given piece must contain at least a section of v and of two opposite
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Plain n-gon (n > 3) Notched n-gon (n > 3)

Plain digon Notched digon Folded digon

Figure 4.5: Multilaminations with all elementary laminations spiralling to the puncture.

Figure 4.6: Example of a decomposition of a surface of type D,, according to a multilam-
ination.
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sides of the quadrilateral enclosing v in order for any of the laminations it contains to give
rise to a positive coordinate. In particular a quadrilateral of a triangulation can intersect
non trivially at most three pieces in this decomposition.

We need therefore to consider all the possible ways a quadrilateral from Figure 4.3 can
be fitted into a surface with at most three pieces. This is a straightforward but tedious
check; a complete analysis of the various cases (87 nontrivial cases in total) is contained

in Appendix A. O

To connect C,(B) with D(B) let us improve on the parametrization of c-vectors of
Aq(B). A triangulation T" of S is said to be bipartite if every node of the corresponding
quiver is either a sink or a source. Note that, since in finite type any chordless cycle must
be oriented ([2] Theorem 1.2), bipartite triangulations correspond to bipartite orientations
of the Dynkin diagram of the given type.

Not every quadrilateral can appear in a bipartite triangulation; indeed it is clear from
the assignment (4.1) that the only allowed one are those in Figure 4.7. Moreover, given
any such quadrilateral, there exists a unique bipartite triangulation in which it appears.

AILIES
AR

Figure 4.7: The only quadrilaterals that can appear in a bipartite triangulation of a
surface S. The edges on the boundary of S are highlighted. When the quadrilateral is a
digon any of the radii can be the diagonal ~.

Let C% (B) be the subset of C,(B) consisting of c-vectors ¢, such that I is bipartite.

Proposition 4.11. In types A, and D,

C}(B) = C4(B).
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Proof. Let ¢, be any element of C,(B); we need to show that there exists a bipartite
triangulation IV and an arc 7/ € I such that ¢, p = ¢y .

Let Ay be the multilamination associated to B. In view of the observation we just
made we only need to construct a quadrilateral like those in Figure 4.7 having the same
intersections with Ay that I' does: this will automatically determine the bipartite trian-
gulation we are after.

We concentrate first on type A,. The idea is simple: pick a leaf in the support of
cyr and let A be the corresponding elementary lamination in Ag. Since A is the “last”
lamination intersecting the quadrilateral enclosing v positively it must belong to a triangle
in Ay such that the other two lamination composing it do not give rise to positive shear
coordinates. Let p’ be the only vertex of the triangle that is not incident to A. We can
replace the original quadrilateral with one having the two marked points closest to p’ as
vertices: all the shear coordinates will be unchanged. We can than conclude by applying
the same procedure to the other leaf (cf. Figure 4.8).

Figure 4.8: The reduction of a quadrilateral to a bipartite quadrilateral in type A,.
The quadrilateral on the right give raise to the same shear coordinates produced by the
quadrilateral on the left and determines uniquely a bipartite triangulation.

This is sufficient in type A,, but not in general in type D,,: we need to deal with folded
quadrilaterals as well. The replacement to be performed depends both on Ay and ~ but it
is straightforward from the pictures. The general procedure is shown in Figure 4.9. The
reduction is in two steps: first we apply the same strategy of type A, to have the correct
amount of edges of the quadrilateral on the boundary of the surface. Then, if needed, we
replace the quadrilateral we obtain with one from Figure 4.7. The precise case analysis
is again in Appendix A; there we provide, for each possible quadrilateral and for each
multilamination an explicit replacement. O

In analogy with the definition above let D?(B) be the subset of all the non-initial
d-vectors corresponding to cluster variables appearing in bipartite seeds of A4(B). Since
any arc on S appears in a bipartite triangulation, in types A, and D,, we have

D'(B) = D(B). (4.3)

Remark 4.12. The above equality, together with Proposition 4.11, prove Theorem 1.4 for
cluster algebras of types A, and D,,.
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Figure 4.9: An example of the reduction of a quadrilateral to a bipartite quadrilateral in
type D,,.

Proposition 4.13. In types A, and D,

Proof. In view of the above reductions it suffices to show that
C%.(B) = D"(B).

As before let I'y = {7;},; be the triangulation corresponding to B and Ay = {\;},.; the
associated multilamination. In view of Theorem 4.7 and Definition 4.3 all the vectors in
D*(B) have non-negative components.

Let v be any arc not in I'y and consider the d-vector d.; we need to distinguish three
cases (cf. Figure 4.10) depending on the endpoints of v (call them p and q).

e If both p and ¢ are on the boundary of S and they are not adjacent then there are
two other marked points r and s such that p’ is contained on the boundary segment
pr and ¢ is contained in the boundary segment ¢s. Let 4/ be the diagonal rs of
the quadrilateral prgs and complete the quadrilateral to a bipartite triangulation
I". We have d, = ¢, . Note that if S is of type A, this is the only possible case.

e [t both p and ¢ are on the boundary of S and they are adjacent then we can assume
(up to relabeling) that ¢’ lies on the boundary segment gp. Let r be such that p’ lies
on the boundary segment pr. Let " be the diagonal pr of the folded quadrilateral
having vertices ¢, p, r, and the puncture and having two homotopic radii starting
at p; Let IV be the bipartite triangulation containing this quadrilateral. We have
again d, = ¢y .

e If one of the endpoints of v (say ¢ to fix ideas) is the puncture then let r be the
marked point such that p’ lies between p and r. Let I be the bipartite triangulation
containing the digon with vertices p and r, enclosing the puncture, and such that
its radii both start from r. If 4’ is the radius with tagging opposite to the tagging
of v then d, = ¢y .
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Figure 4.10: The three possible cases of Proposition 4.13.

Conversely let ¢, v in C}(B). The quadrilateral of I enclosing 7/ will be exactly one
of those constructed above (they are all bipartite). Choosing 7 to be the corresponding
arc we get dy, = ¢y . O]

We thank Andrei Zelevinsky for providing the idea of using the “bipartite belt” in the
above proof.
The following Proposition concludes the proof of Theorem 1.1 for types A, and D,.

Proposition 4.14. In types A, and D,, we have
V(B) C D(B).

Proof. Let 'y = {7i},c; be a triangulation realizing B and let v = (v;),c; be any element
in V(B).

In type A, it is clear how to construct an arc 7 crossing exactly one time all the arcs
7; such that v; # 0: suppose 7 is a leaf in the weighted diagram; the arc «; corresponding
to it belongs to two triangles. One of them is such that the nodes corresponding to the
other two arcs forming it do not belong to the support of the weighted diagram. The arc
~v we are looking for starts from the vertex of this triangle opposed to ;. It crosses then
in sequence all the arcs 7, such that v; # 0 and terminates in the vertex opposite to the
arc corresponding to the other leaf.

In type D, the procedure is slightly more involved and depends on the initial trian-
gulation I'y but follows the same basic idea. Suppose at first that I'y does not contain a
digon with two homotopic radii. The same procedure described for type A, works verba-
tim for diagrams I, IV, and VIII in Figure 3.7: the only thing to note is that instead of
a leaf we might have to take one of the nodes in the left triangle (for IV we cannot use
the two rightmost leaves). For diagrams II and VI we need a small fix: v starts from the
vertex opposite to the arc corresponding to the leftmost leaf and ends at the puncture;
its tagging is the opposite of the tagging of the radii in I'y. For diagrams III and VII we
repeat the same argument using the leftmost leaf and the leftmost node with multiplicity
2. Diagrams like V cannot be embedded in a X (B) if Iy does not have a digon with two
homotopic radii in it.
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If I'y contains a digon with two homotopic radii then the only diagrams that can arise
are I, II, III, IV, and V. For V the procedure is the same as the one for type A,, we
just need to cross both the radii of the digon. For diagrams III and IV the procedure is
identical to the above. For diagrams like II ~ starts from the vertex opposite to the arc
corresponding to the leftmost leaf and ends in the vertex of the digon not adjacent to the
radii. For diagrams like I we need to distinguish two cases: if one of the leaves corresponds
to a radius then the corresponding endpoint of 7 is the puncture and its tagging is the
opposite of the one of that radius. Otherwise we proceed as in type A,. m

5 Types B, and C),: the folding method

Building on the results of last section we will now prove Theorem 1.1 for types B, and
C,. In order to do so we will realize any principal coefficients cluster algebra of type
B, (respectively C,) as a subquotient of an appropriate cluster algebra of type D, 1
(respectively As, 1) with principal coefficients.

5.1 Folding of cluster algebras with trivial coefficients

The construction, for the coefficient-free case, was explained in [21]. Since we need to
generalize it to work with principal coefficients later on let us begin by recalling in some
details its main features.

Let B = (bij)ij ; be a skew-symmetrizable integer matrix and o a permutation of I.

Definition 5.1. A permutation o is an automorphism of B if, for any ¢ and j in I,
bo(i)o(j) = bij- (5.1)

An automorphism of B is said to be admissible if, for any i; and 75 in the same o-orbit 7
and for any j in I,

bi, jbiy; =0 (5.2)
bir,in = 0. (53)

An easy computation shows that, if o is an admissible automorphism of B and k; and
ko are two points in the same o-orbit £, the mutations u, and pg, commute; that is

M, © /’LkQ(B) = Hky O My <B>
Indeed g, (fix, (bi;)) is either —b,;, if at least one among i and j is in {ky, ko }, or
bij + biky [bryjl4 + [=iky |+ 0k15 + Do [Dra]+ + [—bins] 4Bk

otherwise. Those expressions are clearly independent on the order in which py, and g,
are applied. It makes therefore sense to define orbit-mutations as the compositions

,U% = H ot

tck
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Repeating the same reasoning we get

—b;; ifiorjek
7 (b;;) = 4 . 5.4
M’f( i) { bij + ZteE (bit][bej]+ + [—bit]+bs;) otherwise. (5-4)

Note that, given a o-orbit k, the permutation o is always an automorphism of u%(B)
but it need not be admissible; in particular condition (5.2) may be violated.

Definition 5.2. An admissible automorphism o of B is said to be stable if, for any finite
sequence of g-orbits ki, ... kg, it is an admissible automorphism of

o oz

MEO---OILLH(B).

Proposition 5.3 ([21, Proposition 2.22]). If the Cartan counterpart of B is a simply-laced
finite type then any admissible automorphism of B is stable.

Remark 5.4. We will need the following incarnations of Proposition 5.3:

1. B has Cartan counterpart of type As, 1 and, using the standard labeling of the
nodes of the associated Dynkin diagram,

o= ﬁ(z, 2n — 1)
i=1

is an admissible automorphism of B.

2. B has Cartan counterpart of type D, and, again in the standard labeling,
o= (n,n+1)

is an admissible automorphism of B.

Given a skew-symmetrizable integer matrix B and a (stable) admissible automorphism
o we can define a folded matrix m(B) := B = (b;), as 7 and J vary over all the o-orbits,
by setting

bﬁ = stj~ (55)
s€L

In view of condition (5.1) the value of b does not depend on the choice of a representative
of 7. The folded matrix 7m(B) is itself skew-symmetrizable (see [21, Lemma 2.5]).

The key point here is this: if o is a stable admissible automorphism of B then for any
o-orbit k

7 (F(B)) = px (w(B))

thanks to condition (5.2) (see [21, Theorem 2.24]).

We will use the following obvious converse stating the existence of “unfolding” for the
matrices we are interested into.
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Proposition 5.5. Let B be any matriz in the same mutation class of a matriz B obtained
by folding from a skew-symmetrizable matriz B with a stable admissible automorphism o.
There exist a matrix B’ and a sequence of o-orbits ky, ...,k such that

1‘ M%O'OML(B):B/

k1

The folding map can be extended to a morphism of algebras as follows. Fix an initial
B-matrix B and a stable admissible automorphism o. Let

(B7 {xi}ieI)

be the initial cluster of the coefficient-free cluster algebra Ay(B). Write A§(B) for the
subalgebra of Ay(B) generated by all the clusters reachable from the initial one by a
sequence of orbit mutations.

Let Ag(B) be the coefficient-free cluster algebra with initial B-matrix 7(B) = B and
initial cluster variables {27},.; . The assignment

m(x;) = a7
extends to a surjective map -
7 AJ(B) — Ao(B).
The algebra Ay(B) is the quotient of Ag(B) by the ideal generated by the relations

€Tr; = :Ea(i).

Moreover, and this is the key point in the construction, the map 7 preserves the cluster
structure: seeds of AJ(B) are mapped to seeds of Ay(B).
Combining the above observation with Remark 5.4 we get the following statement.

Proposition 5.6. Any matrixz of cluster type B, (respectively C,,) is the image 7(B) of
a matriz B of cluster type D, 1 (respectively As,_1) with automorphism o from Remark
5.4. The coefficient-free cluster algebra Ao(B) is the quotient of a subalgebra of Ay(B) by
an ideal preserving the cluster structure. In particular any exchange matriz of Ao(B) is
the folding of some exchange matriz of Ay(B).

5.2 Proof of Propositions 3.2 and 3.3.
The results just summarized are enough to describe the sets X(B,,) and X(C,,).

Proof of Proposition 3.2. In view of Proposition 5.6 any element of X'(B,,) can be obtained
by folding an element of X(D,41). On the other hand not every diagram from Figure
3.6 can be folded: we know that any chordless cycle in such a diagram corresponds to a
cyclically oriented chordless cycle in the quiver Q(B) associated to it (see [27, 2]). By
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definition of admissible automorphism all the vertices in the only non-trivial orbit of o
must be not adjacent and must be connected to all the other adjacent vertices in the same
way. This forces us to conclude that diagrams (c¢) and (d) cannot be folded.

The diagrams of Figure 3.2 are thus the folding of diagrams (a) and (b) from Figure
3.6. O

Proof of Proposition 3.3. In view of Proposition 5.6 diagrams in X'(C,,) are obtained by
folding elements of X'(Ay,_1). The only requirement a diagram must satisfy to be folded
is to be symmetric with respect to the only fixed point of o from Remark 5.4. O]

5.3 Folding of c-vectors

In order to consider c-vectors we need to extend the above construction to cluster algebras
with principal coefficients. We take inspiration from the following example.

Example 5.7. Let A4(B) be the cluster algebra of type D, with principal coefficients at
the initial cluster given by

0 -1 0 O
1 0 -1 -1
B= 0 1 0 0
0 1 0 0

B is invariant under permutation o = (34) and has b3y = 0. Moreover the mutations in
directions 3 and 4 commute; that is

pi3 0 pa(B) = pug 0 pu3(B).

Let AJ(B) be the subalgebra of all the clusters reachable from the initial one by any
sequence of the mutations py, o, and pz o py. All the B-matrices in it have bgy = 0.
The permutation o acts on the set of clusters of A4(B) by relabeling:

o(z;) = Lo (i) and o(y;) = Yo (i)
Let Z be the ring ideal of AJ(B) generated by the relations
I3 = T4 and Ys = Ya

The quotient AJ(B)/Z is a cluster algebra of type Bs with principal coefficients at the
initial cluster given by m(B). Under the projection map clusters of AJ(B) are mapped
to clusters of AJ(B)/Z. Moreover exchange relations in the quotient come from exchange
relations of A4(B).

For any skew-symmetrizable integer matrix B endowed with a stable admissible au-
tomorphism o let A,(B) and A,(B) be the cluster algebras with principal coefficients
respectively at B and B = 7(B). Let AJ(B) be the subalgebra of A,(B) generated by all
clusters reachable from the initial one using orbit-mutations.
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In view of the above example it is natural to define folding for a c-vector ¢ = (¢;)
of AZ(B) componentwise as follows:

el

= ch. (5.6)

However the correctness of this definition is not so obvious because the tropicalization
map (2.8) and folding are not compatible in general. Let us clarify the condition required
to guarantee that (5.6) is well-posed.

Note that if C' and C’ are two coefficient matrices of AJ(B) connected by a single
orbit-mutation pz then it follows directly from having assumed o to be a stable admissible
automorphism of B that:

. { —Cij if j €k (5.7)
Y Cij + Zte% (Cit [btj]+ + [_Cit]+btj) otherwise.

From (5.7) we get an important observation: all the C-matrices in AJ(B) are such
that

Co(i)o(s) = Cij- (5.8)

Indeed the property holds for the initial C-matrix and we can use the admissibility of o
to propagate it. B
We introduce the folded C-matrix C' for a C-matrix C' = (¢;5);;; of AI(B) as

C 1= chj. (5.9)
s€r

Note that (5.9) is independent of the choice of a representative of 7 due to the symmetry
(5.8).

Proposition 5.8. Let B be any skew-symmetrizable integer matriz and let o be a stable
admissible automorphism of B. The matrixz C' satisfies the recursion relation

4 { —C5 if3=Fk (5.10)

7 ¢y + Clbg )+ + [—czliby;  otherwise

if and only if the following condition holds: for any i and j the sign of cg; is independent
of the choice of representative s € 7.

Proof. It suffices to establish the proposition for a single mutation; if j = k our claim is
trivial so we can assume j € k. On the one hand we can rewrite (5.10) as

¢ = e+ albgle + =gl by =D e+ D _cw [ Dby + —ZCsk] > b

s€r s€r ek N s€r + tek
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On the other hand

A=Y= e+ > (calbyls + [—calsbry)

s€r s€r tck

Therefore the recursion 5.10 is satisfied if and only if

Z Csk; Z btj = Z Z Cst [btj]—i-

s€1 tGE + s€1 teE
and
[— E Csk] E by = E E [ st + bt
SEL + t€E s€1 teE

The first condition is guaranteed by the admissibility of o; indeed we get

Z Z Csk [btj]-‘r - Z Z Cst[brj] +

S€ tck S€ tek
which is true by a simple change of summation index using (5.8).
Similarly the second condition is equivalent to

Z Z [—car], by = Z Z[_Cst]-&-btj‘

S€1 tek SE€T 4k
if and only if the sign of ¢y is independent on the choice of representative s € 7. O]

In our situation the condition of Proposition 5.8 is satisfied by the sign-coherence
property of c-vectors established in Lemma 4.8 or, more generally for skew-symmetric
B-matrices, explained in Section 2. Thus definition (5.6) is well-posed in our case.

It is worth noticing at this point that the folding map (5.6) sends the identity matrix
to the identity matrix: as one might expect the image of the initial cluster of A4(B) is
the initial cluster of A, (F)

Corollary 5.9. Let B be any skew-symmetrizable matriz of cluster type B, (respectively
Cy). There exists a matriz B of cluster type_DnH (respectively Ay, 1) such that the
cluster algebra with principal coefficients A, (B) 1s a subquotient of the cluster algebra

with principal coefficients Aq(B). In particular any c-vector of A (E) is the folding of
some c-vector of Ae(B).

5.4 Folding of d-vectors

Our next goal is to produce a folding rule for d-vectors. From the above example it is
natural to fold the vector d = (d;),., componentwise in this way:

=) d,. (5.11)

s€T
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Once again the correctness of the above definition is not obvious because, in general,
folding is not compatible with the tropicalization map (2.4).
Recall the definition of D-matrix given in Section 2.1.

Lemma 5.10. If o is a stable admissible automorphism of B then the entries in any
D-matriz of A7 (B) satisfy

da‘(i)a‘(j) — dl] (512)

Proof. The property holds for the D-matrix of the initial cluster. Suppose that D and D’
correspond to clusters obtained from one another by a single orbit mutation jiz and that
the property holds for D. The only non trivial case we need to consider is when j is in k.
By (2.6) we have

d; = —d;; + max <Z dit[bi)+ Y dit[—btk]+> :

tel tel

Using both induction hypotheses and the fact that o is stable admissible we get

di; = —do(i)o(j) + max (Z ~doirow) [bowow)] Y ~dowow [—bcr(t)o(k)L)

tel tel
and we can conclude changing the summation index. O
We define the folding D of the D-matrix D = (dij)zjel as we did for C-matrices:
dy; = Z dg;.
s€T
Thank to the above lemma this definition is independent of the representative j.

Proposition 5.11. The matriz D satisfies the recursion

, ) —dg + max E lbal+ § il —bar)+ J=
di; = K _ (5.13)
tel/o lel/o
dz JF#k

if and only if for any o-orbit 7 the sign of

> dubu

tel

1s independent of the representative s € 7.
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Proof. We proceed again by induction. It suffices to show that the property holds for a
single mutation. Fix a o-orbit 2. The only non-trivial case is when 7 = k. On the one
hand we have

dy =" <—de + max (Z dar[bu)+, > dst[—btk]+>> .

s€r tel tel

On the other hand, for the recursion to be satisfied, we must have

dy == d; +max (Z > dalbule YD dst[—btk]+> .

s€r tel ser tel ser

We need therefore to have

> (max (Z da[bu) ) dst[—btk]+>) = (5.14)

SET tel tel
max (Z Z dst[btk]—‘ra Z Z dst[_btk]+) (515)
sc1 tcl s€1 tel

which holds if and only if the sign of
> dalbuls =Y dal—bulr = dubu
tel tel tel

is independent of the choice of the representative s € 7. O]

Remark 5.12. Anna Felikson and Pavel Tumarkin found a case of cluster affine type D
where the condition of previous proposition does not hold [22]; we thank them for showing
us their example.

For our purposes it is enough to show that the condition of Proposition 5.11 holds in
the cases of Remark 5.4. Using Lemma 5.10 and the fact that o is stable admissible, it is
equivalent to ask the sign of

> dithy

tel

to be independent of the representative r € k. We get therefore that the condition is
satisfied whenever £ is fixed by o.
We prefer to work with this third equivalent formulation: the sign of

Z digm (1) by,

tel

is independent of m € Z.

Lemma 5.13. The condition of Proposition 5.11 holds for B of cluster type D, endowed
with the automorphism o of Remark 5.4.
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Proof. There is only one non-trivial o-orbit; in view of previous observations we can
assume it is the orbit of k. This forces t ¢ k to be fixed by 0. Moreover, since o is a
stable admissible automorphism by, = 0 if ¢t € k. Therefore

> dignbi = Y disbu,

tel tel\k
which is manifestly independent of m. m

Lemma 5.14. The condition of Proposition 5.11 holds for B of cluster type As,_1 en-
dowed with the automorphism o of Remark 5.4.

Proof. Note at first that rows of a D-matrix associated to a B-matrix B’ in AJ(B) are
again d-vectors: they are the d-vectors of AJ(B’) in the D-matrix associated to B. This
follows directly from the surface realization (see Theorem 4.7). In particular, in this case,
they are sign-coherent and their support is either a string (if they are positive) or a single
vertex (if they are negative).

As before we can assume that k is not fixed by o. If the support of the row ¢ does
not contain neighbours of both & and o (k) then the statement is clear. We can therefore
assume that there is at least one neighbour of each of them in the support of the i-th row
of D.

Let t; and ty be the two neighbours of k and o(k) respectively lying on the shortest
path from k to o(k). By the symmetry required for folding ¢, = o(t;). Moreover if a row
of D contains at least one neighbour of both k& and o (k) then it contains both t; and t,.
We claim that, in this situation,

Z digm (t)be;

tel

is either 0 or has the same sign of ;. Indeed each row of D has at most 2 neighbours of
k in its support and the entries of B are either 0 or +1.

We can therefore conclude our proof: since o is a stable admissible automorphism of
B we have:

bisk = bo(tr)o(k)-

5.5 Proof of Theorem 1.1 for types B, and C),

To fix the notation observe that any B-matrix of cluster type B, or C), uniquely determines
a o-invariant matrix of cluster type respectively D, 11 or As,—1 of which it is the folding.
We will therefore denote by B a matrix of cluster type B, or C, and by B its unfolding.
Let 7 (V(B)) be the image of the set V(B) under the folding map
T V(B) — v/
(Ui)iel — (Zs@ US)ieT

and recall the definition of the sets W(B,,) and W(C,,) from Section 3.
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Proposition 5.15. For any matriz B of cluster type B, or C, we have
V(B) =7 (V(B)).

Proof. The claim is clear once we observe that the diagrams in W(B,,) and W(C,,) are
obtained precisely by folding diagrams from W(D,,11) and W(Ay,_1) embedded in X (B).
O

We have now the tools we need to deduce Theorem 1.1 for types B, and C,, from the
same result for types A, and D,,.

Proposition 5.16. For any matriz B of cluster type B, or C, we have
C.(B) C V(B)
Proof. Combining Corollary 5.9, Proposition 4.10 and Proposition 5.15 we have
C.(B) C m(C4(B)) =m (V(B)) = V(B).

Proposition 5.17. For any matriz B of cluster type B, or C, we have
D(B) C V(B)

Proof. Combining Lemmata 5.13 and 5.14 with Proposition 4.13, Proposition 4.10 and
Proposition 5.15 we have

D(B) Cc 7 (D(B)) =« (V(B)) = V(B).

To conclude we need one last lemma.
Lemma 5.18. For any matriz B of cluster type B,, or C, we have
C.(B) = 7 (CL(B))

and

D*(B) = (D"(B)) .

Proof. The claim follows directly from the following observation: a matrix B is bipartite
if and only if its unfolding B is bipartite. We get equalities (as opposed to inclusions)
because any two bipartite matrices of cluster type D, .1 or As, 1 are connected by orbit
mutations. O

Proposition 5.19. For any matriz B of cluster type B, or C, we have
V(B) c ¢, (B)
and

V(B) C D(B).
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Proof. We show only the second condition; the first one is obtained in the same way.
Using Proposition 5.15, Proposition 4.14, equation (4.3), and Lemma 5.18 we get

V(B) = (V(B)) C 7 (D(B)) = (D"(B)) = D"(B) C D(B).
O

For completeness we record also the following equalities (of which Theorem 1.4 is a
direct consequence).

Corollary 5.20. For any matriz B of cluster type B, or C, we have

6 Proof of Theorem 1.3

Here we derive Theorem 1.3. The claim (4) is a direct consequence of our description of
c- and d-vectors in Theorem 1.1. For simply-laced types claims (1) and (3) follow from
Corollaries 2.8 and 2.11. However, for types A, and D,,, we provide a direct proof using
Theorem 1.1 without referring to the representation-theoretic results of Section 2.

As we did before we deal with types A, and D, first; we will use again a folding
argument to deduce the results for types B,, and C,,.

6.1 Types A, and D,

Let B be any skew-symmetric integer matrix of cluster type either A, or D,. Having
built an explicit list of all the positive c-vectors and non-initial d-vectors for the cluster
algebra A,(B) with principal coefficients we can give a combinatorial proof of Theorem
1.3.

Proposition 6.1. All c-vectors and d-vectors of Ae(B) are roots in the root system as-
sociated to the Cartan counterpart of B. FEach of them is real if and only if its support in
X(B) is a tree.

Proof. It suffices to establish the claim for positive c-vectors. We are dealing with a local
property: since the support of any c-vector ¢ of A,(B) is a connected sub-diagram of
X (B) it suffices to show that ¢ is a root in the root system associated to its support.

The claim is clear for type A,, and for cases I, Il and III of type D,,: they are all roots
in the corresponding finite type root system.

Applying in sequence the simple reflections corresponding to the outermost node with
multiplicity 2 we can reduce case VII to case VI. We can then “trim the branches”
reflecting each time with respect to a leaf of the diagram. After these reductions we are
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Figure 6.1: Reduced c-vectors.

left with the four cases in Figure 6.1. They all correspond to imaginary roots. Indeed let
¢ be any of these reduced c-vectors and let A be the generalized Cartan matrix associated
to its support, then all the components of the vector Ac are non-positive which is exactly
the condition of [34, Lemma 5.3]. O

Let (-,-) be the Euler form of the quiver Q) = Q(B) associated to B; it is defined on
roots as follows:
<Z C; (g, ZdzOéJ = Zczdl — Z bijcjdi-
icl il icl bi; >0

To show that elements of C(B) = D(B) are Schur roots we will use the following
result of A. Schofield ([48, Theorem 6.2]).

Theorem 6.2. Let a be a positive root that is not a Schur root then « satisfies one of
the following conditions:

1. {a,a) = 0 and there are a positive (imaginary) root B and a positive integer k such

that o = k3.
2. « is the sum of two positive roots, one of them (call it B) is real and satisfies

(a,8) >0 and (B,a) > 0.

Let A = A(B) be the Cartan counterpart of B. As noted in [48], if « is an imaginary
root that is not Schur, there are few possibilities for the positive real root § satisfying
(2). Namely, if w is the element of the Weyl group such that all the components of the
vector Aw(«) are non positive then w(f) has to be a negative real root.

Proposition 6.3. All the vectors in C(B) = D(B) are Schur roots of A (A(B)).

Proof. We are dealing still with a local property so we can assume that the c-vector we
consider has full support.

It is well known that if X (B) is a finite type Dynkin diagram then any root is a Schur
root (every indecomposable kQ(B)-module is rigid if Q(B) is an orientation of a Dynkin
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diagram); therefore we need only to concentrate on cases IV, V, VI, VII, and VIII of type
D,,. Let ¢ be any of these c-vectors, they are all imaginary roots. None of them is an
integer multiple of a root so case (1) of Theorem 6.2 is excluded and we need to show
only that we are not in case (2).

As noted in Proposition 6.1 the elements w of the Weyl group we need to apply to ¢
are those “trimming the branches”; since the roots 3 we are looking for change sign when
acted on by w their support must be contained in only one of those appendices; we can
therefore assume that there is only one appendix in the weighted diagram of ¢. Label the
nodes on such an appendix with {1...,n — 1} starting from the leaf; let n be the node
the appendix is connected to and let m be the innermost node with multiplicity 1 in the
appendix. It is clear that the element w we are looking for is then s, _;...s; in cases IV,
V, VI, and VIII and s,,_1...518y, ... Sn,e1 in case VII. The possible roots 3 are then

aq + e +Oék=
for k€ {1,...,n— 1} in cases IV, V, VI, and VIII and

ap+--Foay m<k<n—-1
o+ - o k<m
U1+ F+ar m+1<k<n

in case VII. By direct inspection we get that in all cases, regardless of the orientations,
one of the two integers (c, $) and (3, ¢) is non-positive. ]

Proposition 6.4. The cardinality |C+(B)| = |D(B)| depends only on the cluster type of
B; it is equal to n(n+1)/2 if B is of cluster type A,, and n(n — 1) if B is of cluster type
D,,.

Proof. Fix an element X (B) of X(B). We need to count in how many different ways any
diagrams from W(B) can be embedded in X (B).

This count, for type A,,, was done by Parson ([44, Lemma 5.8]) by noting that any
embedding of a string is determined by the positions of its endpoints.

Let us consider type D,; there are four cases to be considered depending on which of
the four diagrams in Figure 3.6 describes X (B). We present case (d): it involves all the
techniques and it is the most complex one. The other cases can be dealt with in a similar
fashion.

The only weighted diagrams that can be embedded in a Dynkin diagram shaped as
(d) are I, VI, VII, and VIII from Figure 3.7. An embedding of any of those is uniquely
determined by a pair of vertices in X (B); for I (with at least two nodes), and VIII they
are the two leaves; for VII they are the only leaf and the leftmost node with weight 2.
For VI and strings of length 1 the two vertices of X (B) coincide.

We are going to reverse this observation to count embeddings. Suppose that the central
cycle contains k vertices.

To each pair of vertices 7 and 7 not in the central cycle we can associate precisely
two embeddings: if they belong to different components (say X’ and X”) we have two
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strings passing on either side of the central cycle. If 7 and j belong to the same type-A,,
component (say X') and are distinct then we have a string connecting ¢ to j completely
contained in X’ and a weighted diagram of type VII or VIII depending on the relative
position of 7 and j. Finally if ¢ = j then we have a single point and a weighted diagram
of type VI. They sum up to (n — k)(n — k + 1) embeddings.

If one of the two vertices, say i, is in the central cycle and j is in the component X’
then there are two possibilities: if 7 is one of the two vertices adjacent to X’ then there is
only one embedding associated to the pair ¢ and j: the shortest string connecting them.
Otherwise there are two strings that we can embed into X (B) depending on the side of
the central cycle we cross. Therefore there are 2(k — 2)(n — k) + 2(n — k) embeddings
with one vertex in a type-A,, component and a vertex in the central cycle.

Finally if both ¢ and j are in the central cycle we need to distinguish three cases: they
can coincide (yielding embedding of single nodes), they can be adjacent (and produce
embedding of strings of length 2). Otherwise they produce precisely two embedding of
strings. In total there are k* — k embeddings induced by pair of vertices in the central
cycle.

Summing up all the contributions we get

n—k)n—k+1)+2k—=2)(n—k)+2n—k)+k —k=n>—n

as desired. ]

6.2 Types B, and C),

To extend the above results to types B, and C,, we will use the following general fact on
the folding of root systems.

Proposition 6.5. Let B be a skew-symmetrizable integer matriz together with an admis-
sible automorphism o and denote by A = A(B) its Cartan counterpart. Let B be the
image of B under the folding map m and A = A(B) the Cartan counterpart of B. Let

{ai}ic; be the simple roots for A(A) and {as},; ), be the simple roots for A(A).
Define the linear map 7 from the root lattice of A(A) to the root lattice of A(A) by

() == as.

Then for any o € A(A) we have (o) € A(A).

Proof. This argument is a refinement of [52, Proposition A.7]; there the result is stated
only for finite type root systems.
Observe first that the map m commutes with “orbit reflections”

57 1= H 5
te
that is for any root «

si(m(a)) =7 (s7 (). (6.1)
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Orbit reflections are well defined because, by admissibility of o, we have
aim = 0

for any pair i; # i in the same o-orbit 7. It is sufficient to verify (6.1) on simple roots;
we have

si(m(ay)) = s1(0g) = @y — aay = 7 (aj - atjozt) =7 (s7(ay)).
ter
Back to our problem, without loss of generality we can assume « to be a positive root;
we will proceed by induction on

ht(a) = ht (Z ciai) = Zci
iel i€l
If ht(a) = 1 then o = «; for some i € I; thus 7(«) = a;. Suppose now that ht(a) > 1. If

all the components of the vector Am(a) are negative then 7(a) is an imaginary root (see
(34, Lemma 5.3]). Otherwise let 7 be such that

(Am(a)), > 0. (6.2)
(cv). Since 7 is disconnected, in view of (6.2) o/ is a positive root and
ht (o) < ht(a).

By induction hypothesis then 7 (a') is a positive root in the root system of A(A) therefore

(@) = s (sa(m(@))) = sz (7 (57 () = sz (w(a))

o
(2

Set o :=s

Note that the folding of roots agrees with the folding of both ¢— and d—vectors.

Proposition 6.6. Let B be a skew-symmetrizable integer matrix of cluster type B, or
C,. All the c-vectors and d-vectors of A«(B) are roots in the root system A(A(B)).

Proof. 1t is enough to consider positive c-vectors. By Corollary 5.9 any element of C, (B)
is the image of some c-vector of a cluster algebra of type D, 1 or Ay, 1. By Proposition
6.1 the latter are roots in the root system associated to the unfolding of B. Our claim
follows then directly from Proposition 6.5. O]

Proposition 6.7. Any c-vector (d-vector) of Ae(B) of type B,, or C,, is a real root if and
only if its support is a tree.

Proof. 1f the support of the vector we are considering is a tree there is nothing to show.
In all other cases we can “trim the branches” and check directly as we did in Proposition
6.1. O

Proposition 6.8. For any B-matriz of cluster type either B, or C, the cardinality of
V(B) is equal to n*.

Proof. This claim does not follow directly from folding. Nevertheless it is straightforward
to apply the same argument of Proposition 6.4 to perform the counting. O]
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A Type D, analysis

We provide here the detailed case analysis required to prove both Propositions 4.11 and
4.10 in type D,, at the same time.

As explained above, any multilamination corresponding to an initial triangulation
decomposes the surface S into pieces (see Figure 4.6 for an example). Any quadrilateral
can intersect positively at most laminations contained in three different pieces. We need
therefore to consider, for any quadrilateral in Figure 4.3, all the possible ways of inscribing
it in a surface with at most three pieces. These configurations are listed in the leftmost
column of the following tables.

For each of them we distinguish five sub-cases (the other five columns) depending on
how the multilamination looks around the puncture (cf. Figure 4.5).

For any given configuration and choice of lamination around the puncture we provide
a bipartite quadrilateral giving rise to the same c-vector as the original triangulation and
we record which template c-vector from Figure 3.7 we get.
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¢ 1d# ‘(7102) (1)1Z SOTIOLVNIGNOD J0 TVYNUNOr DINOMLOHTH HHL

37

Configuration on

Plain n-gon

Notched n-gon

Plain digon

Notched digon

Folded digon

the surface (n>3) (n>3)
1 2 1 2 1 2
Type I Type I
1 2 1 2
Type I
1 2 1 2
Type I




¢ 1d# ‘(7102) (1)1Z SOTIOLVNIGNOD J0 TVYNUNOr DINOMLOHTH HHL

67

Configuration on

Plain n-gon

Notched n-gon

Plain digon

Notched digon

Folded digon

the surface (n>3) (n>3)
1 2 1 2 1 2
Type I Type I
1 2
1 2 1 2
Type I




e 1dH# ‘(17[05) (I)IZ SOTHOLVNIIINOD A0 TYNHNOL DINOYLOHTH HHL

0¢

Configuration on

Plain n-gon

Notched n-gon

Plain digon

Notched digon

Folded digon

the surface (n>3) (n>3)
1 2 1 2
Type I
1
2 2 2 9 9 9
Type I Type I Type I Type I Type 11
2
Type I




e 1dH# ‘(V[OZ) ('[)'[Z SOIYOLYNIIINOD A0 TVYNUYNOL DINOYLOUTH HHL

16

Configuration on

Plain n-gon

Notched n-gon

Plain digon

Notched digon

Folded digon

the surface (n>3) (n>3)
1 1 1
1 1 1
2 2 2 9 9 9
Type VII or VIII Type VII or VIII Type III or IV Type 11T or IV Type 11T or IV
1
2 2
Type I

Type I




e 1dH# ‘(V[OZ) ('[)'[Z SOIYOLYNIIINOD A0 TVYNUYNOL DINOYLOUTH HHL

¢S

Configuration on

Plain n-gon

Notched n-gon

Plain digon

Notched digon

Folded digon

the surface (n>3) (n>3)
1
1 1 1
Type I Type I
1 1
Type I Type I Type I

Type I



e 1dH# ‘(V[OZ) ('[)'[Z SOIYOLYNIIINOD A0 TVYNUYNOL DINOYLOUTH HHL

€q

Configuration on

Plain n-gon

Notched n-gon

Plain digon

Notched digon

Folded digon

the surface (n>3) (n>3)
1
1 1 1 1 1
Type I Type I Type I Type I Type I
1 1 1
Type I Type I Type I or II
1 1 1 1 1 1
Type VII Type VII Type II1 Type II1 Type II1




e 1dH# ‘(V[OZ) ('[)'[Z SOIYOLYNIIINOD A0 TVYNUYNOL DINOYLOUTH HHL

¥4

Configuration on

Plain n-gon

Notched n-gon

Plain digon

Notched digon

Folded digon

the surface (n>3) (n>3)
2 2
1 1 1
1 1 1
Type I Type I Type I Type I Type I or II
1 1 1
2 1 2 1
Type VII Type VII Type II1 Type II1 Type II1
1 1 1 1 1
1
2 2
Type VII Type VII Type II1 Type II1 Type II1




e 1dH# ‘(V[OZ) ('[)'[Z SOIYOLYNIIINOD A0 TVYNUYNOL DINOYLOUTH HHL

qq

Configuration on

Plain n-gon

Notched n-gon

Plain digon

Notched digon

Folded digon

the surface (n>3) (n>3)
1 1 1
N
2
2
Type I Type I Type I Type I Type I
2




9¢

Type I

Type I

TypelorV



B The sets X(Z) and W(Z) for the exceptional types.

For exceptional types we obtain a description of X'(Z) by direct inspection using [35, 38].
Similarly we obtain W(Z) and check Theorems 1.1, 1.3, and 1.4.

B.1 Type G,
—
Figure B.1: The only diagram in X(G5).
- = e e ;) . ;)
Figure B.2: The set W(G5).
B.2 Type F}

e e

Figure B.3: Diagrams in X' (F}).

2 2 2 2 2
2 2 2 2 3 2 3 2 2 4 2
e e 9 e = e e 9 o

Figure B.4: The set W(F}) consists of the above weighed diagrams together with all the
elements of W(B3) and W(C3).

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(1) (2014), #P1.3 57



B.3 Type Ej

SUS T D
I 0T OO
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13 14 15

‘ /\.

IV VG
B
S <§2/6<§2/
2@ NN

6 3 2

EUEOEXORN

loo
)
R}

=

Figure B.6: The set W(Eg) consists of the above weighted diagrams together with all the
elements of W(A;) and W(Ds).
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B.4 Type b5
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Figure B.7: Diagrams in X' (E7).
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Figure B.8: Diagrams in X'(E;) (continued).
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Figure B.9: The set W(E;) consists of the above weighted diagrams and all the elements

of W(Ag), W(Ds), and W(Eg).
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Figure B.10: The set W(E7) (continued).
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Figure B.11: The set W(E7) (continued).
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The set W(E7) (continued).
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Figure B.13: The set W(E7) (continued).
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Figure B.14: Diagrams in X (FEg).
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Figure B.15: Diagrams in X'(Eg) (continued).
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Figure B.16: Diagrams in X'(Eg) (continued).
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Figure B.19: The set W(Es) (continued).
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Figure B.20: The set W(Es) (continued).
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Figure B.23: The set W(Es) (continued).
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Figure B.24: The set W(Es) (continued).
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Figure B.25: The set W(Es) (continued).
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Figure B.26: The set W(Es) (continued).
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Figure B.27: The set W(Es) (continued).
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Figure B.28: The set W(Es) (continued).
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Figure B.30: The set W(Eg) (continued).
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Figure B.31: The set W(Es) (continued).
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Figure B.32: The set W(Es) (continued).
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Figure B.34: The set W(Es) (continued).
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Figure B.35: The set W(Eg) (continued).
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Figure B.36: The set W(FEg) (continued).
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Figure B.37: The set W(Eg) (continued).
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Figure B.39: The set W(Es) (continued).
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Figure B.42: The set W(Es) (continued).
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Figure B.43: The set W(Es) (continued).
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Figure B.46: The set W(Es) (continued).
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Figure B.47: The set W(Es) (continued).
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Figure B.48: The set W(Es) (continued).
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Figure B.49: The set W(Es) (continued).
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Figure B.50: The set W(Eg) (continued).
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Figure B.52: The set W(Es) (continued).
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Figure B.53: The set W(Eg) (continued).
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Figure B.55: The set W(Eg) (continued).
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Figure B.56: The set W(FEg) (continued).
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