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Abstract

Recently, Z. Sun proved that
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|
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)
for m ∈ Z>0. In this paper, we consider a generalization of this result by defining

bn,k =
2k (n + 2k − 2)!!

(n− 2)!! k!
.

In this notation, Sun’s result may be expressed as 2 (2m + 1) | b(2m+1),(2m+1)−1 for
m ∈ Z>0. In this paper, we prove that

2n | bn,un±2r

for n ∈ Z>0 and u, r ∈ Z>0 with un ± 2r > 0. In addition, we prove a type of
converse. Namely, fix k ∈ Z and u ∈ Z>0 with u > 0 if k < 0. If

2n | bn,un+k

for all n ∈ Z>0 with un + k > 0, then there exists a unique r ∈ Z>0 so that either

k = 2r or k = −2r.
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1 Introduction

There has been much recent work on topics relating to central binomial coefficients
([1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12]). In particular, Z. Sun in [9] proved interesting re-
sults on congruences of sums of products of central binomial coefficients. One such re-
sult is that 2 (2m + 1)

(
2m
m

)
|
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)
for m ∈ Z>0. The new integer sequence m →(

6m
3m

)(
3m
m

)
/[2 (2m + 1)

(
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m

)
] is given by A176898 in the OIES. Using this sequence, Sun

proposed a number of open conjectures ([9, Conjectures 2, 4, 6 and 8]) on certain divisi-
bility properties of this and related sequences.

In this paper, we consider a generalization of Sun’s new sequence. Recognizing(
6m
3m

)(
3m
m

)
/
(
2m
m

)
as the coefficient of x2m in the (2m + 1)-fold convolution of the central

binomial sequence with itself, we define bn,k to be the kth term of the n-fold convolution
of the central binomial sequence with itself–which turns out to be

bn,k =
2k (n + 2k − 2)!!

(n− 2)!! k!
.

In this notation, Sun’s result is that 2 (2m + 1) | b2m+1,(2m+1)−1 for m ∈ Z>0.
In this paper (Theorem 1), we prove that

2n | bn,un±2r

for n ∈ Z>0 and u, r ∈ Z>0 with un± 2r > 0. In particular, Sun’s result is a special case
of the above theorem in which n = 2m + 1, u = 1, r = 0, and the − sign is chosen. In
addition, we prove a type of converse (Theorem 2). Namely, fix k ∈ Z and u ∈ Z>0 with
u > 0 if k < 0. If

2n | bn,un+k

for all n ∈ Z>0 with un + k > 0, then there exists a unique r ∈ Z>0 so that either

k = 2r or k = −2r.

2 Definition

Write b for the sequence of central binomial coefficients, bj =
(
2j
j

)
, with j ∈ Z>0. For

n, k ∈ Z>0 with n > 1, we define the doubly indexed sequence bn,k ∈ Z>0 to be the kth

term of the n-fold convolution of b with itself, bn,k = (b∗n)k. In the degenerate case of
n = 0, we define b0,0 = 1 and b0,k = 0 for k > 0. It follows that the generating function

for the sequence k → bn,k is (1− 4x)−n/2 and a trivial calculation shows that

bn,k =
2k (n + 2k − 2)!!

(n− 2)!! k!

when n > 2. For use in Theorem 2 and in order to compare with [9], we note that it is
straightforward to verify that

b2m,k = 22k

(
m + k − 1

k

)
, b2m+1,k =

(
2m+2k
m+k

)(
m+k
m

)(
2m
m

)
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for m ∈ Z>0 in the first formula above and m ∈ Z>0 in the second.

3 Divisibility

Here we present the main result on the divisibility of the sequence bn,k.

Theorem 1. For n ∈ Z>0 and u, r ∈ Z>0,

2n | bn,un+2r

and, if also un− 2r > 0,
2n | bn,un−2r .

Proof. Begin with the convolution definition

bn,un±2r =
∑

a1,...,an∈Z>0

a1+···+an=un±2r

n∏
j=1

(
2aj
aj

)

and let X =
{

(a1, . . . , an) ∈ Zn
>0 | a1 + · · ·+ an = un± 2r

}
. Observe that 0 /∈ X since

un + 2r, un− 2r > 1.
The set X carries a natural action of the symmetric group, Sn, acting by permuting

the coordinates. Write O1, . . . ,ON for the orbits of X under the action of Sn. Clearly
each Ok, 1 6 k 6 N , has a unique representative of the form

xk = (

d1k︷ ︸︸ ︷
c1k, . . . c1k,

d2k︷ ︸︸ ︷
c2k, . . . , c2k, . . . ,

dmkk︷ ︸︸ ︷
cmkk, . . . cmkk)

with 0 6 c1k < c2k < · · · < cmkk and djk,mk ∈ Z>0. Since the stabilizer of xk in Sn is
clearly isomorphic to Sd1k × Sd2k × · · · × Sdmkk

, if follows that

|Ok| =
n!

d1k!d2k! · · · dmkk!
=

(
n

dk

)
where we use multinomial notation above and write dk = (d1k, d2k, . . . , dmkk). Using this,
we may rewrite the formula for bn,un±2r as

bn,un±2r =
N∑
k=1

(
n

dk

)mk∏
j=1

(
2cjk
cjk

)djk

.

We will prove the theorem by demonstrating that 2n |
(
n
dk

)mk∏
j=1

(
2cjk
cjk

)djk for each k.
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As xk ∈ X, it follows that
mk∑
j=1

djk = n

mk∑
j=1

djkcjk = un± 2r.

Therefore,
mk∑
j=1

djk (cjk − u) = ±2r

and we may write the greatest common divisor of d1k, d2k, . . . , dmkk as 2qk for some qk,
0 6 qk 6 r. Since it follows that 2qk | n, we also see that 2qk 6 n.

Choose wjk ∈ Z, 1 6 j 6 mk, so that
∑mk

j=1wjkdjk = 2qk . Write ej for the jth standard

basis vector, ej = (

j︷ ︸︸ ︷
0, . . . 0, 1, 0, . . . 0) ∈ Zmk (suppressing the mk dependence). Then

2qk

(
n

dk

)
=

mk∑
j=1

wjkdjk

(
n

dk

)
=

mk∑
j=1

djk>1

wjkdjk

(
n

dk

)

=

mk∑
j=1

djk>1

wjk

(
n− 1

dk − ej

)
n

so that n | 2qk
(
n
dk

)
and

2n |
(
n

dk

)
2qk+1.

As 1
2

(
2j
j

)
=
(
2j−1
j

)
for j > 1, it is well known that 2 |

(
2cjk
cjk

)
whenever cjk 6= 0. If

c1k 6= 0, then 2n |
mk∏
j=1

(
2cjk
cjk

)djk . As 2qk+1 6 2n 6 2n, it follows that 2n |
(
n
dk

)mk∏
j=1

(
2cjk
cjk

)djk and

we are done.
Suppose, therefore, that we are in the case of c1k = 0 (so mk > 2). Let sk = n− d1k.

Now all that we get is that 2sk |
mk∏
j=1

(
2cjk
cjk

)djk . If qk + 1 6 sk, then a similar argument as in

the above paragraph shows 2n |
(
n
dk

)mk∏
j=1

(
2cjk
cjk

)djk and we are done. It remains only to show

that qk + 1 6 sk. So suppose that qk + 1 > sk and write djk = 2qktjk for tjk ∈ Z>0. Since
we must have tjk > j − 1 > 1 when j > 2, we get

qk + 1 > sk =

mk∑
j=2

djk =

mk∑
j=2

2qktjk >
mk∑
j=2

2qk = 2qk (mk − 1) > 2qk .

Since it is impossible to obtain q + 1 > 2q, we arrive at the desired contradiction.
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For the case of 2n | bn,un+2r in the above theorem, n = 0 is ruled out in order to make
sure that division by 2n is well defined (note b0,0 = 1 and b0,k = 0 for k > 0). For the case
of 2n | bn,un−2r , we require un > 2r since bn,0 = 1.

We also note that Sun’s result

2 (2m + 1)

(
2m

m

)
|
(

6m

3m

)(
3m

m

)
for m ∈ Z>0 is equivalent to

2 (2m + 1) |
(
6m
3m

)(
3m
m

)(
2m
m

) .

This is then a special case of our equation 2n | bn,un−2r in which n = 2m + 1, u = 1, and
r = 0. This gives the same statement as the above equation, but written as

2 (2m + 1) | b2m+1,2m.

4 A Type of Converse

The next result is a type of converse to Theorem 1.

Theorem 2. Fix k ∈ Z and u ∈ Z>0 with u > 0 if k < 0. If

2n | bn,un+k

for all n ∈ Z>0 with un + k > 0, then there exists a unique r ∈ Z>0 so that either

k = 2r or k = −2r.

Proof. First we show that k 6= 0. For this choose any odd prime p and consider b2p,2up.
Using Theorem 4 of [4] and the Division Algorithm, work mod p to see that

b2p,2up = 24up

(
(1 + 2u) p− 1

p− 1

)
≡ 24u

(
2u
0

)(
p−1
p−1

)
≡ 24u.

Thus p - b2p,2up and so k 6= 0.
Next we consider the case of u = 0 (so k > 0 here). Actually the following argument

works whenever k > 0 so that is all we actually assume. If k has an odd prime divisor, p,
write k = pk′ for some k′ ∈ Z>0. Consider b2p,2up+k. Then, working mod p again,

b2p,2up+k = 22(2u+k′)p

(
(1 + 2u + k′)p− 1

p− 1

)
≡ 22(2u+k′)

(
2u + k′

0

)(
p− 1

p− 1

)
≡ 22(2u+k′).

Thus p - b2p,2up+k and so k must be a power of 2. Note that the only reason this argument
may fail for k < 0 is that we might have 2up + k 6 0.

Finally, consider the case of u 6= 0. Suppose there exists an odd prime p so p | k.
Then write k = pk′ and fix m0 ∈ Z>0 so 2m0+1u + k′ > 0 and 2m0+1u is congruent mod p
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to either 0 or 1 (depending on whether p | u or p - u). Now consider n = 2m0+1p
(
pN + 1

)
for any sufficiently large N . We will show that p - bn,un+k. For this, write

un + k = 2m0+1up
(
pN + 1

)
+ k′p

= 2m0+1upN+1 +
(
2m0+1u + k′

)
p.

For sufficiently large N , un + k can be expanded in base p as

un + k = arp
r + ar−1p

r + · · ·+ aN+1p
N+1

+ bsp
s + bs−1p

s−1 + · · ·+ b1p

with 0 6 ai, bj 6 p− 1, aN+1 6 1, and s 6 N . Now we apply Kummer’s theorem to the
binomial coefficient in

bn,un+k = 2p(pN+1)(pN+1+p−1+un+k
pN+1+p−1

)
.

Clearly adding un + k to pN+1 + (p− 1) in base p results in no carries so that p - bn,un+k.
As a result, k has no odd prime divisors and we are done.

5 Relation to Known Sequences

As a result of Theorem 1, we have the following integer sequences

n→ Bn,u,r,± ≡
bn,un±2r

2n
.

For most choices of parameters u, r,±, this sequence seems to be new. However, for a few
special choices, the sequence is known. Up to a shift and a few initial terms, the sequence
Bn,0,2,+ is the OEIS integer sequence A077415, Bn,1,0,+ is A085614, Bn,1,1,+ is A078531,
and Bn,1,0,− appears as every other term in A089073. In addition, the odd terms of Bn,0,2,+

are A162540, the even terms of Bn,0,2,+ are A102860 and the negative of A136264, and
(by construction) the odd terms of Bn,1,0,− are Sun’s A176898.

6 Final Remarks

It would be interesting to find a combinatorial interpretation for the sequences Bn,u,r,±.
For instance, one is given the case of Bn,1,0,− (A089073) or Bn,1,1,+ (A078531) as the
number of symmetric non-crossing connected graphs on equidistant nodes of a circle and
Bn,1,0,+ (A085614) is the number of elementary arches of size n.

In addition, information on corresponding generating functions would be of interest.
Some are known. For example Bn,1,0,+ (A085614) is the series reversion of x− 3x2 + 2x3.
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