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Abstract

Recently, Z. Sun proved that
2 6 3
20 (001 (o) G0
m 3m m
for m € Z~q. In this paper, we consider a generalization of this result by defining

— 2k (n 4 2k — 2)!!
mh T T = 2) k!

In this notation, Sun’s result may be expressed as 2 (2m + 1) | bi2m+1),2m+1)—1 for
m € Zsg. In this paper, we prove that

2n ‘ bn,un:l:2r

for n € Zsg and u,r € Zso with un = 2" > 0. In addition, we prove a type of
converse. Namely, fix kK € Z and v € Z>¢ with u > 0if £ < 0. If

2n ‘ bn,un+k
for all n € Z~o with un + k > 0, then there exists a unique r € Z>( so that either

k=2" or k=-2".
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1 Introduction

There has been much recent work on topics relating to central binomial coefficients
([1, 2, 3, 5, 6, 7, 8 9, 10, 11, 12]). In particular, Z. Sun in [9] proved interesting re-
sults on congruences of sums of products of central binomial coefficients. One such re-
sult is that 2(2m+1) (*™) | (57)(>™) for m € Zso. The new integer sequence m —

3Im
(gﬁ) (T)/[Q (2m+1) (27;”)] is given by A176898 in the OIES. Using this sequence, Sun
proposed a number of open conjectures ([9, Conjectures 2, 4, 6 and 8]) on certain divisi-
bility properties of this and related sequences.
In this paper, we consider a generalization of Sun’s new sequence. Recognizing
™ (™) /(3™) as the coefficient of z*™ in the (2m + 1)-fold convolution of the central
binomial sequence with itself, we define b, to be the k' term of the n-fold convolution

of the central binomial sequence with itself-which turns out to be
_— 28 (n + 2k — 2)!!
R (= 21

In this notation, Sun’s result is that 2 (2m + 1) | bapy1,2m+1)—1 for m € Z.
In this paper (Theorem 1), we prove that

2n ’ bn,un:l:T

for n € Z~o and u,r € Z>o with un & 2" > 0. In particular, Sun’s result is a special case
of the above theorem in which n = 2m + 1, u = 1, r = 0, and the — sign is chosen. In
addition, we prove a type of converse (Theorem 2). Namely, fix k € Z and u € Zs( with
u>0if k<0. If

2n | bn,un+k

for all n € Z-y with un + k£ > 0, then there exists a unique r € Z-( so that either

Ek=2" or k=-2".

2 Definition

Write b for the sequence of central binomial coefficients, b; = (2]7), with j € Zsy. For
n,k € Zso with n > 1, we define the doubly indexed sequence b, € Z~q to be the k™
term of the n-fold convolution of b with itself, b, = (b*"),. In the degenerate case of
n = 0, we define bypy = 1 and by, = 0 for £ > 0. It follows that the generating function

for the sequence k — b, is (1 — 4x)7n/ * and a trivial calculation shows that
— 2k (n + 2k — 2)!!
T (= 21

when n > 2. For use in Theorem 2 and in order to compare with [9], we note that it is
straightforward to verify that

o (mtk—1 CCnE D
bom e = 2 ( I ), boms1,k = —(QnT)
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for m € Z-¢ in the first formula above and m € Z-( in the second.

3 Divisibility
Here we present the main result on the divisibility of the sequence b,, .

Theorem 1. Forn € Z~y and u,r € Z>y,
2n ’ bn,un+2”

and, if also un — 2" > 0,
2n | bn,un—QT‘

Proof. Begin with the convolution definition

bn,un:l:2" = Z H (QGGJ)
j=1 "

al,...,(lnGZ;O
a1+-+anp=unx2"

and let X = {(a1,...,a,) €Z% | a1+ -+ a, =un=£2"}. Observe that 0 ¢ X since
un + 2", un — 2" > 1.

The set X carries a natural action of the symmetric group, 5, acting by permuting
the coordinates. Write Oq,...,Oy for the orbits of X under the action of S,,. Clearly
each O, 1 < k < N, has a unique representative of the form

dyk day, dinyoke
_ 7 % N 7 % N 7 % N
T = (Clk> c o C1ks Coky - - - 5 Coky v - o 5 Cimkey - - - kak)
with 0 < c1p < cop < -+ < G and dj, My, € Zs. Since the stabilizer of x, in S, is

clearly isomorphic to Sq,, X Sg,, X -+ X Sq,, ,, if follows that

n! n
1Ol = digldar! - dpgr! (dk>

where we use multinomial notation above and write d, = (dig, dax, - - . , dpm, k). Using this,
we may rewrite the formula for by, ;1o as

N n my 21 djk
bn,un:I:Q" — Z < )H( J > .

d
k=1 \K/ 50

my )
We will prove the theorem by demonstrating that 2n | (CZ) I (%’")djk for each k.
j=1

C]k
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As xp, € X, it follows that

mg
E djk =n
Jj=1

mg
Z djrcj, = un £ 2",
j=1
Therefore,
mg
Z djk: (Cjk — U) = :t?r
j=1
and we may write the greatest common divisor of dy, dag, . . ., dp,k as 2% for some gy,

0 < gx < r. Since it follows that 2% | n, we also see that 2% < n.
Choose wj;, € Z, 1 < j < my, so that Z;ﬂ:’“l w;rd;, = 29%. Write e; for the j™ standard
J
——
basis vector, e; = (0,...0,1,0,...0) € Z™ (suppressing the m;, dependence). Then

n ok n k n
24k (dk) = ijkdjk (dk> = Z wjkdjk (dk>
j=1 j=1

my
>,
Wik n
- J dk — ej
j=1
djk;BI

so that n | 2% (5;) and

on | (ZZD 91,

As l(2.j) = (Qj._l) for 7 > 1, it is well known that 2 | (Qc_j’“) whenever cj;, # 0. If

2\j J Cjk

my , - |
cir # 0, then 2™ | H(icjf:)d“’“. As 291 < 20 L 27 it follows that 2n | (ch) I1 (i‘?:)d]k and
j=1 j=1
we are done.

Suppose, therefore, that we are in the case of ¢1p = 0 (so my > 2). Let sy = n — dyg.

mg
Now all that we get is that 2% | H(zcc_f:)dj " If g + 1 < s, then a similar argument as in
J
j=1

QCjk

ik .
o ) " and we are done. It remains only to show
J

my
the above paragraph shows 2n | (ch) I1(
j=1

that g + 1 < si. So suppose that g, + 1 > s;, and write d;, = 2%t for t;, € Z~(. Since
we must have t;, > 7 — 1> 1 when j > 2, we get

mp mp mp
Gt 1>s, =) dj=> 2%ty > 2% =2% (my, — 1) > 2%,

=2 j=2 i=2

Since it is impossible to obtain ¢ + 1 > 29, we arrive at the desired contradiction. O
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For the case of 2n | by, yntor in the above theorem, n = 0 is ruled out in order to make
sure that division by 2n is well defined (note by = 1 and by = 0 for £ > 0). For the case
of 2n | by, yn—or, We require un > 2" since b, o = 1.

We also note that Sun’s result

2 6 3
e (5)1(5) ()

m 3m m

for m € Zq is equivalent to
6m)\ (3m
2(2m+1) | %

This is then a special case of our equation 2n | b, yn—or in which n =2m +1, v =1, and
r = 0. This gives the same statement as the above equation, but written as

2 (2m + ]_) | b2m+1,2m-

4 A Type of Converse

The next result is a type of converse to Theorem 1.

Theorem 2. Fix k € Z and u € Zxy with u >0 if k < 0. If

2n | b untk
for alln € Z~y with un + k > 0, then there exists a unique r € Z=o So that either
k=2" or k=-2".
Proof. First we show that k£ # 0. For this choose any odd prime p and consider bg 2.
Using Theorem 4 of [4] and the Division Algorithm, work mod p to see that

1+ 2u)p— 1 o )
b2p,2u,,=24up(< bt )524u(20)(g_;)524.

Thus p { bap 24y and so k # 0.

Next we consider the case of u =0 (so k > 0 here). Actually the following argument
works whenever k > 0 so that is all we actually assume. If £ has an odd prime divisor, p,
write k = pk’ for some k' € Z~. Consider bgy 2yp+k. Then, working mod p again,

/ I1+2u+k)p-—1 n(2u+K\ [(p—1 ,
b y — 22(2u+k‘ )p ( = 22(2u+k ) = 22(2u+k )
2p,2up+k p—1 0 p—1

Thus p { bap 2up+x and so k must be a power of 2. Note that the only reason this argument
may fail for £ < 0 is that we might have 2up + k < 0.

Finally, consider the case of u # 0. Suppose there exists an odd prime p so p | k.
Then write k = pk’ and fix my € Zso so 2™y + k' > 0 and 2™y is congruent mod p
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to either 0 or 1 (depending on whether p | u or ptu). Now consider n = 2™ p (pV + 1)
for any sufficiently large N. We will show that p { by, yn+s. For this, write

un + k= 2" up (pV +1) + k'p
— 2m0+1upN+1 + (2m0+1u + k/) .

For sufficiently large N, un + k can be expanded in base p as

un + k= arpr + ar—lpr + -+ CLN—&—le—H
+byp® + by p L+ byp

with 0 < a;,0; < p—1, any1 < 1, and s < N. Now we apply Kummer’s theorem to the
binomial coefficient in N N
+1 _
bn,un-i—k = QP(P +1) (p pf\ffl-ﬁ-l}jr—ulr”rk)'
Clearly adding un + k to pV ' + (p — 1) in base p results in no carries so that p { b, unr-
As a result, £ has no odd prime divisors and we are done. O

5 Relation to Known Sequences
As a result of Theorem 1, we have the following integer sequences

bn,un:ﬁ:QT

n— Bn,u,r,:l: = m

For most choices of parameters u, r, £, this sequence seems to be new. However, for a few
special choices, the sequence is known. Up to a shift and a few initial terms, the sequence
B2+ is the OEIS integer sequence A077415, By, 14 is A085614, B, 11 4+ is A078531,
and B, 19— appears as every other term in A089073. In addition, the odd terms of B, 2 +
are A162540, the even terms of B, g2+ are A102860 and the negative of A136264, and

(by construction) the odd terms of B, ;- are Sun’s A176898.

6 Final Remarks

It would be interesting to find a combinatorial interpretation for the sequences By, ., +.
For instance, one is given the case of B, 10- (A089073) or B, 11+ (A078531) as the
number of symmetric non-crossing connected graphs on equidistant nodes of a circle and
Bp10+ (A085614) is the number of elementary arches of size n.

In addition, information on corresponding generating functions would be of interest.
Some are known. For example By, 10+ (A085614) is the series reversion of x — 3z% + 223,
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