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Abstract

Self-dual plane graphs have been studied extensively. C. A. B Smith and W.
T. Tutte published A class of self-dual maps in 1950 [9]; in 1992, Archdeacon and
Richter [1] described a method for constructing all self-dual plane graphs and a
second construction was produced by Servatius and Christopher [5] in 1992. Both
constructions are inductive. In this paper, we produce four templates from which
all self-dual plane graphs with maximum degree 4 (self-dual spherical grids) can
be constructed. The self-dual spherical grids are further subdivided into 27 basic
automorphism classes. Self-dual spherical grids in the same automorphism class
have similar architecture. A smallest example of each class is constructed.

1 Introduction

The literature on constructing and classifying self-dual plane graphs is rather extensive.
In addition to the papers mentioned in the abstract, there are several other relevant
papers. The paper by Servatius and Servatius [8] uses matroid methods to construct all
self-dual graphs. Other related constructions can be found in [2] by Brinkmann et al.,
and in [4] by Dutour and Deza. The papers of Servatius and Servatius, [6] and [7], use
the symmetry structure to classify self-dual graphs. The feature that distinguishes our
approach from these constructions is the set of four templates: each self-dual plane graph
with maximum degree 4 is constructed directly by choosing the values for the parameters
in the appropriate template. Furthermore one may specify the symmetry structure in the
selection of template and parameter values.
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2 Preliminaries

By a spherical grid, or an SG, we shall mean a plane graph Γ = (V,E, F ) with vertex
and face degrees restricted to 3 and 4.

Lemma 1. Let Γ be a spherical grid with v3 vertices of degree-3 and f3 faces of degree 3.
Then v3 and f3 are even numbers and v3 + f3 = 8.

Proof. Let v4 denote the number of vertices of degree 4 in Γ, let f4 denote the number of
faces of degree 4 and let e denote the number of edges. Then:

i. 3v3 + 4v4 = 2e;

ii. 3f3 + 4f4 = 2e;

iii. (v3 + v4)− e+ (f3 + f4) = 2.

Equalities (i) and (ii) are obtained by summing the vertex and face degrees; the third
equation is Euler’s formula for plane graphs. To maintain parity in the first two equations,
v3 and f3 must be even numbers. Subtracting the first and second equations from 4 times
the third gives v3 + f3 = 8.

The proof of the next lemma is also straightforward and left to the reader.

Lemma 2. The dual of a spherical grid is another spherical grid.

We let Λ denote the infinite plane graph of the tessellation of the plane by squares.
One of the easiest ways to describe a spherical grid is to construct a template for it in
Λ. We illustrate this starting with the template in the left-hand diagram of Figure 1.
To construct the SG, cut out the left-hand polygon with vertices; fold along the vertical
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Figure 1: On the left is a template for the black spherical grid in the center. It has v3 = 6,
v4 = 3, f3 = 2 and f4 = 6. Shifting this diagram in Λ by 1

2
unit up and to the right gives

a template (pictured on the right) for its dual (red) spherical grid.

segments and identify the two a-b segments to form a triangular tube. Then folding down
x-tabs forms a triangular “face” at the top; the y-tabs give a triangular “face” at the
bottom. One easily checks that this is a model of the black SG, Γ, pictured in the center
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of this figure. If we overlay the grid with the dual grid (in red), we have a template for the
dual SG: folding the right-hand template into a polyhedron yields the original spherical
grid in black overlaid by its dual spherical grid in red.

A spherical grid is said to be a triangle free spherical grid or a TFSG if it has eight
degree-3 vertices and no triangular faces. With the following construction, we may as-
sociate a TFSG with any spherical grid Γ. Draw the dual spherical grid Γ∗ (in red)
superimposed on the original spherical grid Γ (in black). Bisect each edge in the spherical
grid by its dual adding, as a vertex, the intersection of the crossing edges. In Figure 2, we
illustrate this construction with the SG from Figure 1. We easily see that each triangular
face is replaced by three quadrilateral faces surrounding a (dual) vertex of degree-3 and
each quadrilateral face is replaced by four quadrilateral faces surrounding a (dual) vertex
of degree 4. We also note that the new vertices, the intersections of edges and dual edges,
all have degree 4. We call these the mixed vertices and color them white. Hence the re-
sulting graph is a TFSG with all eight of its degree-3 vertices among the vertices colored
red and black. The nice feature is that this process is reversible.

Figure 2: The construction of the triangle free spherical grid (TFSG) for the spherical
grid (SG) in Figure 1.

Let Γ = (V,E, F ) be any TFSG. Observe that, since each face is a quadrilateral, the
graph is bipartite. If the eight degree-3 vertices do not belong to the same cell of the
bipartition, Γ did not come from a spherical grid by the above construction. If all eight
degree-3 vertices do belong to the same cell of the bipartition, it could be constructed
from a SG and we are able to reverse the construction. Assume that Γ = (V,E, F ) is a
TFSG with all degree-3 vertices in the same class of its bipartition (see the first diagram
in Figure 3). Color the vertices in the cell devoid of degree-3 vertices white and, for now,
color the remaining vertices green (see the second diagram in Figure 3). We must now
partition these green vertices into two cells, red vertices and black vertices. To accomplish
this we construct an auxiliary graph. Each face of Γ is a square with the green and white
vertices alternating around its boundary. We add a diagonal edge in each face joining the
two green vertices in its boundary (see the second diagram in Figure 3).

Our auxiliary graph Ω will have as its vertex set the green vertices and as its edge set
these new diagonal edges. Since Γ plus diagonals is planar, Ω is planar. Furthermore,
each face of Ω is a square with a white vertex in its center. It follows that Ω is bipartite.
We arbitrarily color the vertices in one cell red and the vertices in the other cell black (see
the third diagram in Figure 3). Since the black and red vertices alternate around a face
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Figure 3: The construction of a dual pair of spherical grids from a triangle free spherical
grid.

of Ω, the neighbors of each white vertex in Γ alternate red and black around that vertex.
Hence in Γ, each of its edges has one endpoint colored white while the other endpoint is
colored either red or black. An edge of Γ is now colored red if it has a red endpoint and
black if it has a black endpoint (see the last diagram in Figure 3). A TFSG with such a
vertex and edge coloring is called a properly colored TFSG.

Finally, let Γ be a properly colored TFSG and consider the subgraph of black and
white vertices and black edges. All white vertices have degree 2 and are the central vertex
of a path of length 2 joining two black vertices. Replacing these paths by single edges
results in (the black) spherical grid which we denote by Γb. Each face has a single red
vertex in its center and the face is square if the red vertex has degree 4 and triangular if
the red vertex has degree 3. Hence, the similarly constructed red SG, Γr, is the dual of
Γb and Γ is the TFSG corresponding to either the black or red SG.

All of our spherical grids are plane graphs. We call an automorphism of a plane graph
a symmetry. Almost all of the SGs we consider will be 3-connected and hence all graph
automorphisms will be symmetries. However, a few small SGs will not be 3-connected
and the distinction between automorphism and symmetry will be necessary. Let Γ be a
properly colored TFSG. Since Γ is a connected bipartite graph, any symmetry of Γ must
preserve or interchange cells of the bipartition. The white vertices form one partition class
and the union of the red and black vertices the other. Since there are no white vertices of
degree-3, all symmetries must map the class of white vertices onto itself. Any symmetry
of Γ induces a symmetry on the auxiliary graph Ω and, since Ω is connected and bipartite,
that symmetry must either preserve color (map black vertices to black vertices and red
to red) or reverse the colors. Hence, a symmetry of Γ either induces a symmetry on both
Γb and Γr or a graph isomorphism between Γb and Γr.

Lemma 3. Let Γ be the TFSG constructed from the SG ∆. Then ∆ is self-dual if and
only if Γ admits a color-reversing symmetry.

Proof. We may assume that ∆ = Γb, the black SG of Γ. Then Γr, the red SG of Γ, equals
∆∗. Any color-reversing symmetry γ of Γ maps the vertices of Γb onto the vertices of Γr
and corresponds to an isomorphism between ∆ and ∆∗. Conversely assume that there is
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an isomorphism from ∆ to ∆∗. That isomorphism extends to an isomorphism of Γ, as
the TFSG constructed on Γb, onto Γ, as the TFSG constructed on Γr, and hence to a
color-reversing symmetry of Γ.

From now on we will restrict our attention to special spherical grids (SSGs) defined as
follows: a properly colored TFSG, Γ = (V,E, F ), that admits a color-reversing symmetry.
An example of an SSG is pictured on the right in Figure 3. In fact this is the simplest
example possible: here both Γb and Γr are copies of the tetrahedral graph. Visualizing Γ
as drawn on the sphere, the antipodal map is one of the several color-reversing symmetries
of Γ.

3 Local Coordinates on an SSG

In order to investigate the special spherical grids, we alter Λ, the rectangular tessellation
of the plane, as follows: we identify the vertices of Λ with the set of points in R2 that
have integer coordinates. Integer points with both coordinates even are colored black;
points with both coordinates odd are colored red and the remaining points with integer
coordinates are colored white. Edges on horizontal lines with even y-intercept and edges
on vertical lines with even x-intercept are colored black; all other edges are colored red.
In constructing our templates in Λ, we will use the coordinate system just described.
However, once the template is extracted and the identifications made, these Λ-coordinates
no longer make sense. Hence we introduce a system of SSG-coordinates relating nearby
vertices.

We use the term segment for the straight line segment joining two vertices in Λ. The
Λ-coordinates of a directed segment are simply the coordinates of the vector from the first
vertex to the second vertex. The SSG-coordinates of the segment are obtained as follows:
choose a new coordinate system for Λ with one endpoint of the segment at the origin and
the other endpoint on the positive x-axis or in the first quadrant. The Λ-coordinates of
the second endpoint are then the SSG-coordinates of the segment: (x, y) or simply (x)
for (x, 0), if the second endpoint is on the x-axis. See Figure 4. The advantages of these
SSG-coordinates are that they are independent of the orientation of the segment and that
in some cases segments and their SSG coordinates can be defined on an SSG.
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r r r r r r
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Figure 4: The assignment of coordinates to segments in Λ.
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We say that two vertices v and u are adjacent on an SSG Γ if there are no degree-3
vertices (other than possibly v or u) on any shortest path from u to w. Suppose that
vertices v and u are adjacent on the SSG Γ and let v = v0, v1, . . . , vn, vn+1 = u be a
shortest path joining v and u. Since, for i = 1, . . . , n, vi has degree 4, we may identify
the path vi−1, vi, vi+1 as a right turn, left turn or a straight-on path. There are several
observations that can be easily verified:

i. Since this is a shortest path in Γ, left and right turns must alternate.

ii. Starting with adjacent vertices v′0 and v′1 in Λ, we may trace a path v′0, v
′
1, . . . , v

′
n, vn+1

with the corresponding turns.

iii. The vertices v′ = v′0 and u′ = vn+1 in Λ then determine a rectangle that contains all
shortest paths from v′ to u′.

iv. Working out from our initial path in Γ we may construct a copy of this rectangle in
Γ without encountering vertices of degree 3.

v. Hence we may think of v and u as being joined by a segment in Γ with the SSG
coordinates of the segment joining v′ and u′ in Λ.

Next we note that if v and u and v and u are two pairs of points in Λ, then there is a
symmetry of Λ mapping the first pair onto the second pair if and only if the segments
joining pairs have the same or reversed SSG-coordinates. Furthermore we note that when
p 6= q, the rectangle of a segment with coordinates (p, q) and the rectangle of a segment
with coordinates (q, p) have different orientation and that any symmetry of Λ mapping
one onto the other must be orientation reversing. It follows that an automorphism of
Γ will map pairs of adjacent vertices onto pairs of adjacent vertices. In that case, the
segments of the original pair and the image pair have the same coordinates or reversed
coordinates and in the former case the automorphism would be orientation preserving
while in the latter case orientation reversing. For later reference, we we formalize this
discussion as a lemma.

Lemma 4. Let Γ be a SSG, let u and w be a pair of adjacent vertices joined a segment
with SSG-coordinates (p, q). Let φ be a symmetry of Γ. Then φ(u) and φ(w) are adjacent
and the segment joining them has SSG-coordinates (p, q) when φ is orientation-preserving
and (q, p) when φ is orientation-reversing.

Since we will be constructing our templates in a copy of Λ with a fixed coordinate
system, we will frequently need to convert between Λ-coordinates and SSG-coordinates;
the following easily proved lemma gives the conversion formulas.

Lemma 5. Let u and v be two vertices of Λ and let (x, y) be the Λ-coordinates of the
vector from v to u. Then the SSG-coordinates (p, q) of the segment joining v and u are
computed as follows:

i. (p, q) = (x, y) when x > 0 and y > 0;
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ii. (p, q) = (y,−x) when x < 0 and y > 0;

iii. (p, q) = (−y, x) when x > 0 and y < 0;

iv. (p, q) = (−x,−y) when x < 0 and y < 0.

Furthermore, if xy = 0, the SSG-coordinates (p) is the absolute value of the non-zero
Λ-coordinate.

In Λ there are two natural ways to measure the distance between vertices or lengths
for segments: the graph theory length of a segment with SSG-coordinates (p, q) is simply
p + q while the geometric length of a segment with SSG-coordinates (p, q) is

√
p2 + q2.

Given a vertex of an SSG, we will frequently consider the set of degree-3 vertices nearest
to it. By that we will mean those degree-3 vertices that are adjacent to the given vertex
by the graph-theoretical shortest segments among the geometrically shortest segments.
For example, if the vertices adjacent to the vertex v have segments with SSG-coordinates
(10, 15), (1, 18) and (6, 17) all are a geometric distance of

√
325 from v, but the vertex with

SSG-coordinates (1, 18) is nearest to v with a graph theory distance of 19; on the other
hand, if the vertices adjacent to v by segments with SSG-coordinates (1, 12), (5, 8) and
(6, 7) all are a graph theory distance of 13 from v, but the vertex with SSG-coordinates
(6, 7) is nearest to v with a geometric distance of

√
85. Suppose that in an SSG u

and u are both among the degree-3 vertices nearest to v and assume that the segments
have coordinates (p, q) and (p, q) respectively. Then these coordinates satisfy the system

p + q = p + q and
√
p2 + q2 =

√
p2 + q2 and hence either p = p and q = q or p = q and

q = p. Again we formulate this observation as a lemma for later reference.

Lemma 6. Let Γ be an SSG and let v be a vertex. Then all segments to the nearest
degree-3 neighbors of v have SSG-coordinates (p, q) or (q, p) for a fixed p and q.

4 Regions of an SSG

By definition all of the faces of an SSG are squares. Hence if the SSG is given by a
template in Λ, the number of faces of the SSG is simply the total area of its template.
Based on this observation we will be able to compute the number of vertices in a self-dual
spherical grid in terms of the area of the template of the corresponding SSG.

Lemma 7. Let Γ = (Vb ∪ Vr ∪ Vw, E, F ) be an SSG and let A denote the number of faces
of Γ or the area of its template. Then |Vb| = |Vr| = 1

4
A+ 1.

Proof. Counting edges from the red-black side of the bipartition [Vb ∪ Vr, Vw] gives |E| =
(4|Vb| − 4) + (4|Vr| − 4) = 4(|Vb|+ |Vr| − 2). On the other hand each face is bounded by
4 edges; so, 2|E| = 4|F |. Combining these two equations yields 2(|Vb| + |Vr| − 2) = |F |.
Finally since Γb is self-dual |Vb| = |Vr| and we have 4|Vb| − 4 = |F | = A.
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One basic region that will occur regularly in our investigation is that of a parallel-
ogram. Specifically, most of our SSG templates will be partitioned into parallelograms
with degree-3 vertices at the vertices of the parallelograms. Each parallelogram P can
be embedded in Λ with one vertex v0 at the origin. Let v1 = (x1, y1) and v3 = (x3, y3)
be the vertices of P adjacent to v0. Then from basic vector geometry, we have that v2,

the vertex opposite v0, has Λ-coordinates (x1 + x3, y1 + y3). The matrix

[
x1 x3

y1 y3

]
gives

the transformation of the plane that maps the unit square onto the parallelogram. Hence
the absolute value of its determinate, |x1y3 − x3y1|, is the area of the parallelogram. If
x1y3 − x3y1 is positive then the transformation preserves orientation and v1, v3 are in
counterclockwise order about v0; if x1y3 − x3y1 is negative then v1, v3 are in clockwise
order.

Our basic method for constructing an SSG from a template will be to form a “cylinder”
sandwiched between two “caps.” Let v0, v1, v2 and v3 be four vertices in Λ and let H
denote their convex hull. If H is a quadrilateral, we assume that v0, v1, v2 and v3 occur
in counterclockwise order around the boundary of H. If H is a triangle, we assume that
v1, v2 and v3 occur in counterclockwise order with v0 interior to H. If H is a straight line
segment, we assume that v0, v1, v2 and v3 occur in counterclockwise order with v0 and v2

as the endpoints of the segment.
Assume first that H is a quadrilateral or a straight line segment. Now using an

elementary geometric argument one can construct disjoint 90◦ wedges at the vertices so
that the left bounding ray at v0 is parallel to the right bounding ray at v1, the left
bounding ray at v1 is parallel to the right bounding ray at v2 and so on. In the case that
H is a triangle, we note that the angles ∠v1v0v2, ∠v2v0v3 and ∠v3v0v1 sum to 360 degrees.
Hence we may assume that the angle ∠v1v0v3 is greater than 90◦ and we may choose a
90◦ wedge with vertex v0 that separates v1 and v3 and then proceed to construct wedges
at the other vertices with consecutive sides parallel. Since the counterclockwise rotation
by 90◦ about any vertex of Λ is a symmetry of Λ, the vertices, edges and faces match
up when a wedge is removed and its bounding rays identified. Carrying out this deletion
and identification at each vertex results in an infinite cylinder with a “cap” containing H
at the end. A typical configuration is pictured in Figure 5. Segments of constant slope
joining a point on the cylinder to itself are all parallel and have the same length. One of
these segments connects one of the v0, v1, v2 and v3 to itself and is called the rim of the
cylinder ; the region it bounds is called the cap. This rim is also called rim of the cap.

Consider the cap C and its rim R. To continue this construction and eventually
produce a template, we must take into account that an SSG has four more degree-3
vertices. One of them will be among the “closest” to R. The segment parallel to R
through that vertex is then the rim of the “bottom” cap and the region between the two
rims is the actual cylinder of this template. This bottom cap, like the top cap will be
a finite region, very often isomorphic to the top cap. Finally, if the cylinder is slit open
along a segment connecting a degree-3 vertex on one rim to a degree-3 vertex on the other
rim and unrolled we see that it is a parallelogram.

To compute the SSG-coordinates of the rim, place v0 at the origin. Assume that the
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Figure 5: A Cap and Its Cylinder.

Λ-coordinates of vi are (xi, yi) and that v1 is in the first quadrant. Now let w denote the
image of the origin under the 90◦ clockwise rotation about v3, let w′ denote the image of
w under the 90◦ clockwise rotation about v2 and let w′′ denote the image of w′ under the
90◦ clockwise rotation about v1. One easily checks that the Λ-coordinates of w′′ are

(x1 − y1 + x2 + y2 − x3 + y3, x1 + y1 − x2 + y2 − x3 − y3).

When wedges are removed and the cylinder reconstituted the segment v0 − w′′ becomes
the rim of the cap. The Λ-coordinates of w′′ converted to the SSG-coordinate format are
called the rim coordinates of the cylinder or cap.

In general, computing the area of the cap is rather complicated. However, there are
only two cases for which we will actually use this cap-cylinder-cap decomposition, and we
now compute the cap area for these two cases. The two cases are: caps about the vertices
of parallelograms and caps with rims on 45◦ lines; representatives of these two types are
pictured in Figure 6. In these cases, one can easily choose the wedges so that their sides
are perpendicular to the rim.

v0

v1
v3

v2

A B

B

C

C

D

D

v∗
v0

v1v3

v2 (y1, y1)

(−y3, y3)

(y1 − y3, y1 + y3)

Figure 6: Special Cases.

First consider the parallelogram (on the left in the figure); here the wedges have been
chosen so that their sides are perpendicular to the rim. Substituting x1 + x3 for x2 and
y1 + y3 for y2 in the rim formula gives (2x1 + 2y3, 2y1 − 2x3) for the rim coordinates. To
compute the cap area, we start with the parallelogram itself; it has area x1y3− y1x3. Let
v∗ be the image of v3 under the 90◦ clockwise rotation about v0. Observe that the four
triangular regions of the cap outside of the parallelogram (labeled A, B, C and D) may
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be assembled into the parallelogram given by vectors v∗ and v1. The Λ-coordinates of v∗

are (y3,−x3); hence the area of this parallelogram is y3y1 + x1x3 and the area of the cap
is x1y3 − y1x3 + y3y1 + x1x3.

Turning to the 45◦ case and setting the rim coordinates equal to one another, we
have (x1 − y1 + x2 + y2 − x3 + y3) = (x1 + y1 − x2 + y2 − x3 − y3). This gives x2 =
y1 − y3. Substituting y1 − y3 for x2 in the rim coordinates gives the rim coordinates
(x1+y2−x3, x1+y2−x3) in this case. Turning to area, we easily see that the corners of the
rectangle have Λ-coordinates (y1, y1), (y1− y3, y1 + y3) and (−y3, y3) (in counterclockwise
order). Hence the entire rectangle has area 2y1y3 and we need only subtract off the
areas of the three corner squares. The area of a square with 45◦ angled sides is simply
the square of its height or width divided by 2. Hence the area of the cap is 2y1y3 −
1
2

((y1 − x1)2 + (y1 + y3 − y2)2 + (y3 + x3)2). For easy reference, we summarize all of these
geometric results in the next lemma.

Lemma 8. Let P the cap of a set of four degree-3 vertices in Λ. Assume that the degree-3
vertices are labeled v0, v1, v2 and v3 and are arranged in counterclockwise order with v0

on the rim. Assume that the coordinate system for Λ is chosen with v0 at the origin and
v1 in the first quadrant. Finally, let v4 denote the point on the bottom rim nearest to v0

and let vi have Λ-coordinates (xi, yi) for i = 1, . . . , 4. Then:

i. The rim coordinates are

(x1 − y1 + x2 + y2 − x3 + y3, x1 + y1 − x2 + y2 − x3 − y3)

(a) If this is a parallelogram cap, x2 = x1 +x3, y2 = y1 +y3 and the rim coordinates
are (2x1 + 2y3, 2y1 − 2x3).

(b) If this is a 45◦ cap, x2 = y1− y3 and the rim coordinates are (x1 + y2−x3, x1 +
y2 − x3).

ii. If v′ = (x′, y′) and v′′ = (x′′, y′′) are vectors, x′y′′ − x′′y′ > 0 when v′ and v′′ are in
counterclockwise order around the origin and x′y′′ − x′′y′ < 0 when v′ and v′′ are
in clockwise order. In either case |x′y′′ − x′′y′| is the area of the parallelogram with
vertices v0, v′, v′′ and v′ + v′′. Thus the area of the cylinder is |x4(x1 − y1 + x2 +
y2 − x3 + y3)− y4(x1 + y1 − x2 + y2 − x3 − y3)|

(a) If this is a parallelogram cap, the area of the cap is

x1y3−x3y1+y1y3+x1x3 and the area of the cylinder is 2|x4(y1−x3)−y4(x1+y3)|.
(b) If this is a 45◦ cap, the area of the cap is

2y1y3 − 1
2

((y1 − x1)2 + (y3 + x3)2 + (y1 + y3 − y2)2) and

the area of the cylinder is |(x4 − y4)(x1 + y2 − x3)|.
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5 The Symmetries and Symmetry Groups of SSGs

The main result of this section is a complete listing of the symmetries and symmetry
groups of the SSGs. A similar study was carried out for general self-dual plane graphs by
B. Servatius and H. Servatius [7]. Any plane graph may be embedded on the sphere so
that the symmetries of the graph are isometries of the sphere and its symmetry group is
a discrete group of isometries on the sphere (See Lemma 1 in [7]). In our investigation of
the symmetries and symmetry groups of SSGs, we will use terminology of the isometries
of the sphere as in Coxeter and Moser [3]. It is also the case that each symmetry of
an SSG must permute the eight degree-3 vertices and therefore may be identified with a
subgroup of the permutation group of these vertices. We will also use the terminology
of this permutation group. Specifically we will talk about the stabilizers of the degree-3
vertices and the orbits of a symmetry or of a symmetry group meaning the orbits of the
permutation or permutation group of the degree-3 vertices. We will frequently use the
result that the product of the size of the orbit containing a degree-3 vertex and the size
of its stabilizer equals the order of the symmetry group.

Let Γ = (V,E, F ) be an SSG. Any symmetry γ of Γ must respect the bipartition (Vb∪
Vr, Vw) of its vertex set. Since all of the degree-3 vertices are in Vb ∪Vr, γ(Vw) = Vw. Any
symmetry γ must also respect the bipartition of the auxiliary graph and either preserve the
subgraphs (Vb ∪ Vw, Eb) and (Vr ∪ Vw, Er) [γ(Vb) = Vb and γ(Vr) = Vr, color-preserving ]
or interchange them [γ(Vb) = Vr and γ(Vr) = Vb, color-reversing ]. The definition of
an SSG requires that Γ admit at least one color-reversing symmetry. The symmetries
of Γ may also be classified as direct (orientation preserving) or opposite (orientation
reversing) depending on whether their extension to an isometry of the sphere is direct or
opposite. By Lemma 4, the direct symmetries map segments with SSG-coordinates (p, q)
onto segments with SSG-coordinates (p, q) while opposite symmetries map segments with
SSG-coordinates (p, q) onto segments with SSG-coordinates (q, p).

Lemma 9. Let Γ = (Vb ∪ Vr ∪ Vw, E, F ) be an SSG. Let Tb and Tr denote the degree-3
black and red vertices, respectively. Then any symmetry of Γ must be one of the following:

• The direct, color-preserving symmetries:

i. rotations of order 4 about antipodal degree-4 vertices from Vb ∪ Vr;
ii. rotations of order 3 about antipodal degree-3 vertices

cb ∈ Tb and cr ∈ Tr;
iii. rotations of order 2 about antipodal vertices.

• The direct, color-reversing symmetries:

iv. rotations of order 4 about antipodal vertices from Vw;

v. rotations of order 2 about the centers of antipodal faces.

• The opposite, color-preserving symmetries:
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vi. A reflection through a color-preserving equator∗;

vii. A rotatory-reflection of order 4 with centers of the same color;

viii. The antipodal map α.

• The opposite, color-reversing symmetries:

ix. A reflection with a color-reversing equator∗;

x. A rotatory-reflection of order 8 with antipodal degree-3 centers cb ∈ Tb and
cr ∈ Tr and a color-reversing

equator∗;

xi. A rotatory-reflection of order 6 with antipodal degree-3 centers cb ∈ Tb and
cr ∈ Tr and a color-reversing

equator∗;

xii. A rotatory-reflection of order 4 with centers from Vw or one red and one black
center and a color-reversing

equator∗;

xiii. The antipodal map α.

∗Color-preserving and color-reversing equators are listed in Figure 7.

color-reversing ←− color-preserving −→
Figure 7: Possible equators for a reflection.

Proof. Since Γ is a plane graph any symmetry of Γ corresponds to an isometry of the
sphere. Hence, the direct symmetries of Γ must be rotations and have two antipodal
fixed points. We call these fixed points the centers of the rotation. Since these rotations
are also graph symmetries, the only choices for centers are: vertices, centers of faces and
centers of edges. It follows that the only possible orders for a rotation are 2, 3 or 4 (for
vertices), 2 or 4 (for faces) and 2 (for edges). Since a rotation of order 2 about the center
of an edge interchanges a white vertex with a red or black vertex, it cannot extend to a
symmetry of Γ. Since a rotation of order 4 about the center of a face maps the white
vertices bounding the face onto the black and red vertices bounding that face, it also
cannot extend to a symmetry of Γ. Hence the only possibilities are rotations of order 2,
3 or 4 centered at vertices or half-turns (order 2) centered at faces.
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A rotation of order 4 about a red or black vertex is color-preserving while a rotation
of order 4 about a white vertex is color-reversing. Hence, rotations of order 4 have both
centers in Vw [item (iv) above] or both centers in Vb ∪ Vr [item (i)]. The two centers of a
rotation of order 3 can only be vertices of degree-3. The remaining six vertices of degree-3
must fall into two orbits of length 3 each. Since there are 4 red and 4 black vertices
of degree-3, there must one red and one black center and one red and one black orbit of
length 3 [item (ii)]. A rotation of order 2 about the center of a face interchanges the white
vertices bounding the face and interchanges the black and red vertices bounding that face;
so it could only extend to a color-reversing symmetry of Γ [item (v)]. A rotations of order
2 about a vertex of any color is color-preserving [item (iii)].

The only possible opposite symmetries are reflections and rotatory-reflections. Reflec-
tions of the sphere have a plane of reflection which intersects the sphere in a great circle
or equator that is fixed. If ρ is a reflection of Γ, the equator of its extension to the sphere
can intersect a face of Γ only in an edge (in which case it interchanges the faces containing
that edge) or a diagonal of the face (in which case it maps that face onto itself). If the
equator of a reflection coincides with the diagonal of a face f joining two white vertices v
and w, then that equator must include the white-white diagonals of the faces containing
v and w but not adjacent to f . It follows that, if an equator contains one white-white
diagonal it must be an entire circuit of white-white diagonals. In this case, the reflection
is color-reversing [item (ix)]. We will refer to such a circuit of white-white diagonals as a
color-reversing equator. See the left-hand diagram in Figure 7.

If the equator of a reflection coincides with the diagonal of a face f joining red and
black vertices v and w of degree 4, then that equator must include the red-black diagonals
of the faces containing v and w but not adjacent to f . See Figure 7. Now assume that
the equator of a reflection coincides with the black (red) edge joining the white vertex v
and the black (red) vertex w. Then that equator must include the other black (red) edge
containing v. When w has degree 4, the equator must include the opposite black (red)
edge containing w; when w has degree-3, the equator must include the red-black diagonal
of the face containing the other two edges at w. In all of these cases, the reflection is
color-preserving [item (vi)]. We conclude that a color-preserving equator is a circle of
edges and red-black diagonals as pictured in the right three diagrams of Figure 7.

Each rotatory-reflection γ in the symmetry group of Γ is the composition of a rotation
σ and a reflection ρ where the plane of its equator is perpendicular to the axis of σ. If
both σ and ρ are themselves symmetries of Γ, the center and equator of γ are well defined.
However, γ = σρ may be a symmetry of Γ even when σ and ρ are not. Since the axis of
σ is perpendicular to the plane of ρ, σ and ρ commute. Thus, γ = σρ = ρσ and γ2 = σ2.
Hence if σ has order greater than 2, we may still recover the center and equator for γ: the
centers of γ are the centers of the rotation σ2 and the equator of γ is the perpendicular
plane bisecting the axis of σ. In the case that σ is a half-turn, σ2 and hence γ2 is the
identity map and there is no uniquely defined axis nor uniquely defined equator. In this
case, γ is the unique antipodal symmetry and is denoted by α. For each vertex, edge or
face X, α(X) is called the antipodal vertex, edge or face of X; the antipodal map α may
be either color-preserving [item (viii)] or color-reversing [item (xiii)].
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Suppose that γ is a rotatory-reflection of order n > 2. Then γ2 is a rotation of order
n
2
. Hence n = 4, 6 or 8. If n is 8 then the vertices of degree-3 must form an orbit of

length 8. Since there are 4 red and 4 black vertices of degree-3, γ must be color-reversing.
However, γ2 is a color-preserving rotation of order 4. Hence, the centers of γ must be in
Vb ∪ Vr, and since γ interchanges the centers, one is red and the other is black [item (x)].

Using the same reasoning, we conclude that a rotatory-reflection γ of order 6 is color-
reversing and has an orbit consisting of three red and three black degree-3 vertices. The
remaining two vertices of degree-3 must be the degree-3 red and the degree-3 black centers
of the rotation γ2[item (xi)].

Finally, the square of a rotatory-reflection of order 4 is a color-preserving half-turn;
hence its centers are vertices. Therefore, a color-preserving rotatory-reflection of order
4 must have both centers of the same color [item (vii)] and color-reversing rotatory-
reflection of order 4 must have one red center and one black center or both centers white
[item (xii)].

Since the composition of two color-preserving symmetries is also color-preserving and
the composition of two color-reversing symmetries is a color-preserving symmetry, the
color-preserving symmetries form an index 2 subgroup. This subgroup may be identified
with the symmetry group of the subgraph (Vb ∪ Vw, Eb) and the underlying self-dual
spherical grid Γb. So, in Theorem 1 below, we list a pair: the symmetry group of the
SSG, Γ, and the symmetry group of the underlying self-dual spherical grid, Γb. This
result is similar to Theorem 1 in Servatius and Servatius [7]. The main difference is that
here the groups are specifically tied to spherical grids and then to the templates. A few
of our groups are consolidated into a single class in [7].

Theorem 1. Following is a complete list of all possible symmetry groups AΓ of an SSG
Γ along with the induced symmetry group A∆ of ∆, the underlying self-dual SG.

• Order 2

i. AΓ ={one color-reversing reflection ρ, ι}; A∆ = {ι}.
ii. AΓ ={the color-reversing antipodal map α, ι}; A∆ = {ι}.

iii. AΓ ={one color-reversing half-turn τ , ι}; A∆ = {ι}.

• Order 4

iv. AΓ ={color-reversing reflections, ρ1 and ρ2, one half-turn τ = ρ1ρ2, color-
preserving, and ι}. A∆ = {τ, ι}.

v. AΓ ={reflections ρ, color-reversing, η, color-preserving, the color-reversing
half-turn τ = ρη and ι}. A∆ = {η, ι}.

vi. AΓ ={One color-reversing reflection ρ, one color-preserving half-turn τ , the
color-reversing antipodal map α = ρτ and ι}. A∆ = {τ, ι}.

vii. AΓ ={One color-reversing reflection ρ, one color-reversing half-turn τ , the
color-preserving antipodal map α = ρτ and ι}. A∆ = {α, ι}.

the electronic journal of combinatorics 21(1) (2014), #P1.36 14



viii. AΓ ={One color-preserving reflection η, one color-reversing half-turn τ , the
color-reversing antipodal map α = ητ and ι}. A∆ = {η, ι}.

ix. AΓ = {One color-reversing rotatory-reflection φ of order 4 and its powers}.
A∆ = {φ2, ι}.

x. AΓ = {Three half-turns with pairwise orthogonal axes: two color-reversing,
τ1, τ2 and one color-preserving, τ3 = τ1τ2}. A∆ = {τ3, ι}.

• Order 6

xi. AΓ = {One color-preserving rotation σ of order 3 and its powers and three
color-reversing half-turns τ1, τ2, τ3}. A∆ = {σ, σ2, ι}.

• Order 8

xii. AΓ = {One color-preserving rotation σ of order 4 and its powers and τ1, τ2, τ3,
τ4, four color-reversing half-turns }. A∆ = {σ, σ2σ3, ι}.

xiii. AΓ = {One color-reversing rotation σ of order 4 and its powers, two color-
reversing half-turns τ1 and τ3, two color-preserving half-turns τ2 and τ4 }. A∆

= { σ2, τ2, τ4, ι}.
xiv. AΓ = {3 color-reversing reflections ρ1, ρ2 and ρ3, the (color-reversing) antipo-

dal map α = ρ1ρ2ρ3, three color-preserving half-turns τ1 = ρ1ρ2, τ2 = ρ1ρ3,
τ3 = ρ2ρ3, and the identity.}. A∆ = {τ1, τ2, τ3, ι}.

xv. AΓ = {2 color-reversing reflections, ρ1, ρ2, and one color-preserving reflection,
η, the (color-preserving) antipodal map α = ρ1ρ2η, two color-reversing half-
turns τ1 = ρ1η, τ2 = ρ2η, one color-preserving half-turn τ = ρ1ρ2, and the
identity.}. A∆ = {η, α, τ, ι}.

xvi. AΓ = {2 color-preserving reflections ρ1 and ρ2, one color-reversing reflection,
ρ3, the color-reversing antipodal map α = ρ1ρ2ρ3, two color-reversing half-
turns τ1 = ρ2ρ3, τ2 = ρ1ρ3, one color-preserving half-turn τ3 = ρ2ρ3, and the
identity.}. A∆ = {τ3, ρ1, ρ2, ι}.

xvii. AΓ = {a color-preserving rotatory-reflection σ of order 4 and its powers, two
color-reversing half-turns τ1 and τ2 and two color-reversing reflections ρ1 and
ρ2 where τ1τ2 = ρ1ρ2 = σ2. A∆ = {ι, σ, σ2, σ3}.

xviii. AΓ = {a color-reversing rotatary-reflection σ of order 4 and its powers, two
color-preserving half-turns τ1 and τ2 and two color-reversing reflections ρ1 and
ρ2 where τ1τ2 = ρ1ρ2 = σ2. A∆ = {ι, σ2, τ1, τ2}.

xix. AΓ = {a color-reversing rotatary-reflection σ of order 4 and its powers, two
color-reversing half-turns τ1 and τ2 and two color-preserving reflections ρ1 and
ρ2 where τ1τ2 = ρ1ρ2 = σ2. A∆ = {ι, σ2, ρ1, ρ2}.

• Order 12
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xx. AΓ = {One color-preserving rotation σ of order 3 and its powers, three color-
reversing half-turns, τ1, τ2, τ3, three color-preserving reflections ρ1, ρ2 and ρ3

through planes containing the axis of σ, one color-reversing reflection ρ0 through
the plane perpendicular to the axis of σ plus σρ0 and σ2ρ0}.
A∆ = {ρ1, ρ2, ρ3, σ, σ

2, ι}.
xxi. AΓ = {One color-reversing rotatory-reflection φ of order 6 and its powers, three

color-reversing half-turns, three color-preserving reflections ρ1, ρ2, ρ3 through
planes containing the axis of φ}. A∆ = {ρ1, ρ2, ρ3, φ

2, φ4, ι}.

• Order 16

xxii. AΓ = {One color-reversing rotatory-reflection φ of order 8 and its powers, four
color-reversing half-turns, four color-preserving reflections ρ1, ρ2, ρ3, ρ4 through
planes containing the axis of φ}. A∆ = {ρ1, ρ2, ρ3, ρ4, φ

2, φ4, φ6, ι}.
xxiii. AΓ = {One color-preserving rotation σ of order 4 and its powers, four color-

reversing half-turns, four color-preserving reflections, ρ1, ρ2, ρ3, ρ4, through the
planes containing the axis of σ, one color-reversing reflection ρ through the
plane perpendicular to the axis of σ plus the rotatory-reflections σρ, σ2ρ and
σ3ρ}. A∆ = {ρ1, ρ2, ρ3, ρ4, σ, σ

2, σ3, ι}.
xxiv. AΓ = {One color-reversing rotation σ of order 4 and its powers, two color-

reversing half-turns τ1 and τ3, two color-preserving half-turns τ2 and τ4, two
color-reversing reflections ρ1 and ρ3, color-preserving reflections ρ2 and ρ4 all
through planes containing the axis of σ, one color-preserving reflection ρ with
equator perpendicular to the axis of σ and its compositions with the powers of
σ}. A∆ = {τ2, τ4, ρ2, ρ4, ρ, σ

2, α = σ2ρ, ι}.
xxv. AΓ = {One color-reversing rotation σ of order 4 and its powers, two color-

reversing half-turns τ1 and τ3, two color-preserving half-turns τ2 and τ4, two
color-reversing reflections ρ1 and ρ3, color-preserving reflections ρ2 and ρ4 all
through planes containing the axis of σ, one color-reversing reflection ρ with
equator perpendicular to the axis of σ and its compositions with the powers of
σ}. A∆ = {τ2, τ4, ρ2, ρ4, σρ, σ

2, σ3ρ, ι}.

• Order 24

xxvi. AΓ = the direct symmetry group of the cube and A∆ = the direct symmetry
group of the tetrahedra.

• Order 48

xxvii. AΓ = the full symmetry group of the cube and A∆ = the full symmetry group
of the tetrahedra.
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Proof. We will actually prove only half of the theorem here. Namely that this is a complete
list of possibilities. The fact that each group does occur will be established in the last
section where the smallest example of each type will be constructed.

We start by noting that either all of the symmetries of an SSG are direct or the direct
symmetries form an index-2 subgroup. We also note that the composition of two half-
turns is a rotation by twice the angle between their axes about an axis perpendicular to
the plane containing their axes. Hence, if the SSG admits no rotations of order 3 or 4, its
direct subgroup is one of the following:

a. the identity, {ι};

b. one half-turn and the identity, {ι, τ};

c. three half-turns with pairwise orthogonal axes and the identity, {ι, τ1, τ2, τ3}.

It follows from Lemma 9 that the only symmetries that fix degree-3 vertices are color-
preserving reflections and color-preserving rotations of order 3. Hence the only possible
non-trivial stabilizers for degree-3 vertices are:

1. a color-preserving reflection (order 2),

2. a rotation of order 3 (order 3) or

3. a rotation of order 3 and three color-preserving reflections
(order 6).

Let σ denote a counter clockwise rotation of order 3 or 4 for the SSG, let c and c′

denote the centers of σ. Let v0 be a degree-3 vertex nearest to c but not equal to c and
let vi = σi(v0). Let C denote the cap determined by c, v0, v1 and v2 (if σ has order 3)
or by v0, v1, v2 and v3 (if σ has order 4). If σ has order 3, we choose the Λ-coordinate
system centered at v0 with the center c in the first quadrant having Λ-coordinates (x, y).
Then, inserting a 90◦ wedge at c, we have v2 = (2x, 2y) and v3 = (x− y, x+ y). If σ has
order 4, let (x, y) be the Λ-coordinates of v1. Then v2 = (x− y, x+ y) and v3 = (−y, x).
By Lemma 8, the rim coordinates of C are 3(x+ y,−x+ y) and 4(x, y), respectively. We
may carry out the same analysis for the other cap with c′ or v′0 at the origin and (x′, y′) as
the Λ-coordinates of c′ or v′1 in the bottom cap. Hence the rim coordinates of the botom
cap are 3(x′ + y′,−x′ + y′) and 4(x′, y′), respectively. However these rims have the same
coordinates. Giving x′ = x and y′ = y; we conclude that the two caps are isomorphic.

Now suppose that an SSG has been decomposed into two caps and a cylinder and
assume that the two caps are congruent under a direct isometry. Relabeling if needed,
we may assume that v′0 is the degree-3 vertex on the bottom rim that is the image of
v0 under this direct isometry. The segment joining v0 to v′0 splits the cylinder into a
parallelogram and the half-turn about the midpoint of this segment interchanges the caps
and the vertices v0 and v′0. Hence this half-turn is a symmetry of the SSG.

If the SSG admits a rotation of order 3 and a rotation of order 4 or two rotations of
order 4 with different axes, then it is easy to see that all eight degree-3 vertices lie on
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the same orbit. If there are no reflections the vertex stabilizers have order 3, the group
has order 24 and must be the the direct symmetry group of the cube. In this case, it is
natural to visualize the SSG as the cube with the eight degree-3 vertices as corners. It
follows from this and the previous argument that remaining possible direct subgroups are:

d. a rotation, σ of order 3 and its powers and three half-turns with axes perpendicular
to the axis of σ, {ι, σ, σ2, τ1, τ2, τ3};

e. a rotation, σ of order 4 and its powers and four half-turns with axes perpendicular
to the axis of σ, {ι, σ, σ2, σ3, τ1, τ2, τ3, τ4};

f. the 24 element direct symmetry group of the cube.

With these background results, we proceed with with the identification of all possi-
ble SSG symmetry groups. For a symmetry group of order 2, we need a color-reversing
symmetry of order 2. The only such symmetries listed in Lemma 9 are a color-reversing
reflection, a color-reversing half-turn and the color-reversing antipodal map. This ac-
counts for items (i), (ii), the only groups with direct subgroup (a), and (iii), only group
equal to (b).

We now turn to the groups of order 4. The only direct group of order 4 is (c) above and
leads directly to group (x). The remaining groups of order 4 are obtained by including
two opposite symmetries with the direct subgroup (b) and the composition of these two
opposite symmetries must be the half-turn. Hence the only options for a group of order
4 are:

1. one half-turn τ and two reflections through orthogonal planes containing the axis of
τ and the identity;

2. one half-turn τ , one reflection through the plane orthogonal to the axis of τ , the
antipodal map α and the identity;

3. a rotatory-reflection of order 4 and its powers;

In all cases, two of the symmetries must be color-reversing. We consider these possibilities
one at a time. There are two ways to select the two symmetries to be color-reversing from
the half-turn τ and the two reflections through orthogonal planes containing the axis of τ .
These are listed as items (iv) and (v). There are three ways to select the two symmetries
to be color-reversing from the half-turn τ , the reflection through the plane orthogonal to
the axis of τ and the antipodal map α. These are listed as items (vi), (vii) and (viii). A
rotatory-reflection of order 4 must be color-reversing and results in item (ix).

A symmetry group of order 6 must be group (d) above: if it included opposite sym-
metries, the index 2 direct subgroup would have order 3 and that is not possible. So
the group is {ι, σ, σ2, τ1, τ2, τ3}. Since σ3 = ι, σ must be color-preserving and so τ1, τ2, τ3

must be color-reversing: group (xi). Moving on to order 8, either the group equals (e)
above or has (c) as its direct subgroup. If it equals (e) either the rotation of order 4 is
color-preserving, leading to group (xii), or it is color-reversing, leading to group (xiii).
Adding four opposite symmetries to (c) can be done in only two ways:
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1. three reflections with pairwise orthogonal planes of reflection intersecting in the axes
of the half-turns and the antipodal map.

2. the odd powers of a rotatory-reflection σ of order 4 and two reflections with planes
of reflection containing the axis of σ.

Three distinct versions of the first group listed can occur. Since the reflections generate the
group, at least one of them is color-reversing giving the options of one, two or three color-
reversing reflections: items (xiv), (xv) and (xvi). There are also three distinct versions of
the second group. In this case, the group consists of ι, σ, σ2, and σ3, half-turns τ1 and τ2

distinct from the half-turn σ2, and reflections ρ1 and ρ2. Since σ2 is color-preserving and
τ1τ2 = σ2 = ρ1ρ2, our options for four color-reversing symmetries are: (xvii) τ1, τ2, ρ1, and
ρ2; (xviii) σ, σ3, ρ1, and ρ2; (xix) σ, σ3, τ1, and τ2.

There is no direct group of order 12; hence any group of order 12 must have (d) as its
direct subgroup {ι, σ, σ2, τ1, τ2, τ3}. We note that since σ3 = ι, σ must be color-preserving
and since the half-turns interchange the (differently colored) centers of σ they must all be
color-reversing. To get the full group we simply add one opposite symmetry and compute
its compositions with the symmetries in (d). It is easy to see that at least one of the six
added opposite symmetries must be a reflection through a plane containing the axis of
σ. If this plane also contains the axis of one of the half-turns, we get group (xx); if this
plane bisects the angle between consecutive half-turn axes, we get group (xxi).

Similarly, there is no direct group of order 16 and all symmetry groups of order 16
must contain (e) as direct subgroup. Again there are just two ways to add the opposite
symmetries: one option results in a rotatary-reflection of order 8, the other is a reflection
through a plane perpendicular the axis of the rotation of order 4. In the first case, the
rotatary-reflection having an orbit of length 8 must be color-reversing and group (xxii) is
the result. In the second case there are three different ways to choose the color-preserving
subgroup: (xxiii), (xxiv) and (xv).

Finally, as already noted, the only possibilities with more than one rotation of order
greater than 2 may be identified with the direct and full symmetry groups of the cube.
With the red/black bipartite coloring of the vertices of the cube, it is easy to identify the
color preserving and color reversing symmetries - item (xxvi) and (xxvii).

6 Templates for SSGs

In this section we describe how to construct a template for every SSG and hence for
every self-dual spherical grid. Let Γ = (Vb∪Vr ∪Vw, Eb∪Er) be an SSG. We organize our
construction about the symmetry group of Γ, as listed in Theorem 1. We will use just four
templates: Template 1 for all groups containing three half-turns with pairwise orthogonal
axes {(x), (xii), (xiii), (xiv), (xv), (xvi), (xvii), (xviii), (xix), (xxii), (xxiii), (xxiv), (xxv),
(xxvi), (xxvii)}; Template 2 for the three groups that include three half-turns with axes in
the same plane and no additional half-turns {(xi), (xx), (xxi)}; Template 3 for the groups
that include exactly one half-turn {(iii), (iv), (v), (vi), (vii), (viii), (ix)}; Template 4 for
the two groups that include no half-turns {(i), (ii)}.
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Let Γ be an SSG with a half-turn τ ∈ AΓ. Let c and c′ denote the centers of τ .
Let v1 be a degree-3 vertex closest to c and let v3 = τ(v1). Let v0 be a degree-3 vertex
next closest to c after v1 and v3. Then v0, v1, v2 = τ(v0) and v3 form the vertices of
a parallelogram Pτ . We call Pτ “the” parallelogram of τ at c. It is possible that there
could be several degree-3 vertices equally close to c at either step of the selection process
and a different choice may yield a different parallelogram. Nevertheless no matter how
we choose the vertices of Pτ , the remaining equally close vertices lie outside the cap of
Pτ . To see this, we observe that, when we copy the cap of Pτ in Λ, the entire cap lies in
a rectangle that is inscribed in the circle with the segment joining v0 and v2 as diameter
(see Figure 6). The remaining degree-3 vertices must lie on or outside the preimage of
that circle in Γ and hence outside the cap of Pτ . The remaining four degree-3 vertices
must then be the vertices of the parallelogram of τ at c′, denoted by P ′τ .

Lemma 10. Let Γ be an SSG with a half-turn τ ∈ AΓ. Then Pτand P ′τ are directly
congruent (congruent under a direct isometry of the sphere) if and only if there exists
another half-turn τ ∗ ∈ AΓ with axis perpendicular to the axis of τ .

Proof. Let Γ be an SSG with a half-turn τ ∈ AΓ. If a half-turn τ ∗ exists with axis
perpendicular to the axis of τ , it must interchange Pτ and P ′τ . Now suppose that Pτ
and P ′τ are directly congruent and consider the cap and cylinder decomposition of Γ. Let
v0 and v2 denote the vertices of Pτ on the top rim and v′0 and v′2 denote the vertices of
P ′τ on the bottom rim. On easily checks that the segments joining v0 to v′0 and v2 to v′2
partition the cylinder into two congruent parallelograms and that the half-turn τ ∗ about
their centers interchanges the caps and is a symmetry of Γ.

If follows from Lemma 10 that given an SSG Γ with three half-turns τ1, τ2 and τ3

with perpendicular axes, Pτiand P ′τi are congruent for each index i. Now consider the
parallelogram Pτ2 . Since τ2 rotates Pτ1 into P ′τ1 , one side of Pτ2 will correspond to one
side of Pτ1 and the opposite side of Pτ2 will correspond to a side of P ′τ1 . A similar
conclusion holds of the parallelogram P ′τ2 and the parallelograms of τ3. Hence Γ may be
partitioned into six (three pairs) of parallelograms and each degree-3 vertex is the vertex
of three different parallelograms as pictured in Template 1. The parallelograms of the
half-turns fit together to form a distorted cube with the degree-3 vertices as corners. To
identify Γ with the template, we select for the origin v0, one of the degree-3 vertices, and
one of its neighbors v1 to be in the first quadrant; then label the remaining neighbors v2

and v3 in counterclockwise order. The Basic Conditions ensure this orientation: x1y2 −
x2y1 > 0 implies that v2 is counterclockwise from v1; x2y3 − x3y2 > 0 implies that v3 is
counterclockwise from v2; −x3x1 − y3y1 > 0 implies that v1 is counterclockwise from v3.
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Template #1: Three half-turns with perpendicular axes.

v0

v1
(x1, y1)

v2

(x2, y2)

v3
(x3, y3)

v1 (y1,−x1)

centers of
half-turns

��
��
�*

PPPPPPPq
@
@@R

Basic Conditions: x1 > 0, y1 > 0
x1y2 − x2y1 > 0
x2y3 − x3y2 > 0
−x3x1 − y3y1 > 0

τ3

τ3

τ2

τ2
τ1

τ1

Lemma 11. Let Γ be a SSG where AΓ admits three half-turns with pairwise perpendicular
axes. Assume that its degree-3 vertices have been identified with the labeled vertices of
Template 1 in Λ. Assume that v0, the degree-3 vertex at the origin, is black (hence the
axes are black). Let τi denote the half-turn corresponding to the parallelogram defined by
vi and vi+1 (indices read mod 3). Then:

i. The number of vertices of the underlying self-dual SG is given by

x1y2 − x2y1 + x2y3 − x3y2 − x3x1 − y3y1

2
+ 1.

ii. xi ≡ yi(mod 2) for all (i) and xi ≡ 1(mod 2) for at least one index.

iii. If xi ≡ xi+1(mod 2) (indices read mod 3), then τi is color-preserving, otherwise τi is
color-reversing.

iv. If AΓ admits an orientation reversing symmetry, Γ may be oriented so that one of
the following conditions holds:

(a) xi = yi for all i (all edges of the parallelepiped have SSG-coordinates of the
form (s, s));

(b) x1 = y1 and y2 = y3 = 0 (one edge of the parallelepiped has SSG-coordinates
of the form (s, s), the remaining two have SSG-coordinates of the form (s));

(c) x2 = −x1, y2 = y1 and y3 = 0 (one edge of the parallelepiped has SSG-
coordinates of the form (s), the remaining two have SSG-coordinates of the
form (s, t) and (t, s))

v. v0 is the center of a rotation of order 3 if and only if x2 = −y1, y2 = x1, x3 = −x1

and y3 = −y1 (all edge of the parallelepiped at v0 have the same SSG-coordinates).
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vi. If Γ admits a rotation σ of order 4, we assume that the center of τ1 is actually
the center of σ with τ1 = σ2. In this case, x2 = −y1 and y2 = x1. In fact, the
parallelograms of τ1 are squares; all edges of these parallelograms have the same
SSG-coordinates (p, q). Furthermore, if p and q are even σ is color-preserving, if p
and q are odd σ is color-reversing. In either case, τ1 = σ2 is color-preserving.

Proof.

i. x1y2−x2y1 is the area of the parallelogram that is defined by the vectors (x1, y1) and
(x2, y2) with similar formulas for the areas remaining parallelograms at the origin.
Adding these these areas and doubling gives the total area. Then dividing by 4 and
adding 1 gives the number of vertices of the underlying self-dual SG by Lemma 7.

ii. Since the origin is a black vertex, vi will be black if and only if xi ≡ yi ≡ 0(mod 2)

and red if and only if xi ≡ yi ≡ 1(mod 2). If xi ≡ yi ≡ 0(mod 2) for all i, then all
degree-3 vertices would be black.

iii. If xi ≡ xi+1(mod 2), then vi and vi+1 are the same color and τi is color-preserving.
If xi 6≡ xi+1(mod 2), then vi and vi+1 are different colors and τi is color-reversing.

iv. Let Pi ∼= P ′i denote the parallelograms of τi. We note first that under any opposite
symmetry P1 is mapped onto itself, onto P ′1 or onto one of the other four parallel-
ograms. It follows that either all parallelograms have reflective symmetry or one
pair has reflective symmetry and the other two pairs are reflections of one another.
We may assume that P1 has reflective symmetry. Thus P1 admits two reflections.
Either the axes of the reflections of P1 are perpendicular to its sides and P1 is a
rectangle or the axes of the reflections of P1 are its diagonals. In the first case the
SSG-coordinates of its sides must have the form (p, p) and the axis of reflection must
carry on through the sides of the neighboring parallelograms forcing all sides of the
parallelopiped to have SSG-coordinates of the form (p, p); option (a). There are just
two ways that the axes of the reflections of P1 can be its diagonals giving options
(b) and (c).

v. If v0 is the center of a rotation of order 3 the vector to v2 is the image of the vector
to v1 under the 90◦ counterclockwise rotation: hence (x2, y2) = (−y1, x1); similarly,
(x3, y3) = (−x1,−y1).

vi. By theorem 1 if σ has order 4, σ2 is one of a set of three half-turns with pairwise
orthogonal axes. Since the parallelograms of σ2 are mapped onto themselves under a
90◦ rotation they are squares and the edges at v0 are perpendicular. Hence (x2, y2) =
(−y1, x1). Adjacent degree-3 vertices around this square face will have the same color
when x1 and y1 are even and they will alternate in color when x1 and y1 are odd.
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We now consider each of the symmetry groups described by Template 1.
AΓ is of Type (xxvii). Since the vertex stabilizers have order 6, we have a rotation of
order 3 about the origin giving x2 = −y1, y2 = x1, x3 = −x1 and y3 = −y1. We also have
a reflection fixing the origin, hence we have just one parameter p: x1 = y1 = y2 = p and
x2 = x3 = y3 = −p. To avoid all vertices having the same color, p must be a positive
odd integer. The number of vertices in Γb is 3p2 + 1 and taking p = 1 gives the smallest
example: the tetrahedron.

AΓ is of Type (xxvi). Since the vertex stabilizers have order 3, we have a rotation of
order 3 about the origin giving x2 = −y1, y2 = x1, x3 = −x1 and y3 = −y1. Since we also
have no orientation reversing symmetries, we have two parameters p and q: x1 = y2 =
−x3 = p and −x2 = −y3 = y1 = q. Furthermore, p and q must be distinct positive odd
integers. We then have that the number of vertices of Γb is 3

2
(p2 + q2) + 1. Hence taking

p = 1 and q = 3 gives the smallest example with 16 vertices.

(xxvii)

(xxvi)

4th triangular face outside

Figure 8: Smallest Examples (xxvii) & (xxvi)

For the next three cases, we have a single rotation σ of order 4 with four reflections
through planes containing the axis of σ. It follows that the SSG-coordinates of the sides
of the square face must be all of the form (p) or all of the form (p, p). The reflection
through the plane containing a degree-3 vertex interchanges the two edges of the square
face and fixes the third edge leaving that vertex. We conclude that the three edges
at a degree-3 vertex are all of the form (p) or all of the form (p, p). If they were all
of the form (p) all degree-3 vertices would have the same color. Hence, in these cases
x1 = y1 = (−x2) = y2 = p and x3 = y3 = −q. Parameters p and q must be distinct
positive integers to avoid a rotation of order 3, and at least one is odd to ensure that half
of the degree-3 vertices are of each color. The number of vertices is p2 + 2pq + 1. Let
ρ denote the reflection through the plane perpendicular to the axis σ. Then the options
are:

AΓ is of Type (xxv). σ and ρ are both color-reversing: p and q odd. To get the smallest
example, let p = 1 and q = 3 giving |Vb| = 8.

AΓ is of Type (xxiv). σ color-reversing and ρ color-preserving: p odd and q even. To
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get the smallest example, let p = 1 and q = 2 giving |Vb| = 6.

AΓ is of Type (xxiii). σ color-preserving and ρ color-reversing: p even and q odd. To
get the smallest example, let p = 2 and q = 1 giving |Vb| = 9.

(xxv) (xxiv) (xxiii)

Figure 9: Smallest Examples (xxv), (xxiv) & (xxiii)

AΓ is of Type (xxii). Since we have a color-reversing rotatory-reflection φ of order 8, we
have that the rotation of order 4, φ2, and the half-turn φ4 = τ1 are both color-preserving.
It follows that the τ1 parallelogram is a square. Since there are also reflections through
planes containing the axis of φ, the edge SSG-coordinates are of the form (r) or (r, r)
where r is even. Now the bottom parallelogram is congruent to the top parallelogram
but is rotated 45◦. Since the plane of reflection of φ is perpendicular to the axis of φ, we
conclude that v0 (the origin), v2 and v3 form an isosceles triangle with the base vertices
v0 and v2 having the same color and v3 having a different color. This can only happen if
y2 = x1 = 2p, x2 = y1 = 0 and x3 = −q and y3 = p where both p and q are odd. Here
we have that the number of vertices of Γb is 2p2 + 2pq + 1. Hence taking p = 1 and q = 1
gives the smallest example with 5 vertices.

Figure 10: Smallest Example (xxii)

Cases of Types (xxi) and (xx) are represented by Template #2 and will be considered
later. We move down to groups of order 8. The next three cases (xix), (xviii) and (xvii) all
have a rotatory-reflection σ of order 4 and we assume that σ2 = τ1 in the template. They
also have reflections through perpendicular planes containing the axis of σ. Thus each the
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two parallelograms for τ1 must have two perpendicular axes of symmetry. Furthermore,
two parallelograms for τ1 must be perpendicular to one another when viewed along the
axis of τ1. There are three different ways to accomplish this:

a. Let the axes of symmetry be the diagonals of the parallelogram, that is sides of the
parallelogram have SSG-coordinates (p, q), (q, p), (p, q), (q, p) in cyclic order. Specif-
ically: x1 = y2 = p, x2 = y1 = q, x3 = −2r, y3 = 0, where p > q > 0, r > 0
and p, q odd (without this condition all vertices would be the same color). We

have |Vb| = p2−q2
2

+ 2pr + 1. Since σ(v2) = v3, σ is color-reversing. Since p and
q are odd, both reflections through perpendicular planes containing the axis of σ
are color-preserving. So this construction yields SSGs with symmetry group (xix).
The smallest example of this type has p = 3 and q = r = 1 giving |Vb| = 11.

If the axes of symmetry of the parallelogram are not the diagonals, the parallelogram
must be a rectangle with side SSG-coordinates of the form (p, p) or (p) leading to the
next two cases.

b. x1 = 2p, y2 = 2q, y1 = x2 = 0, x3 = −r and y3 = p + q, where p > q > 0, r > 0, r
and p+ q odd. To avoid an additional reflection, we must require the r 6= p− q. We
have |Vb| = 2pq + r(p+ q) + 1. Since the vertices of the top and bottom rectangles
have different colors, σ is color-reversing. But the reflections through perpendicular
planes containing the axis of σ are color-preserving. So this construction also yields
SSGs with symmetry group (xix). The smallest example of this type has p = 2,
q = 1 and r = 3 giving |Vb| = 14.

c. x1 = y1 = p, −x2 = y2 = q, x3 = −p+q
2
− r and y3 = p+q

2
− r, where p > q > 0, r > 0

and p + q even. To avoid an additional reflection, we must require the r 6= p−q
2

,

r 6= p+q
2

and r 6= p+3q
2

. We have |Vb| = pq + r(p + q) + 1. Since σ(v1) = v3, σ
is color-reversing when p+q

2
− r is odd and color-preserving when p+q

2
− r is even.

The reflections through perpendicular planes containing the axis of σ are color-
reversing when p and q are odd and preserving when p and q are even. There are
four possibilities:

(1) p+q
2
− r odd, p and q odd, symmetry group (xviii), smallest example p = 7

and q = r = 1 giving |Vb| = 16 or p = 3, q = 1 and r = 3 giving |Vb| = 16

(2) p+q
2
− r odd, p and q even, symmetry group (xix), smallest example p = 6,

q = 2 and r = 1 giving |Vb| = 21.

(3) p+q
2
− r even, p and q odd, symmetry group (xvii), smallest example p = 5

and q = r = 1 giving |Vb| = 12.

(4) p+q
2
− r even, p and q even, would produce an SSG with all degree-3 vertices

of the same color.

AΓ is of Type (xix). Since σ is color-reversing and the reflections are color-preserving,
each of the three configurations is possible. The smallest possibility for (a) has |Vb| = 11,
the smallest for (b) has 14 vertices and the smallest for (c) has 21 vertices.
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AΓ is of Type (xviii). Since σ and the reflections are color-reversing, only configuration
(c) is possible and the smallest example has |Vb| = 16.

AΓ is of Type (xvii). Since σ is color-preserving and the reflections are color-reversing
only configuration (c) is possible and the smallest example has |Vb| = 12.

(xix) (xviii) (xvii)

Figure 11: Smallest Examples (xix), (xviii) & (xvii)

The next three groups have three reflections with pairwise orthogonal equators. Let
ρ1 be one of the color-reversing reflections and let τ1 be the composition of the other two.
Then the plane of ρ1 is perpendicular to the axis of τ1. Since ρ1 is color-reversing its
equator is a 45◦ line. Hence the rim of τ1 must be a 45◦ line.

The options for the top parallelogram of τ1 are the same three structures we discussed
for the rotatory-reflection of order 4. In the first two cases (a) and (b) above, the rim
of τ1 is a horizontal line. Hence case (c) must hold: x1 = y1 = p and −x2 = y2 = q,
p > q > 0. The vertex (x3, y3) is the reflected image of the degree-3 vertex at the origin.
Hence x3 = −r and y3 = −r, where r is odd. To avoid additional symmetries, r is distinct
from p and q. The reflections perpendicular to the edges with SSG-coordinates (p, p) and
(q, q) will be color-preserving when p (respectively q) is even and color-reversing when it
is odd. We have |Vb| = pq + pr + qr + 1.

AΓ is of Type (xvi). One color-reversing reflection, so exactly one of p, q and r is odd.
The smallest example has p = 4, q = 2 and r = 1 giving |Vb| = 15.

AΓ is of Type (xv). Two color-reversing reflections, so exactly two of p, q and r are
odd. The smallest example has p = 3, q = 2 and r = 1 giving |Vb| = 12.

AΓ is of Type (xiv). Three color-reversing reflections, so all of p, q and r are odd. The
smallest example has p = 5, q = 3 and r = 1 giving |Vb| = 24.

The next two cases consist of a rotation σ of order 4 and four half-turns with axes
perpendicular to the axis of σ and no reflections. Hence we have x1 = y2 = p and
y1 = −x2 = q to give the square with its center as the center of the rotation of order
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(xvi) (xv) (xiv)

Figure 12: Smallest Examples (xvi), (xv) & (xiv)

4. The remaining parameters x3 and y3 must satisfy the basic conditions, which become
p
q
> y3
−x3 . Furthermore they must be different from (−p,−q) to avoid a rotation of order

3. If p = q or q = 0, x3 and y3 must be chosen to avoid a reflection or a rotatory-reflection
of order 8 (see xxii). If p and q are odd, σ is color-reversing; if p and q are even, σ is

color-preserving and x3 and y3 must be odd. We have |Vb| = p2+q2

2
− px3 − qy3 + 1.

AΓ is of Type (xiii). One color-reversing rotation σ of order 4; so p and q are odd. The
smallest example has p = 3, q = 1 x3 = y3 = −1 for |Vb| = 10.

AΓ is of Type (xii). One color-preserving rotation σ of order 4; so p and q are even, x3

and y3 odd. The smallest example has p = 4, q = 0 x3 = −1, y3 = 1 for |Vb| = 13.

The very last case to consider using Template #1 is:

AΓ is of Type (x). Just three half-turns with pairwise perpendicular axes. In addition to
the basic conditions on the parameters they must be chosen to avoid any reflections. Since
two of the half-turns must be color-reversing, we must avoid having all six parameters
even or all six odd. The smallest example has x1 = 3, y1 = 1, x2 = 0, y2 = 2, x3 = −2
and y3 = 2 for |Vb| = 8.

We need a different template for the SSGs with automorphism groups that contain
just one rotation of order 3 and hence three half-turns; all axes in a plane. To construct
Template #2, let Γ be such an SSG and let v0 be a center of the (counterclockwise)
rotation φ of order 3 and let v1 be a nearest degree-3 vertex. Then v1, φ(v1) and φ2(v1)
have all the same the SSG coordinates. We plot the corresponding points in Λ with v0 at
the origin, v1 in the first quadrant and φ(v1) and φ2(v1) the 90◦ and 180◦ counterclockwise
rotations of v1 about the origin (denoted by v3 and v4 in the template). Since φ also rotates
the centers of the half-turns, they are also evenly spaced about v0. We denote by τ1 the
half-turn with center c1 nearest to v1 in the counterclockwise direction. The centers c2

and c3 are the images of c1 under φ and φ2. Finally, let v2 denote the image of v1 under τ1.
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(xiii) (xii) (x)

Figure 13: Smallest Examples (xiii), (xii) & (x)

The quadrilateral v0, v1, v2, v3 is then our basic unit: the three copies of this quadrilateral
under φ surround v0 and they dovetail with the three copies surrounding v′0 to complete
the template.

Template #2: Three half-turns; all axes in a plane
perpendicular to the axis of a rotation of order 3.

v0

v1 (x1, y1)

v2
v3

v′0

(−y1, x1)

v4
(−x1,−y1)

(x2, y2)

Basic Conditions: x1 > 0, y1 > 0; one pair (x1, y1), (x2, y2) even, the
other odd; x1y2 − x2y1 > 0, x2x1 + y1y2 > 0 and (x2, y2) 6= (x1 − y1, x1 + y1)

c3

c2
τ1
c1

c′1

3
4(x1y2 − x2y1 + x2x1 + y2y1) + 1

is the number of vertices in the

the underlying self-dual SG.

To avoid additional symmetries in Template #2, we must ensure that the two parallel-
ograms corresponding to the half-turn τi are not congruent. The parallelograms for τ1 are
highlighted in the template. The condition that these parallelograms are not congruent
is easily seen to be equivalent to the condition that the quadrilateral v0, v1, v2, v3 is not
a square and this, in turn, is equivalent to the condition (x2, y2) 6= (x1 − y1, x1 + y1).
To compute the area of the quadrilateral, we note that 1

2
(x1y2 − x2y1) is the area of the

triangle with vertices v0, v1 and v2. Similarly 1
2
(x2x1 + y1y2) is the area of the triangle
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with vertices v0, v2 and v3. Their sum is then the area of the basic quadrilateral and six
times their sum or 3(x1y2 − x2y1 + x2x1 + y2y1) is the total area.

AΓ is of Type (xxi). In order to accommodate the rotatory-reflection and the reflections
through the axis of φ, we must have either y1 = 0 and x2 = y2 or x1 = y1 and x2 = 0.
The smallest example is given by x1 = y1 = 1, x2 = 0 and y2 = 4 for |Vb| = 7.

(xxi) (xx) (xi)

Figure 14: Smallest Examples (xxi), (xx) & (xi)

AΓ is of Type (xx). In order to accommodate the reflection through the plane containing
the axes of the half-turns and the reflections through the axis of φ, we must have y1 = 0
and y2 = x2 + x1. The smallest example is given by x1 = 2, y1 = 0, x2 = 1 and y2 = 3 for
|Vb| = 7.

AΓ is of Type (xi). Avoiding additional reflections, the smallest example is given by
x1 = 2, y1 = 2, x2 = 1 and y2 = 3 for |Vb| = 10.

In constructing these smallest examples, the main problem is avoiding additional sym-
metries. Adding one additional symmetry will double the group size. Hence for large
groups, there will be many additional symmetries and their presence will be easily de-
tected and avoided. However, with the small groups that we encounter next, additional
are easy to miss; in particular color-preserving reflections with equators containing some
or all of the degree-3 vertices are very easy to miss. Template #3 covers the seven groups
that admit exactly one half-turn. It and Template #4 will use the cap and cylinder de-
composition introduced in Section 4. In view of Lemma 10, we must ensure that the two
parallelograms of this half-turn are not congruent. The listed Basic Conditions insure
that this is the case.
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Template #3: One half-turn.

v0

v1 (x1, y1)

v′0

v′1
v3 (x3, y3)

v4 (x4, y4)

(x2, y2) v2

Basic Conditions: x1 > 0, y1 > 0, x1y2 − x2y1 > 0, x2x1 + y1y2 > 0,
x3(y1 − x2)− y3(x1 + y2) > 0,
(x4 − x3)(y1 − x2)− (y4 − y3)(x1 + y2) > 0 and
x3 6= x1 + x4 or y3 6= y1 + y4.

At least one of the pairs (x1, y1), (x2, y2) & (x3, y3) must be odd.

The Λ coordinates of v′0 are
(y1 − x2 + y3 + x4 − y4,−x1 − y2 − x3 + x4 + y4)

Area Formulas:

Top Cap: x1y2 − x2y1 + x1x2 + y1y2
Cylinder: 2[x3(y1 − x2)− y3(x1 + y2)]
Bottom Cap: (x3 − x4)(x1 + x2 − y1 + y2)

+ (y3 − y4)(x1 − x2 + y1 + y2)− (x3 − x4)2 − (y3 − y4)2

Lemma 12. Let Γ be an SSG that admits only one half-turn, τ . Then it may be orientated
as in Template #3 and the basic conditions listed must be satisfied.

a. For groups (iv), (v), (vi), (vii) and (ix), the rims must be 45◦ segments with the axis
of reflection the centerline of the cylinder parallel to the rims.

b. For groups (iv) and (v) the parallelograms must be rectangles that are non-congruent
with 45◦ sides so that the midpoints of the v0, v1 segment and the v3, v4 segment must
match up across the cylinder: v1 = (p, p), v2 = (−q, q), v3 = (p−s

2
+ r, p−s

2
− r) and

v4 = (p+s
2

+ r, p+s
2
− r). For these groups the number of vertices in the underlying

SG is 1
2
(pq+(s+2r)(p+ q)−s2)+1, where (r,−r) is the width of the rim and (s, s)

is the width of the bottom rectangle and p > q > 0, s > 0, s 6= p, q and s > p+q
2

.

c. For groups (vi), (vii), (viii) and (ix) the parallelograms must have no reflective
symmetry and be the reflections of one another. For groups (vi), (vii) and (ix) the
number of vertices in the underlying SG is 1

2
(y2

1−x2
1−2∗y1x2)+r(y1−x2)+1, where

(r,−r) is the width of the rim. An SSG with group (viii) may have a 45◦ equator
of reflection or it may have an equator of reflection through some of the degree-3
vertices.

Finally, we note that τ will be color-preserving when the pairs (x1, y1) and (x2, y2)
have the same parity and color-reversing when they have different parity. When x3 above
is even any reflection or rotatory-reflection through the cylinder is color-preserving; when
x3 above is odd any such reflection or rotatory-reflection is color-reversing.

Proof. We may assume that the top parallelogram for τ has a vertex v0 on the long
diagonal at the origin and v1 in the first quadrant [x1 > 0, y1 > 0]. The vertex v2 is
counterclockwise from v1 [x1y2 − x2y1 > 0] with ∠v2v0v1 less than 90◦ [x2x1 + y1y2 > 0].
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From Lemma 8, the rim coordinates are 2(x1 + y2, y1− x2). Hence the direction to vertex
v3 of the bottom parallelogram on the bottom rim must be clockwise from the top rim
[x3(y1 − x2)− y3(x1 + y2) > 0]. Finally v4, vertex on the bottom parallelogram adjacent
to v3 must be on or below the bottom rim [(x4 − x3)(y1 − x2) − (y4 − y3)(x1 + y2) > 0].
Taking the vertex on the bottom parallelogram opposite v3 as v′0, we see that v′1 = v4.
Since the rim coordinates are 2(x1 + y2, y1 − x2), we compute the coordinates of v′0 as
follows:

1. add 1
2

the rim coordinates to the coordinates of v3 to get (x1 + y2 +x3, y1−x2 + y3),
the coordinates of the point on the bottom rim half way around the rim;

2. rotate this point 90◦ clockwise about v4 to get
(y1 − x2 + y3 + x4 − y4,−x1 − y2 − x3 + x4 + y4), the coordinates of v′0.

Since the two parallelograms for τ cannot be directly congruent, we must have (x4 −
x3, y4− y3) 6= (x2, y2). The coordinates of the unlabeled vertex on each parallelogram are
then forced. Hence we have an eight parameter family: {xi, yi, i = 1 to 4}.

Groups (v) and (iv) have two reflections with planes for reflection intersecting in the
axis of τ . In these cases, the parallelogram of τ must admit two perpendicular reflections.
We observe that if the axes of reflections are the diagonals of the parallelogram, they must
both be color-preserving. We conclude that the parallelogram must be a rectangle with
the axes of reflection perpendicular to the sides. Hence all sides have SSG coordinates of
the form (x) or all of the form (x, x) or (−x, x). In the first case, we again get only color-
preserving reflections. Hence x1 = y1 = p and −x2 = y2 = q. The bottom parallelogram
must also be a quadrilateral at a 45◦ angle: v4−v3 = (s, s). In order for the centers of the
sides to line up we must have v3 +( s

2
, s

2
) = (p

2
, p

2
)+(r,−r). Solving the second equation for

v3 gives v3 = (p−s
2

+r, p−s
2
−r) and then solving the first for v4 gives v4 = (p+s

2
+r, p+s

2
−r).

The area of the top rectangle is 2pq, the area of the cylinder is 4r(p+ q) and the area of
the bottom rectangle is 2s(p + q − s). The formula for the number of vertices follows at
once.

The groups (vi), (vii), (viii), and (ix) all have an equator of reflection perpendicular
to the axis of τ . In one case (viii), the reflection is color-preserving so the equator of
reflection and the rim could be horizontal (however in this case, y1 − x2 = 0 making τ as
well as the reflection color-preserving) or it could be a color-preserving equator containing
several degree-3 vertices. With this one possible exception, the equator of reflection and
the rim must be at a 45◦ angle: x1 + y2 = y1 − x2, giving y2 = y1 − x1 − x2.

In the case of the color-preserving 45◦ reflection v3 has coordinates (r,−r) with r even;
in the case of the color-reversing reflection v3 has coordinates (r,−r) with r odd; in the case
of the color-reversing rotatory-reflection v3 has coordinates (r+ x1+y2

2
,−r+ x1+y2

2
) with r

odd. Since the bottom parallelogram is the reflected image of the top parallelogram, x′1 =
−x2 and y′1 = y1. This gives x4 = x2 +x3 and y4 = y3−y2. Hence the only free parameters
are x1, y1, x2 and x3. In terms of these parameters, the top cap, and hence the bottom cap
too, has area y2

1−x2
1−2y1x2. In both cases, the cylinder area is simply 4r(y1−x2). Hence

the number of vertices in the underlying SG is 1
2
(y2

1 − x2
1 − 2 ∗ y1x2) + r(y1 − x2) + 1.
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(viii) (ix)

Figure 15: Smallest Examples (viii) & (ix)

Since the SSGs with groups (iv) through (ix) have order 4, the corresponding SG has
just one symmetry. When that symmetry is a half-turn or a reflection, the SG is drawn
to exhibit that symmetry. However, in the case of (vii), the symmetry is the antipodal
map α and we have labeled the vertices to identify this symmetry.

AΓ is of Type (ix). Since the half-turn is color-preserving x1 and x2 have the same
parity; since the rotatory-reflection is color-reversing, x3 = r + x1+y2

2
must be odd. The

smallest example avoiding additional symmetries: x1 = 3, y1 = 5, x2 = −1 and r = 2 for
|Vb| = 26.

AΓ is of Type (viii). τ is color-reversing; the reflection is color-preserving. The smallest
example involves an equator through four degree-3 vertices: x1 = 2, y1 = 6, −x2 = y2 = 1,
x3 = −y3 = 1 and x4 = y4 = 3 for |Vb| = 13

AΓ is of Type (vii). τ is color-reversing; the reflection is color-reversing. Smallest
example x1 = 1, y1 = 3, x2 = −2 and x3 = 1 for |Vb| = 16.

AΓ is of Type (vi). τ is color-preserving; the reflection is color-reversing. Smallest
example x1 = 1, y1 = 3, x2 = −3 and x3 = 1 for |Vb| = 20.

With all of the constraints in Lemma 12 (ii) the next two smallest examples are easy
to construct.

AΓ is of Type (v). Smallest example x1 = y1 = 1, −x2 = y2 = 4. Then x3 = 4, y3 = 0,
x4 = 1 and y4 = −3 giving |Vb| = 16.

AΓ is of Type (iv). Smallest example x1 = y1 = 1, −x2 = y2 = 5. Then x3 = 4, y3 = 0,
x4 = 1 and y4 = −3 giving |Vb| = 20.
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Figure 16: Smallest Examples (vi) & (vii)

Finally, we come to the group (iii) consisting of one color-reversing half-turn and
the identity. We must simply choose the parameters so that there are no additional
symmetries.
AΓ is of Type (iii). Smallest example x1 = 3, y1 = 1, x2 = 0, y2 = 2, x3 = 1, y3 = −1,
x4 = 0 and y4 = −2 giving |Vb| = 8.

Our final template covers just the remaining two groups: (i) a single color-reversing
reflection and (ii) only the color-reversing antipodal map.

Template #4: One color-reversing opposite symmetry.

(i)
(ii)

v0

v1

v2

v3

v4
v0

v1

v2

v3
v4

Basic Conditions: y1 > x1, x1y3 − x3y1 > 0, y3 > −x3, x2 = y1 − y3;

y2 6 y1 + y3, v4 = (p,−p) with p odd, for (i);

(p+ x1+y2−x3
2 ,−p+ x1+y2−x3

2 ) with p+ x1+y2−x3
2 odd, for (ii).

Lemma 13. Let Γ be an SSG that admits only one symmetry: either a color-reversing
reflection or the color-reversing antipodal map. Then it may be orientated as in Template
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(iv) (v)

Figure 17: Smallest Examples (iv) & (v)

#4 and the basic conditions listed must be satisfied. Furthermore in both cases

|Vb| = y1y3 −
(y1 − x1)2 + (y3 + x3)2 + (y1 + y3 − y2)2

4
+
p(x1 + y2 − x3)

2

Figure 18: Smallest Example (iii)

Proof. Suppose that AΓ is of Type (i). Then four of the degree-3 vertices are on one side
of (above) the axis of the reflection with the other four on the other side (below) the axis.
Let v0 be the degree-3 vertex above the axis closest to the axis. Then the 45◦ through v0

and parallel to the axis of reflection must be the top rim. If AΓ is of Type (ii), let u1 and
u2 be nearest neighbors among all pairs of degree-3 vertices. Among the four vertices of
degree-3 different from u1, u2, α(u1) and α(u2), let u3 be the nearest to one of u1 and u2;
then choose u4 to be the degree-3 vertex different from u1, u2, u3, α(u1), α(u2) and α(u3).
that is closest to the convex hull of u1, u2 and u3. Let (p, q) denote the rim coordinates of
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the quadrilateral u1, u2, u3 and u4. Since the quadrilateral α(u1), α(u2), α(u3) and α(u4)
is the reflected image of the quadrilateral u1, u2, u3 and u4 its rim coordinates are (q, p).
But the two caps must have the same coordinates, hence p = q and the rims are 45◦ lines.
Now, if u1, u2, u3 and u4 are relabeled v0, v1, v2 and v3 in counterclockwise order with
v0 on the rim, note that v4 = α(v0) is half way around on the other rim. We now have
the diagram on the right in the template. The basic conditions then follow directly from
Lemma 8.

(ii) (i)

Figure 19: Smallest Examples (ii) & (i)

It should be noted that unlike the previous three templates, the basic conditions here
do not exclude the possibility of additional symmetries. Hence care must be taken when
using this template to check that the resulting SG admits no reflection or half-turn. Also,
a Type (ii) SSG could admit several decompositions and so in this case two different
choices for the parameter values could result in the same SSG.

AΓ is of Type (ii). Smallest example x1 = 2, y1 = 4, x2 = 1, y2 = 5. Then x3 = −1,
y3 = 3, x4 = 7 and y4 = 1 giving |Vb| = 22.

AΓ is of Type (i). Smallest example x1 = 1, y1 = 3, x2 = −1, y2 = 5. Then x3 = −2,
y3 = 4, x4 = 1 and y4 = −1 giving |Vb| = 14.
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