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Abstract

The independence number of a graph G, denoted α(G), is the maximum cardi-
nality of an independent set of vertices in G. The independence number is one of the
most fundamental and well-studied graph parameters. In this paper, we strengthen
a result of Fajtlowicz [Combinatorica 4 (1984), 35–38] on the independence of a
graph given its maximum degree and maximum clique size. As a consequence of
our result we give bounds on the independence number and transversal number of
6-uniform hypergraphs with maximum degree three. This gives support for a con-
jecture due to Tuza and Vestergaard [Discussiones Math. Graph Theory 22 (2002),
199–210] that if H is a 3-regular 6-uniform hypergraph of order n, then τ(H) 6 n/4.
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1 Introduction

In this paper we study independence in graphs. Our main aim is to strengthen a result of
Fajtlowicz [3, 4] on the independence of a graph given its maximum degree and maximum
clique size. As a consequence of our result we give bounds on the independence number
and transversal number of 6-uniform hypergraphs with maximum degree three.

A hypergraph H consists of a finite vertex set V (H) and a finite multiset E(H) of
edges, where each edge is a subset of V (H). A hypergraph H has rank r if the largest
size of an edge of H is size r. A hypergraph H is k-uniform if every edge of H has size k.
Every graph without loops is a 2-uniform hypergraph. The degree of a vertex v in H,
denoted by dH(v) or simply by d(v) if H is clear from context, is the number of edges of
H that contain v. The maximum degree among the vertices of H is denoted by ∆(H).
Two edges in H are overlapping if they intersect in at least two vertices.

Two vertices x and y of H are adjacent if some edge of H contains both x and y. A
set X of vertices in H is a clique if every two vertices of X are adjacent in H. A k-clique
is a clique in H of size k. The clique number ω(H) is the size of a maximum clique in H.

The neighborhood of a vertex v in H, denoted NH(v) or simply N(v) if H is clear from
context, is the set of all vertices different from v that are adjacent to v. Two vertices x and
y ofH are connected if there is a sequence v0, . . . , vk of vertices ofH with x = v0 and y = vk
in which vi−1 is adjacent to vi for 1 6 i 6 k. A connected hypergraph is a hypergraph in
which every two vertices are connected. A maximal connected subhypergraph of H is a
component of H.

For a subset X of vertices in a hypergraph H, let H[X] denote the hypergraph induced
by the vertices in X, in the sense that V (H[X]) = X and E(H[X]) = {e ∩ X | e ∈
E(H) and |e ∩ X| > 1}; that is, E(H[X]) is obtained from E(H) by shrinking edges
e ∈ E(H) that intersect X to the edges e ∩X.

If H denotes a hypergraph and X denotes a subset of vertices in H, then H − X
denotes that hypergraph obtained from H by removing the vertices X from H, removing
all hyperedges that intersect X, and removing all resulting isolated vertices, if any. When
X = {x}, we simply denote H −X by H − x. In the literature this is sometimes called
strongly deleting the vertices in X.

A twin in H is a pair of vertices that are intersected by exactly the same set of edges;
that is, a pair of vertices u and v is a twin in H if every edge that contains u also contains v,
and every edge that contains v also contains u. The hypergraph H is twin-free if it has
no twin. Hence if H is twin-free, then for every pair of vertices u and v in H, there exists
an edge e such that |e ∩ {u, v}| = 1.

A set S of vertices in a hypergraph H is strongly independent if no two vertices in
S belong to a common edge. The strong independence number of H, which we denote
by α(H), is the maximum cardinality of a strongly independent set in H. A subset of
vertices in a hypergraph H is a weakly independent set if it contains no edge of H.

A subset T of vertices in a hypergraph H is a transversal (also called vertex cover or
hitting set in many papers) if T intersects every edge of H. Equivalently, a set of vertices
S is transversal in H if and only if V (H) \ S is a weakly independent set in H. The
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transversal number τ(H) of H is the minimum size of a transversal in H. We note that,
n(H) = τ(H) +α(H). Transversals in hypergraphs are well studied in the literature (see,
for example, [1, 2, 6, 7]).

Let G be a graph, and let X and Y be disjoint subsets of V (G). The set E(X, Y ) is
the set of all the edges xy, with x ∈ X and y ∈ Y . For each vertex u ∈ V (G) let wG(u)
denote the size of a largest clique in G containing u. We will omit the subscript when G
is clear from the context.

2 Independence in Graphs

We shall prove the following result. The proof we present is similar to that of Fajtlowicz [3].
However in our proof we carefully choose a maximum independent set S in the graph G
such that the number of edges from S to vertices outside S is minimized. With this choice
of S, we establish a property on the graph G by considering the operation of replacing a
vertex in S with a vertex outside S in order to get a smaller number of edges between S
and vertices outside S.

Theorem 1. If G is a graph of order n and p is an integer, such that (A) below holds,
then α(G) > 2n/p.

(A): For every clique X in G there exists a vertex x ∈ X, such that d(x) < p− |X|.

Proof. Let G = (V,E) be a graph of order n and let p be an integer such that (A) is
satisfied. Let S be a maximum independent set in G, such that |E(S, V \S)| (=

∑
s∈S d(s))

is minimized. Let αi(S) denote the number of vertices in V \ S with exactly i neighbors
in S. Since S is a maximum independent set we note that α0(S) = 0 and therefore the
following holds.

n− |S| = α1(S) + α2(S) + · · ·+ α|S|(S). (1)

Furthermore counting the number of edges in E(S, V \ S) we obtain the following.∑
s∈S

d(s) = α1(S) + 2α2(S) + 3α3(S) + · · ·+ |S|α|S|(S) (2)

Multiplying Equation (1) by 2 and subtracting Equation (2) we obtain the following.

2n− 2|S| −
∑
s∈S

d(s) = α1(S)− α3(S)− 2α4(S)− · · · − (|S| − 2)α|S|(S) 6 α1(S). (3)

For each vertex s ∈ S, let Ys be the set of all vertices in V \ S adjacent to s but to
no other vertex of S, and so every vertex in Ys has no neighbor in S \ {s}. If Ys does not
induce a clique, then let y1, y2 ∈ Ys be non-adjacent vertices and note that S∪{y1, y2}\{s}
is an independent set in G of size greater than |S|, a contradiction. Therefore, Ys ∪ {s}
induces a clique in G.
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Suppose that d(s)+ |Ys|+1 > p. If there is a vertex y ∈ Ys such that d(y) < d(s), then
(S ∪{y}) \ {s} contradicts the minimality of |E(S, V \S)|. Therefore, for all y ∈ Ys ∪{s}
we have d(y) + |Ys ∪ {s}| > d(s) + |Ys|+ 1 > p, a contradiction to (A). This implies that
d(s) + |Ys|+ 1 6 p− 1, as d(s), |Ys| and p are all integers. We now obtain the following,
by Inequality (3),

2n 6 α1(S) +
∑
s∈S

d(s) + 2|S| =
∑
s∈S

(|Ys|+ d(s) + 2) 6 |S|p,

implying that α(G) = |S| > 2n/p as desired.

As an immediate consequence of Theorem 1 we can prove the following result due to
Fajtlowicz [3] on the independence of graph given its maximum degree and maximum
clique size. We remark that in [4], Fajtlowicz studies some classes of graphs that achieve
equality in the bound of Theorem 2.

Corollary 2. ([3]) If G is a graph of order n containing no clique of size q, then α(G) >
2n/(∆(G) + q).

Proof. Let G be a graph of order n containing no clique of size q and let p = ∆(G)+q. For
every cliqueX inG and for all vertices x ∈ X, we have d(x) < ∆(G)+1 6 ∆(G)+q−|X| =
p − |X|, and therefore condition (A) holds in Theorem 1. By Theorem 1 we have that
α(G) > 2n/p = 2n/(∆(G) + q).

3 Independence in hypergraphs of rank at most 6

In this section we apply our main result, namely Theorem 1, to 3-regular, 6-uniform
hypergraphs as there is a very interesting conjecture for this case, namely the Tuza-
Vestergaard Conjecture which we state later. The application illustrates the power of
our main result. However we remark that Theorem 1 can be used in the cases where the
regularity is less than the uniformity.

We will prove the following theorem. We remark that the twin-free condition in
Theorem 3 is necessary, since otherwise the result is not true. Consider, for example, the
Fano-plane, where each vertex gets duplicated. The resulting hypergraph, H, is a 3-regular
6-uniform hypergraph on n = 14 vertices, with strong independence number α(H) = 1 <
2n/23.

Theorem 3. If H is a twin-free 3-regular hypergraph of order n and rank at most 6, then
α(H) > 2n/23.

Before giving a proof of Theorem 3 we need a number of preliminary results. Let H
be a hypergraph of rank at most 6. For a set X of vertices in the hypergraph H, let

θX(H) = max |X ∩ e ∩ f |,
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where the maximum is taken over all distinct edges e and f in H. Let e1 and e2 be two
(fixed) edges in H[X] such that θX(H) = |X ∩ e1 ∩ e2| and let Y and Z be defined by

Y = X \ (e1 ∪ e2) and Z = X ∩ e1 ∩ e2.

We note that, θX(H) = |Z|. We proceed further with a series of five lemmas that will
prove useful when proving our main result.

Lemma 4. Let H be a 3-regular hypergraph of rank at most 6 and let X be a clique of
size at least 8 in H. Then the following hold.

(a) |Z| > 2.
(b) If H is twin-free and |Y | > 2, then |Z| = 2.
(c) If H is twin-free, then |Y | 6 2.

Proof. (a) Let x ∈ X and let f1, f2, f3 be the three edges incident with x in H[X]. If
any two of these edges overlap, then |Z| > 2, as desired. Hence we may assume that
fi ∩ fj = {x} for 1 6 i < j 6 3. Since H has rank at most 6, |fi| 6 6 for 1 6 i 6 3.
Renaming edges if necessary, we may assume that |f1| > |f2| > |f3|. Since |X| > 8, we
note that |f1| > 4 and |f2| > 2. Let v ∈ f2 \ {x}. Since X is a clique, the vertex v is
adjacent to every vertex in f1. However, dH(v) = 3 and the edge f2 does not intersect
f1 \{x}. Hence one of the two remaining edges, g1 say, containing v in H[X] must contain
at least two vertices of f1 \ {x}. But then |f1 ∩ g1| > 2, and so |Z| > 2.

(b) Suppose to the contrary that H is twin-free and |Y | > 2, but |Z| > 3. Let
{z1, z2, z3} ⊆ Z. For i = 1, 2, 3, let gi be the edge in H[X] containing zi that is different
from e1 and e2. Since H is twin-free, we note that zi /∈ gj for 1 6 i, j 6 3 and i 6= j.
Let {y1, y2} ⊂ Y . Since X is a clique, every vertex in Y is adjacent to every vertex in
Z. Thus, {y1, y2} ⊂ gi for i = 1, 2, 3. But then y1 and y2 are twins, a contradiction.
Therefore, |Z| 6 2. By part (a), |Z| > 2. Consequently, |Z| = 2.

(c) Suppose to the contrary that H is twin-free, but |Y | > 3. By Part (b), |Z| = 2.
Let Z1 = {z1, z2}. For i = 1, 2, let gi be the edge in H[X] containing zi that is different
from e1 and e2. Since H is twin-free, we note that z1 /∈ g2 and z2 /∈ g1. Since X is a
clique, every vertex in Y is adjacent to every vertex in Z. Thus, Y ⊂ gi for i = 1, 2. But
then |Z| = θX(H) > |X ∩ g1 ∩ g2| > |Y | > 3, contradicting Part (b).

Lemma 5. If H is a twin-free 3-regular hypergraph of rank at most 6, then ω(H) 6 10.

Proof. Suppose to the contrary that ω(H) > 11. Let X be a clique of size 11 in H, and
let H[X], θX(H), e1, e2, Y and Z be as defined earlier. Then, 11 = |X| = |e1∪e2|+ |Y | =
|e1| + |e2| − |Z| + |Y |. By Lemma 4(a), |Z| = θX(H) > 2. Since H has rank at most 6,
|e1|+ |e2| 6 6 + 6 = 12. If |Z| > 3, then 11 6 12− 3 + |Y |, and so |Y | > 2, contradicting
Lemma 4(b). Therefore, |Z| = 2, implying that 11 6 12 − 2 + |Y |, or, equivalently,
|Y | > 1.

Let y ∈ Y and let Z = {z1, z2}. For i = 1, 2, let gi be the edge in H[X] containing zi
that is different from e1 and e2. Since H is twin-free, we note that z1 /∈ g2 and z2 /∈ g1.
Further since X is a clique, we have that y ∈ g1 and y ∈ g2. Let g3 denote the remaining
edge containing y in H[X].

the electronic journal of combinatorics 21(1) (2014), #P1.38 5



For i = 1, 2, let e′i = ei\Z. Renaming the edges e1 and e2, if necessary, we may assume
that |e′1| > |e′2|. If |e′1| 6 3, then |e1 ∪ e2| 6 8, implying that |Y | > 3, contradicting
Lemma 4(c). Hence, |e′1| > 4. However, |e′1| = |e1| − |Z| 6 6 − 2 = 4. Consequently,
|e′1| = 4. We note therefore that either |Y | = 1, in which case |e′2| = 4, or |Y | = 2, in
which case |e′2| = 3. Hence, |e′2| > 3.

If neither the edge g1 nor the edge g2 intersects e′2, then e′2 ⊂ g3. But then θX(H) >
|e2∩g3| > |e′2| > 3, a contradiction. Therefore renaming the vertices z1 and z2, if necessary,
we may assume that g1 intersects e′2. Let w ∈ e′2 ∩ g1. Since 2 = θX(H) > |e1 ∩ g1|, we
note that the edge g1 contains z1 and at most one vertex of e′1. But then the edge, ew
say, that contains w and is different from e2 and g1, contains at least three vertices of e′1,
implying that θX(H) > |e1 ∩ ew| > |e′1| − 1 = 3, a contradiction.

Lemma 6. If H is a twin-free 3-regular hypergraph of rank at most 6 and X is a 10-clique
in H, then there exists a vertex x ∈ X with |N(x)| 6 12.

Proof. Let X be a 10-clique in H, and let H[X], θX(H), e1, e2, Y and Z be as defined
earlier. Then, 10 = |X| = |e1 ∪ e2| + |Y | = |e1| + |e2| − |Z| + |Y |. By Lemma 4, |Y | 6 2
and |Z| = θX(H) > 2.

We first consider the case when |Z| > 3. By Lemma 4 we note that |Y | 6 1. Since
H has rank at most 6, 10 = |e1| + |e2| − |Z| + |Y | 6 12 − 3 + 1 = 10. Since we must
have equality throughout this inequality chain, this implies that |Z| = 3 and |Y | = 1.
Let Z = {z1, z2, z3} and for i = 1, 2, 3, let gi be the edge in H[X] containing zi that is
different from e1 and e2. Since H is twin-free, we note that zi /∈ gj for 1 6 i, j 6 3 and
i 6= j. Suppose that gi contains a vertex from (e1 ∪ e2) \ Z for some i, 1 6 i 6 3. Then
there are at least three vertices that belong to overlapping edges with zi, implying that
|NH(zi)| 6 12 and the desired result follows. Hence we may assume that no vertex from
gi belongs to (e1 ∪ e2) \ Z for i = 1, 2, 3. Since X is a clique, we note that y ∈ gi for
i = 1, 2, 3. However this implies that y is not adjacent to any vertex in (e1 ∪ e2) \ Z, a
contradiction. Therefore, |Z| = 2.

As before, let Z = {z1, z2} and for i = 1, 2, let gi be the edge in H[X] containing zi
that is different from e1 and e2. Let W = (e1∪ e2)\Z. Then, 10 = |X| = |W |+ |Y |+ |Z|,
which as |Z| = 2 and 0 6 |Y | 6 2 implies that 6 6 |W | 6 8. If |g1 ∩ W | > 2, then
|NH(z1)| 6 15 − 3 = 12, and we are done. Hence we may assume that |g1 ∩W | 6 1.
Analogously, we may assume that |g2 ∩W | 6 1. Let W ′ be the vertices in W not covered
by g1 ∪ g2. Let W ′

1 = W ′ ∩ e1 and let W ′
2 = W ′ ∩ e2, and so |W ′| = |W ′

1|+ |W ′
2|.

Suppose that |Y | = 2 and let Y = {y1, y2}. Then, |W | = 6. Since |g1 ∩W | 6 1 and
|g2 ∩W | 6 1, we note that |W ′| > 4. For i = 1, 2, let fi be the edge containing yi that
is different from g1 and g2. Since X is a clique, we have that W ′ ⊂ fi for i = 1, 2. On
the one hand, if f1 = f2, then {y1, y2} are twins. On the other hand, if f1 6= f2, then
θX(H) > |f1 ∩ f2 ∩W ′| > |W ′| > 4. Both cases produce a contradiction. Hence, |Y | 6 1.

Suppose that |Y | = 1 and let Y = {y}. Then, |W | = 7. Since |g1 ∩ W | 6 1 and
|g2 ∩W | 6 1, we note that |W ′| > 5. Let g3 be the edge of H[X] containing y that is
different from g1 and g2. Since X is a clique, we have that W ′ ⊂ g3. Renaming z1 and z2 if
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necessary, we may assume that |W ′
1| > |W ′

2|, implying that θX(H) > |e1 ∩ g3| > |W ′
1| > 3,

a contradiction. Hence, Y = ∅.
Since |Y | = 0, we have that X = e1 ∪ e2. Further since H has rank at most 6, this

implies that |e1| = |e2| = 6. For i = 1, 2, let e′i = ei \ Z, and so |e′i| = 4. Let v be an
arbitrary vertex in X \ Z. Renaming z1 and z2 if necessary, we may assume that v ∈ e′1.
Let e′v and e′′v be the two edges in H[X] different from e1 that contain v. Since X is a
clique, the vertex v is adjacent to every vertex in e2. If |e′v ∩ e′2| 6 1, then |e′′v ∩ e′2| > 3,
implying that θX(H) > |e′′v ∩e2| > 3, a contradiction. Hence, |e′v∩e′2| > 2. If |e′v∩e′2| > 2,
then θX(H) > 3, a contradiction. Hence, |e′v ∩ e′2| = 2. Analogously, |e′′v ∩ e′2| = 2. Since
v is adjacent to every vertex in e2, we note that (e′v ∩ e′2) ∩ (e′′v ∩ e′2) = ∅. This is true for
every vertex v ∈ X \ Z. Hence every edge in H[X] different from e1 and e2 has size 4 in
H[X] and contains two vertices in e′1 and two vertices in e′2.

Let e′1 = {a1, b1, c1, d1} and let e′2 = {a2, b2, c2, d2}. Let h1 be an arbitrary edge in
E(H[X])\{e1, e2}. Renaming vertices if necessary, we may assume that h1 = {a1, b1, a2, b2}.
Let h2 and h3 be the edges of H[X] containing a1 and b1, respectively, that are different
from e1 and h1. Then, {a1, c2, d2} ⊂ h2 and {b1, c2, d2} ⊂ h3. If h2 = h3, then a1 and b1
are twins in H. If h2 6= h3, then c2 and d2 are twins in H. In both cases we contradict
the fact that H is twin-free.

Lemma 7. If H is a 3-regular hypergraph of rank at most 6 and X is a 9-clique in H,
then there exists a vertex x ∈ X with |N(x)| 6 13.

Proof. Let X be a 9-clique in H. If there are two twins in H[X], then each of them have
degree at most 13 and we are done. Hence we may assume that there are no twins in
H[X]. For each edge, f , in H containing some vertex y we note that there are at most
five vertices in f \ {y} since H has rank at most 6. Define a graph GX with vertex set
X and with an edge between x, x′ ∈ X if and only if {x, x′} is a subset of two distinct
edges in H. Thus every neighbor, x′, of a vertex x ∈ X belongs to two edges of H that
contain both x and x′. This implies that |NH(x)| 6 3× 5− dGX

(x). Thus if dGX
(x) > 2,

then |NH(x)| 6 13, and we are done. Therefore we may assume that dGX
(x) 6 1 for all

x ∈ X. Since |X| = 9 is odd, this implies that some vertex x ∈ X is an isolated vertex in
GX . Let f1, f2, f3 be the three edges in H[X] containing x.

Suppose that |f1| = 6. Let v ∈ X \ f1. Renaming the edges f2 and f3, if necessary, we
may assume that v ∈ f2. Since X is a clique, the vertex v is adjacent to all five vertices
in f1 \ {x}. Hence one of the two edges different from f2 that contain v must intersect
f1 \ {x} in at least three vertices. But this implies that dGX

(w) > 2 for some w ∈ f1, a
contradiction. Therefore, |f1| 6= 6. Analogously, |f2| 6= 6 and |f3| 6= 6.

Suppose that |f1| = 4. Let U = X \f1 and note that |U | = 5. Let u ∈ U . Since X is a
clique, u is adjacent to all three vertices in f1 \ {x}. Hence one of the two edges in H[X]
containing u that is different from f2 and f3 contains at least two vertices in f1 \ {x}. Let
gu be such an edge of H[X] that contains u. If the five such edges, gu, for all u ∈ U are
identical, then |gu| > |U | + 2 = 7, a contradicting the rank of H. Therefore there exist
two distinct vertices u and u′ in U such that gu 6= gu′ . Since both gu and gu′ contain at
least two vertices in f1 \ {x}, and since |f1 \ {x}| = 3, there exists some vertex in f1 \ {x}
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that belongs to both gu and gu′ . If |gu∩gu′ ∩f1| > 2, then there exists two twins in H[X],
a contradiction. Therefore, gu ∩ gu′ ∩ f1 = {w} for some vertex w ∈ f1 \ {x}. But then
f1 \ {x,w} ⊆ NGX

(w), implying that dGX
(w) > 2, a contradiction. Therefore, |f1| 6= 4.

Analogously, |f2| 6= 4 and |f3| 6= 4.
Renaming the edges if necessary, we may assume that |f1| > |f2| > |f3|. If |f1| 6 3,

then |X| 6 7, a contradiction. Hence, |f1| > 4. However as shown earlier, |f1| 6= 4 and
|f1| 6= 6. Therefore, |f1| = 5 and |f2| > 3. Let f ′1 = f1 \ {x} and note that |f ′1| = 4.
Further, let Q = {q1, q2, q3, q4} = X \ f1. Consider the vertex qi ∈ Q where 1 6 i 6 4.
Since X is a clique, qi is adjacent to all four vertices in f ′1. Further since no two edges of
H intersect in more than two vertices, this implies that there exists two edges ri and r′i
containing qi, such that |ri∩f ′1| = |r′i∩f ′1| = 2 and ri∩ ri∩f ′1 = ∅. Let there be j distinct
edges in

E∗ =
4⋃

i=1

{ri, r′i}.

If j = 2, then since |f2| > 3 there are two twins in f2 \ {x}, a contradiction. Hence,
j > 3. If two distinct edges in E∗ intersect in the same set of two vertices in f ′1, then
there are two twins in f1, a contradiction. Hence every two distinct edges in E∗ have a
different intersection in f ′1. Since j > 3, there will therefore be at least three edges with
both ends in f ′1. This implies that dGX

(w) > 2 for some w ∈ f ′1, a contradiction.

Lemma 8. If H is a 3-regular hypergraph of rank at most 6 and X is a 8-clique in H,
then there exists a vertex x ∈ X with |N(x)| 6 14.

Proof. Let X be a 8-clique in H. By Lemma 4(a), θX(H) > 2. Let e1 and e2 be two
overlapping edges in H[X] and let x ∈ e1 ∩ e2. Then, |N(x)| 6 14.

We are now in a position to prove Theorem 3. Recall its statement.
Theorem 3. If H is a twin-free 3-regular hypergraph of order n and rank at most 6, then
α(H) > 2n/23.

Proof. Let G be the graph with vertex set V (G) = V (H) and where two vertices are
adjacent in G if and only if they are adjacent in H. Clearly, α(G) = α(H). Since H is
3-regular of rank at most 6, we note that ∆(G) 6 15. Let p = 23. If X is a clique of size
at most 7 in G, then for each vertex x ∈ X we have dG(x) = |NH(x)| 6 15 < p − |X|.
If X is a clique of size 8 in G (and therefore in H), there exists an x ∈ X, such that
dG(x) = |NH(x)| < 15 = p − |X|, by Lemma 8. If X is a clique of size 9 in G (and
therefore in H) there exists an x ∈ X, such that dG(x) = |NH(x)| < 14 = p − |X|, by
Lemma 7. If X is a clique of size 10 in G (and therefore in H) there exists an x ∈ X, such
that dG(x) = |NH(x)| < 13 = p− |X|, by Lemma 6. Furthermore there is no clique in G
(or H) of size greater than 10 by Lemma 5. Therefore condition (A) holds in Theorem 1,
implying that α(H) = α(G) > 2|V (G)|/p = 2|V (H)|/23 = 2n/23, by Theorem 1.

We conjecture that the following holds.
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Conjecture 9. If H is a twin-free 3-regular hypergraph of order n and rank at most 6,
then α(H) > n/10.

We remark that if Conjecture 9 is true, then the bound is tight due to the following
example. Let H10 be the 6-uniform hypergraph with five edges, e1, e2, e3, e4, e5, and ten
vertices defined by V (H10) = {ui,j,k | 1 6 i < j < k 6 5}, where the vertex ui,j,k belongs
to edges ei, ej and ek. Then, H10 is 3-regular and 6-uniform. Furthermore, H10 is twin-free
as different vertices belong to different sets of edges. Further, for distinct vertices ui,j,k
and ui′,j′,k′ in H10, we note that {i, j, k} ∩ {i′, j′, k′} 6= ∅ as all indices cannot be distinct
since they are between 1 and 5, implying that ui,j,k and ui′,j′,k′ are adjacent. Hence,
α(H10) = 1 = n/10, where n = n(H10). Therefore, H10 would show that Conjecture 9
would be best possible.

4 Transversals in 6-uniform hypergraphs

Chvátal and McDiarmid [1] established the following upper bound on the transversal
number of a uniform hypergraph in terms of its order and size.

Chvátal-McDiarmid Theorem. For k > 2, if H is a k-uniform hypergraph of order n
and size m, then

τ(H) 6
n+

⌊
k
2

⌋
m⌊

3k
2

⌋ .

Let ni(H) denote the number of vertices in H of degree i. As a consequence of the
Chvátal-McDiarmid Theorem, we have the following two results.

Corollary 10. If H is a 6-uniform hypergraph with ∆(H) 6 3, then

18τ(H) 6 3n1(H) + 4n2(H) + 5n3(H).

Proof. Let H be a 6-uniform hypergraph of order n and size m satisfying ∆(H) 6 3. For
notational simplicity, let ni = ni(H) for i ∈ {1, 2, 3}. Applying the Chvátal-McDiarmid
Theorem to the hypergraph H, we have that

τ(H) 6
n+ 3m

9
=

2n+ 6m

18
=

2(n1 + n2 + n3) + (n1 + 2n2 + 3n3)

18
=

3n1 + 4n2 + 5n3

18
,

or, equivalently, 18τ(H) 6 3n1(H) + 4n2(H) + 5n3.

Corollary 11. If H is a 3-regular 6-uniform hypergraph of order n, then τ(H) 6 5n/18.
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Our aim in this section is to lower the best known upper bound on the transversal
number of a 3-regular 6-uniform hypergraph of order n from 5n/18 ≈ 0.27777777n (see
Corollary 11) to 37n/138 ≈ 0.268115942n. In order to state our result, let

c1 =
1

6
, c2 =

2

9
, and c3 =

37

138
.

We first prove the following result on 6-uniform hypergraphs. We remark that if we
allow edges of size less than 6, then the result of Theorem 12 is not true anymore. For
example, 3-regular 3-uniform hypergraphs on n vertices may have transversal number n/2
(see, [5]).

Theorem 12. If H is a 6-uniform hypergraph with ∆(H) 6 3, then

τ(H) 6 c1n1(H) + c2n2(H) + c3n3(H).

Proof. We proceed by induction on the order of a 6-uniform hypergraph H satisfying
∆(H) 6 3. For a hypergraph H ′ with ∆(H ′) 6 3, let

θ(H ′) = c1n1(H
′) + c2n2(H

′) + c3n3(H
′).

Hence we wish to show that τ(H) 6 θ(H). If m(H) = 0, then τ(H) = 0 and the result
is immediate. Hence we may assume that m(H) > 1, implying that |V (H)| > 6. If
|V (H)| = 6, then τ(H) = 1 6 θ(H). This establishes the base cases when |V (H)| 6 6.
Let H be a 6-uniform hypergraph such that ∆(H) 6 3 and assume the theorem holds for
all 6-uniform hypergraphs H ′ satisfying ∆(H ′) 6 3 and n(H ′) < n(H).

If ∆(H) 6 2, then n3(H) = 0 and the theorem holds by Corollary 10 of the Chvátal-
McDiarmid Theorem. Hence we may assume that ∆(H) = 3. We consider two cases,
depending on whether H has twins of degree 3 and or not.

Suppose first that H contains two twins, x1 and x2, of degree 3. Let X = {x1, x2} and
let H ′ = H − {x1, x2}. Thus, H ′ is obtained from H by removing the vertices X from
H removing the three hyperedges that intersect X, and removing all resulting isolated
vertices, if any. Let T ′ be a minimum transversal in H ′. Then, T = T ′ ∪ {x1} is a
transversal in H, and so τ(H) 6 |T | = |T ′| + 1 = τ(H ′) + 1. We note that by removing
the three edges that contain X, the degrees of x1 and x2 drop from 3 to zero. Further, if
some vertex v /∈ X belongs to i of the deleted edges its degree drops to dH(v)− i in H ′,
implying that the sum of the degrees of vertices not in X decrease by 12 in H ′ due to the
6-uniformity of H. If the degree of a vertex drops from 1 to 0 in H ′, then it decreases
θ(H) by c1. If its degree drops from 2 to 1 in H ′, then it decreases θ(H) by c2−c1, while if
its drops from 3 to 2 in H ′, then it decreases θ(H) by c3− c2. Since c1 > c2− c1 > c3− c2,
we therefore have that whenever the degree of a vertex drops by 1 in H ′, then it decreases
θ(H) by at least c3 − c2. Therefore,

θ(H ′) 6 θ(H)− 2c3 − 12(c3 − c2) = θ(H) + 12c2 − 14c3 < θ(H)− 1,

implying that
τ(H) 6 |T | = |T ′|+ 1 6 θ(H ′) + 1 < θ(H).
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Hence if H contains two twins, x1 and x2, of degree 3, then τ(H) < θ(H). We may
therefore assume H has no twins of degree 3, for otherwise the desired result holds.

Recall that by our earlier assumption, ∆(H) = 3. Let R contain all vertices in H of
degree 3. Then, H[R] is a 3-regular hypergraph of rank at most six and with no twins.
By Theorem 3 there exists a strongly independent set, I, in H[R] of size at least 2|R|/23.
Let H ′ = H − I and let E∗ = {e∗1, e∗2, . . . , e∗3|I|} be the set of 3|I| edges containing vertices
from I. As observed earlier, when we delete an edge e from a 6-uniform hypergraph H
with maximum degree at most 3 and if v ∈ e, then θ(H) drops by c3 − c2 if dH(v) = 3,
θ(H) drops by c2 − c1 if dH(v) = 2, and θ(H) drops by c1 if dH(v) = 1. Further,
c1 > c2 − c1 > c3 − c2. Thinking of H ′ as being obtained from H by removing the edges
e∗1, e

∗
2, e

∗
3, . . . , e∗3|I| in that order, we note that exactly |R| times we drop θ(H) by c3− c2,

once for each vertex in R (noting that each vertex in R is contained in at least one edge
in E∗). Further, at least |I| times we drop θ(H) by c1 since all edges are removed from
the vertices in the independent set I. The total sum of the degrees of vertices decrease
by 6|E∗| in H ′ due to the 6-uniformity of H. We therefore obtain the following.

θ(H ′) + |I| 6 |I|+ θ(H)− (c3 − c2)|R| − c1|I| − (c2 − c1)(6|E∗| − |R| − |I|)
= |I|+ θ(H)− (c3 − c2)|R| − c1|I| − (c2 − c1)(18|I| − |R| − |I|)
= θ(H)− (c3 − c2 − c2 + c1)|R| − (c1 + 17c2 − 17c1 − 1)|I|
= θ(H)− (c3 − 2c2 + c1)|R| − (17c2 − 16c1 − 1)|I|
6 θ(H)− (c3 − 2c2 + c1)|R| − 2(17c2 − 16c1 − 1)|R|/23
= θ(H)− (23c3 − 46c2 + 23c1 + 34c2 − 32c1 − 2)|R|/23
= θ(H)− (23c3 − 12c2 − 9c1 − 2)|R|/23
= θ(H).

Applying the inductive hypothesis to H ′, we have that τ(H ′) 6 θ(H ′). Every transver-
sal in H ′ can be extended to a transversal in H by adding to it the set I, implying that

τ(H) 6 τ(H ′) + |I| 6 θ(H ′) + |I| 6 θ(H),

which completes the proof.

As a consequence of Theorem 12, we have the following result for 6-uniform hyper-
graphs.

Corollary 13. If H is a 3-regular 6-uniform hypergraph of order n, then τ(H) 6 37n/138 ≈
0.268115942n.

Proof. If H is a 3-regular 6-uniform hypergraph of order n, then by Theorem 12 we have
that τ(H) 6 c1n1(H) + c2n2(H) + c3n3(H) = 0 + 0 + 37n/138.

We remark that Corollary 13 gives support for the following long-standing conjecture
due to Tuza and Vestergaard [8], in that it lowers the best known upper bound on the
transversal number of a 3-regular 6-uniform hypergraph of order n from 5n/18 to 37n/138.

Tuza-Vestergaard Conjecture. If H is a 3-regular 6-uniform hypergraph of order n,
then τ(H) 6 n/4 = 0.25n.
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