
Distance-regular graphs with an eigenvalue
−k < θ 6 2 − k

Sejeong Bang∗

Department of Mathematics
Yeungnam University

Gyeongsan-si Republic of Korea

sjbang@ynu.ac.kr

Submitted: Apr 16, 2013; Accepted: Dec 18, 2013; Published: Jan 12, 2014

Mathematics Subject Classifications: 05C50, 05E30

Abstract

It is known that bipartite distance-regular graphs with diameter D > 3, valency
k > 3, intersection number c2 > 2 and eigenvalues k = θ0 > θ1 > · · · > θD satisfy
θ1 6 k− 2 and thus θD−1 > 2− k. In this paper we classify non-complete distance-
regular graphs with valency k > 2, intersection number c2 > 2 and an eigenvalue θ
satisfying −k < θ 6 2 − k. Moreover, we give a lower bound for valency k which
implies θD > 2− k for distance-regular graphs with girth g > 5 satisfying g = 5 or
g ≡ 3 (mod 4).

Keywords: Distance-regular graph; Girth; Smallest eigenvalue; Folded (2D + 1)-
cube

1 Introduction

Let Γ be a distance-regular graph with diameter D > 3 and eigenvalues k = θ0 > θ1 >
· · · > θD. It is shown in [2, Theorem 4.4.3 (ii)] that if c2 > 2 then either Γ is the icosahe-
dron or Γ satisfies θ1 6 b1 − 1. Distance-regular graphs with c2 > 2 and θ1 = b1 − 1 are
classified (see [2, Theorem 4.4.11]). In particular, any non-complete bipartite distance-
regular graph Γ with valency k > 2, intersection number c2 > 2 and an eigenvalue θ with
−k < θ 6 2−k satisfies θ = 2−k and Γ is either the cycle of length four or the Hamming
D-cube by 2− k 6 −θ1 6 θ 6 2− k and [2, Theorem 4.4.11].

In the following theorem we classify non-complete distance-regular graphs with valency
k > 2, intersection number c2 > 2 and an eigenvalue θ satisfying −k < θ 6 2− k.
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Theorem 1. Let Γ be a distance-regular graph with diameter D > 2, valency k > 2 and
intersection number c2 > 2. If there exists an eigenvalue θ of Γ satisfying −k < θ 6 2−k
then θ = 2− k and Γ is one of the following:
(i) the cycle of length four,
(ii) the Johnson graph J(4, 2),
(iii) the 3× 3-grid,
(iv) the Hamming D-cube H(D, 2), or
(v) the folded (2D + 1)-cube.

The folded n-cube (n 6= 6) is uniquely characterized by its intersection array (cf. [2,
Theorem 9.2.7]). It follows by Theorem 1 that a distance-regular graph with D > 3,
k > 3, c2 > 2 and an eigenvalue θ satisfying −k < θ 6 2 − k is either the Hamming
D-cube or the folded (2D + 1)-cube.
A distance-regular graph Γ with diameter D > 3 and girth g = 3 is either the icosahedron
or Γ satisfies θD > − b1

2
− 1 (cf. [2, Theorem 4.4.3 (iii)]). Distance-regular graphs with

a1 > 2 and θD = − b1
2
−1 are classified in [4] (see also [5]). There are non-complete distance-

regular graphs with girth g > 4 and an eigenvalue θ satisfying −k < θ < − b1
2
− 1, such as

the Hamming D-cube (D > 6) and the folded (2D+ 1)-cube (D > 3) which have 2− k as
an eigenvalue. If g = 4 then any eigenvalue θ 6= −k satisfies θ > 2− k (see Theorem 1).
In Theorem 2 and Theorem 3 we study distance-regular graphs with girth g > 5 satisfying
either g = 5 or g ≡ 3 (mod 4), and give a lower bound for valency k which implies
θD > 2− k by considering a lower bound for θD

k
.

Theorem 2. Let Γ be a distance-regular graph with diameter D > 2, valency k > 3 and
girth g = 5. Then the smallest eigenvalue θD of Γ satisfies

θD >

(
1−
√

73

9

)
k. (1)

In particular, if k > 10 then θD > 2− k.

Theorem 3. Let Γ be a distance-regular graph with diameter D > 3, valency k > 3
and girth g > 3 satisfying g ≡ 3 (mod 4). Then there exist real numbers C(g) > 3
and γ(g) ∈ (−1,−0.64) (depending only on g) such that if k > C(g) then the smallest
eigenvalue θD satisfies

θD > γ(g)k.

In particular, if k > max
{
C(g), 2

γ(g)+1

}
then θD > 2− k.

The paper is organized as follows. In Section 2 we review some definitions and basic
concepts. In Section 3 we prove Theorem 1. In the last section we prove Theorem 2 and
Theorem 3. As an example of Theorem 3, we will consider the case g = 7 (see Example
11).
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2 Preliminaries

All the graphs considered in this paper are finite, undirected and simple. The reader is
referred to [2] for more background information. For a connected graph Γ = (V (Γ), E(Γ)),
the distance d(x, y) between two vertices x, y of Γ is the length of a shortest path between
x and y in Γ, and the diameter D is the maximum distance between any two vertices
of Γ. For any vertex x ∈ V (Γ), let Γi(x) be the set of vertices in Γ at distance i from
x (0 6 i 6 D). The adjacency matrix A is the |V (Γ)| × |V (Γ)|-matrix with rows and
columns indexed by V (Γ), where the (x, y)-entry of A equals 1 whenever d(x, y) = 1 and
0 otherwise. The eigenvalues of Γ are the eigenvalues of A. The girth of Γ, denoted by
g, is the length of a shortest cycle in Γ. A connected graph Γ is called a distance-regular
graph if there exist integers bi, ci, i = 0, 1, . . . , D, such that for any two vertices x, y at
distance i = d(x, y), there are precisely ci neighbors of y in Γi−1(x) and bi neighbors of
y in Γi+1(x). In particular, Γ is regular with valency k := b0. The numbers bi, ci and
ai := k − bi − ci (0 6 i 6 D) are called the intersection numbers of Γ. Set c0 = bD = 0.
We observe a0 = 0 and c1 = 1. The array

ι(Γ) = {b0, b1, . . . , bD−1; c1, c2, . . . , cD}

is called the intersection array of Γ. The intersection numbers satisfy the following re-
strictions

1 = c1 6 c2 6 · · · 6 cD 6 k and k = b0 > b1 > · · · > bD−1 > 1

(cf. [2, Proposition 4.1.6]). The following inequalities for intersection numbers of a
distance-regular graph will be used in Section 3.

Lemma 4. ([2, Proposition 5.5.4 (ii)]) Let Γ be a distance-regular graph with diameter
D > 2. Suppose that ai 6= 0 for some 1 6 i 6 D, and define aD+1 = 0. If i > 1 then
ci 6 ai + ai−1ci

ai
, and for i < D equality implies ai+1 = ai.

Suppose that Γ is a distance-regular graph with diameter D > 2 and valency k > 2.
We define ki := |Γi(x)| for any vertex x and i = 0, 1, . . . , D. Then we have

k0 = 1, k1 = b0, ki+1 =
kibi
ci+1

(i = 0, 1, . . . , D − 1).

It is known that Γ has exactly D+ 1 distinct eigenvalues which are the eigenvalues of the
tridiagonal matrix

L1(Γ) :=



0 b0

c1 a1 b1

c2 a2 b2

. . . . . . . . .

ci ai bi
. . . . . . . . .

cD−1 aD−1 bD−1

cD aD
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(cf. [2, p.128]). Let k = θ0 > θ1 > · · · > θD be the D + 1 distinct eigenvalues of Γ. A
clique is a set of pairwise adjacent vertices. Any clique C in Γ satisfies

|C| 6 1− k

θD
(2)

(see [2, Proposition 4.4.6 (i)]). The standard sequence ui = ui(θ) (0 6 i 6 D) correspond-
ing to an eigenvalue θ is a sequence satisfying u0 = 1, u1 = θ

k
and

ciui−1 + aiui + biui+1 = θui (1 6 i 6 D) (3)

(cf. [2, p. 128]). The multiplicity of eigenvalue θ is given by

m(θ) =
|V (Γ)|∑D
i=0 kiu

2
i (θ)

which is known as Biggs’ formula (cf. [1, Theorem 21.4], [2, Theorem 4.1.4]). Let θ 6= k be
an eigenvalue of Γ with multiplicity m = m(θ). Then there exists a map ρ : V (Γ)→ Rm

such that
(i)
∑

x∈V (Γ) ρ(x) = 0 and

(ii) for any two vertices x, y with d(x, y) = i, the inner product satisfies 〈ρ(x), ρ(y)〉 = ui(θ)
where R is the real numbers (see [2, Proposition 4.4.1]). The map ρ is called the standard
representation of Γ corresponding to θ.

3 Proof of Theorem 1

In this section we classify distance-regular graphs with intersection numbers a1 and c2

satisfying (a1, c2) 6= (0, 1) and an eigenvalue θ satisfying −k < θ 6 2 − k. We first
consider distance-regular graphs with a1 > 1. Using the classification of distance-regular
graphs with valency four by Brouwer and Koolen [3], we obtain the following lemma.

Lemma 5. Let Γ be a distance-regular graph with diameter D > 2, valency k > 3 and
intersection number a1 > 1. If the smallest eigenvalue θD satisfies θD 6 2− k then k = 4
and Γ is one of the following:
(i) the Johnson graph J(4, 2) with ι(Γ) = {4, 1; 1, 4},
(ii) the 3× 3-grid with ι(Γ) = {4, 2; 1, 2},
(iii) the line graph of Petersen graph with ι(Γ) = {4, 2, 1; 1, 1, 4},
(iv) the flag graph of PG(2,2) with ι(Γ) = {4, 2, 2; 1, 1, 2},
(v) the flag graph of GQ(2,2) with ι(Γ) = {4, 2, 2, 2; 1, 1, 1, 2}, or
(vi) the flag graph of GH(2,2) with ι(Γ) = {4, 2, 2, 2, 2, 2; 1, 1, 1, 1, 1, 2}.

Proof. Suppose that θD satisfies θD 6 2 − k. By a1 > 1 and (2), each clique C in Γ
satisfies

3 6 |C| 6 1− k

θD
6 1 +

k

k − 2
.

Hence we find k 6 4. Since there are no distance-regular graphs satisfying D > 2, k = 3
and a1 > 1, we obtain k = 4 and thus the result follows by [3, Theorem 1.1].
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Using [2, Proposition 4.4.9 (i)], we obtain Lemma 6 (i). The result Lemma 6 (ii) is
shown by Terwilliger ([6], cf. [2, Theorem 5.2.1]).

Lemma 6. Let Γ be a distance-regular graph with diameter D > 2. If Γ contains an
induced quadrangle then the following hold.
(i) For any eigenvalue θ, u0(θ) + 2u1(θ) + u2(θ) > 0.
(ii) For each i = 1, 2, . . . , D, ci − bi > ci−1 − bi−1 + a1 + 2.

Proof. Suppose that Γ contains an induced quadrangle, say Q = x0x1x2x3 where

d(xi, xi+1) = 1 = d(x0, x3) i = 0, 1, 2.

(i): Let ρ be the standard representation of Γ corresponding to an eigenvalue θ, and put
α := ρ(x0) + ρ(x2) and β := ρ(x1) + ρ(x3). Then the result (i) follows from

0 6 〈α + β, α + β〉 = 〈α, α〉+ 2〈α, β〉+ 〈β, β〉 = 4(u0(θ) + 2u1(θ) + u2(θ)).

(ii): This result is shown by Terwilliger ([6], cf. [2, Theorem 5.2.1]).

To complete the proof of Theorem 1, we consider triangle-free distance-regular graphs
in Lemma 7 and Lemma 8. If Γ contains an induced quadrangle then the inequality
u0(θ) − 2u1(θ) + u2(θ) > 0 in [2, Proposition 4.4.9 (i)] is equivalent to either θ = k or
θ 6 b1 − 1. In the following lemma we consider an equivalent condition to the inequality
u0(θ)+2u1(θ)+u2(θ) > 0 of Lemma 6 (i) when Γ is a non-complete triangle-free distance-
regular graph.

Lemma 7. Let Γ be a triangle-free distance-regular graph with diameter D > 2 and
valency k > 2. For an eigenvalue θ of Γ, u0(θ) + 2u1(θ) + u2(θ) > 0 holds if and only if
θ = −k or θ > 2− k.

Proof. Let θ be an eigenvalue of Γ. It follows by (c1, a1, b1) = (1, 0, k − 1) and (3) that

u0(θ) + 2u1(θ) + u2(θ) = (θ+k)(θ+k−2)
k(k−1)

, from which the result follows as θ > −k.

Lemma 8. Let Γ be a triangle-free distance-regular graph with diameter D > 2 and
valency k > 2. If Γ contains an induced quadrangle and 2− k is an eigenvalue of Γ then
the following hold.
(i) ui(2− k) = (−1)i

(
1− 2i

k

)
(0 6 i 6 D).

(ii) (k − 1− 2i) ai = 2(ci − i) (1 6 i 6 D).

Proof. Suppose that Γ contains an induced quadrangle and 2 − k is an eigenvalue of Γ.
Let ρ be the standard representation of Γ corresponding to eigenvalue 2 − k, and let
Q = x0x1x2x3 be an induced quadrangle where d(xi, xi+1) = 1 = d(x0, x3) i = 0, 1, 2. Put
α := ρ(x0) + ρ(x2) and β := ρ(x1) + ρ(x3).
(i): Using (3) with θ = 2 − k and (c1, a1, b1) = (1, 0, k − 1), we find u0(2 − k) + 2u1(2 −
k) + u2(2− k) = 0 and thus α + β = 0 follows from

〈α + β, α + β〉 = 〈α, α〉+ 2〈α, β〉+ 〈β, β〉 = 4(u0(θ) + 2u1(θ) + u2(θ)) = 0.
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As α+β = 0 and Γi+2(x0)∩Γi(x2) ⊆ Γi+1(x1)∩Γi+1(x3) (i = 0, 1, . . . , D−2), the following
holds for each vertex v ∈ Γi+2(x0) ∩ Γi(x2) (i = 0, 1, . . . , D − 2):

0 = 〈α + β, ρ(v)〉 = ui(2− k) + 2ui+1(2− k) + ui+2(2− k). (4)

As u0(2− k) = 1 and u1(2− k) = 2−k
k

, (i) follows from (4).
(ii): It follows by (3) with θ = 2− k that ciui−1(2− k) + (ai− 2 + k)ui(2− k) + (k− ai−
ci)ui+1(2− k) = 0, and this shows the result by Lemma 8 (i).

We now classify non-complete distance-regular graphs with k > 2, c2 > 2 and an
eigenvalue θ satisfying −k < θ 6 2− k.

Proof of Theorem 1. Suppose that θ is an eigenvalue of Γ satisfying −k < θ 6 2− k. If Γ
is bipartite then there is an induced quadrangle as c2 > 2. By Lemma 6 (i) and Lemma
7, θ = 2− k = 1− b1 = θD−1 = −θ1. By [2, Theorem 4.4.11], Γ is either (i) or (iv).
In the rest of the proof, we assume that Γ is not bipartite and put

m := min{i | ai > 1, 1 6 i 6 D}.

Then 1 6 m 6 D. If m = 1 then it follows by Lemma 5 that θ = 2 − k = −2 and Γ is
either (ii) or (iii). Now suppose 2 6 m 6 D. As c2 > 2 and m > 2, Γ contains an induced
quadrangle. By Lemma 6 (i) and Lemma 7,

θ = 2− k. (5)

We first show the following claim.

Claim 9. m = D

Proof of Claim 9. Assume 2 6 m 6 D − 1. Then by Lemma 4,

cm 6 am and the equality implies am+1 = am. (6)

By (5), m > 2 and Lemma 8 (ii), we find

(k − 1− 2m)am = 2(cm −m). (7)

Using Lemma 6 (ii) with ai = 0 (1 6 i 6 m − 1) we have ci > ci−1 + 1 (1 6 i 6 m − 1)
and thus cm > cm−1 > m − 1 follows. If cm = m − 1 then it follows by (6) and (7)
that 2 6 c2 6 m − 1 = cm 6 am 6 2 and thus m = 3, k = 6 and am+1 = am = 2.
The case i = m + 1 = 4 of Lemma 8 (ii) implies c4 = cm+1 = 1 which is impossible
as c4 > c2 > 2. Hence we find cm > m and thus k > 2m + 1 from (7). On the other
hand, 2(cm −m) = am(k − 1 − 2m) > cm(k − 1 − 2m) holds by (6) and (7). Hence we
find 2cm 6 cm + am 6 k 6 2m + 2 and thus cm ∈ {m,m + 1}. If cm = m + 1 then
(cm, am, bm) = (m+1,m+1, 0), which contradicts to m 6 D−1. Hence cm = m and thus
k = 2m+ 1 and m = cm = am = am+1 by (6) and (7). The equation of Lemma 8 (ii) with
i = m+ 1 yields cm+1 = 1. This is also impossible as cm+1 > c2 > 2. Hence m = D.
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By Lemma 8 (ii), Claim 9 and (5), ai = 0 and ci = i for all i = 1, 2, . . . , D − 1, i.e.,

ι(Γ) = {k, k − 1, . . . , k −D + 2, k −D + 1; 1, 2, . . . , D − 1, cD}.

Note here that k 6= 2D − 1 otherwise we have D = aD + cD = k = 2D − 1 by Lemma 8
(ii) with i = D, which contradicts to the condition D > 2. Applying Lemma 8 (ii) with
i = D, we have

cD =
(k − 2D)(k − 1)

k − 2D + 1
. (8)

Since we have aD > cD > cD−1 = D−1 by Lemma 4, we find max{2, D−1} 6 cD 6 k
2

which implies k > 4 and 2(D− 1) 6 k 6 2D+ 2 by (8). Moreover, it follows by aD > cD,
Lemma 8 (ii) and (8) that k = 2D+1 and cD = D. Therefore Γ has the same intersection
array with the folded (2D + 1)-cube,

ι(Γ) = {2D + 1, 2D, . . . , D + 3, D + 2; 1, 2, . . . , D}.

As the folded (2D + 1)-cube is uniquely determined by its intersection numbers (cf. [2,
Theorem 9.2.7]), Γ is the folded (2D + 1)-cube. This completes the proof of Theorem
1.

4 Proofs of Theorem 2 and Theorem 3

In this section we consider lower bounds for the smallest eigenvalue of a distance-regular
graph with girth g ∈ {5, 4s− 1 | s > 2}.

Let Γ be a distance-regular graph with diameter D > 3 and girth g = 3. Then by [2,
Theorem 4.4.3 (iii)], Γ is either the icosahedron or Γ satisfies θD > − b1

2
− 1. For both

cases, the smallest eigenvalue θD satisfies θD > −1
2
k. In Theorem 2 and Theorem 3 we

consider a lower bound for θD
k

using girth g if g > 3 satisfies g = 5 or g ≡ 3 (mod 4), and
give a lower bound for valency k which implies θD > 2− k.

We first consider distance-regular graphs with girth g = 5 and prove Theorem 2.

Proof of Theorem 2. Let P = x0x1x2x3x4 be an induced pentagon in Γ where d(xi, xi+1) =
1 = d(x0, x4), i = 0, 1, 2, 3. For the smallest eigenvalue θ = θD, let ρ be the corresponding
standard representation and put α := (ρ(x0) + ρ(x1) + ρ(x4))− (ρ(x2) + ρ(x3)). Then

k − 1−
√

31k2 + 4k + 1

6
6 θ 6 k <

k − 1 +
√

31k2 + 4k + 1

6
(9)

follows by

0 6 〈α, α〉 = 5u0(θ) + 2u1(θ)− 6u2(θ) =
−1

k(k − 1)

{
6θ2 + 2(−k + 1)θ − k(5k + 1)

}
.
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As the function C(k) := 7k−1−
√

31k2+4k+1
6k

is an increasing function on k > 3 and C(3) =
10−
√

73
9

, Inequality (1) follows by (9) and

θ >
k − 1−

√
31k2 + 4k + 1

6
= −k + C(k)k > −k + C(3)k =

(
1−
√

73

9

)
k .

In particular, θ > k−1−
√

31k2+4k+1
6

> 2 − k holds for all k > 10. This completes the
proof.

To prove Theorem 3, we first need the following lemma.

Lemma 10. For each integer s > 2, let Fs(x) = 2x2s−1 + 2x2s−2 + · · ·+ 2x2 + 2x+ 1 and
let zs be the smallest zero of the function Fs(x). Then
(i) −0.65 < z2 < −0.64.
(ii) Fs(−1) = −1 and Fs(0) = 1 for each s > 2.
(iii) −1 < zs+1 < zs < −0.64 for each s > 2.

Proof. (i)-(ii): It is straightforward.
(iii): Let s > 2 be an integer. As Fs+1(x) = 2x+ 1 +

∑s
i=1 2x2i(x+ 1),

Fs+1(−1− ε) < 2(−1− ε) + 1 = −1− 2ε < 0

holds for any ε > 0. Hence −1 < zs+1 < 0 follows by (ii). On the other hand, we find
Fs+1(zs) = z2

sFs(zs) + (zs + 1)2 = (zs + 1)2 > 0 as Fs+1(x) = x2Fs(x) + (x + 1)2. This
shows zs+1 < zs and thus (iii) follows by (i).

Let Γ be a distance-regular graph with girth g > 3. Then (ci, ai, bi) = (1, 0, k − 1) for
all i = 1, . . . ,

⌊
g
2

⌋
− 1. For an eigenvalue θ of Γ, it follows by (3) that

k(k − 1)i−1ui(θ) = θi +
∑

06`+n6i−1

t(`,n)k
`θn

(
1 6 i 6

⌊g
2

⌋)
(10)

where t(`,n) ∈ R for all 0 6 `+ n 6 i− 1 6
⌊
g
2

⌋
− 2.

Proof of Theorem 3. Let ρ be the standard representation of Γ corresponding to the
smallest eigenvalue θ = θD. As g ≡ 3 (mod 4) and g > 3, let g = 4s − 1 for some
s > 2. Suppose that P = x0x1 . . . x4s−2 is an induced polygon of length 4s − 1, where
d(xi, xi+1) = 1 = d(x0, x4s−2) i = 0, 1, . . . , 4s− 3. Put α :=

∑4s−2
i=0 ρ(xi). Then we have

0 6
k(k − 1)2s−2

(4s− 1)k2s−1
〈α, α〉 =

k(k − 1)2s−2

k2s−1

(
u0(θ) + 2

2s−1∑
i=1

ui(θ)

)
. (11)

Using (10), Inequality (11) is equivalent to

Fs

(
θ

k

)
>

1

k2s−1
Gs(k, θ) (12)
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where Fs(x) = 2x2s−1 + 2x2s−2 + · · · + 2x2 + 2x + 1 and Gs(k, θ) =
∑

06i+j62s−2 c(i,j)k
iθj

for some real numbers c(i,j). Hence it follows by |θ| < k that

lim
k→∞

Gs(k, θ)

k2s−1
= 0.

Thus there exists a positive integer C(g) > 3 such that if k > C(g) then Gs(k,θ)
k2s−1 > −1

2

holds. Note here that for any real number x,

F ′s(x) = 2sx2s−2 + 2(x+ 1)2

s−1∑
i=1

(s− i)x2(s−1−i) > 0.

Hence it follows by Lemma 10 (ii)-(iii) and Equation (12) that Fs(
θ
k
) > −1

2
and there exists

a real number γ(g) ∈ (−1, zs) satisfying θ
k
> γ(g). As −1 < γ(g) < zs 6 z2 < −0.64

holds by Lemma 10 (iii), the result follows.

As an example of Theorem 3, we will give a lower bound −0.86 for θD
k

if g = 7.

Example 11. Let Γ be a distance-regular graph with diameter D > 3, valency k > 3
and girth g = 7. Then the smallest eigenvalue θD of Γ satisfies

θD > −0.86k.

In particular, if k > 15 then θD > 2− k.

Proof. As g = 7, we have g = 4s − 1 = 7 with s = 2. Suppose that P = x0x1 . . . x6 is
an induced polygon of length 7, where d(xi, xi+1) = 1 = d(x0, x6) i = 0, 1, . . . , 5. For the
smallest eigenvalue θ = θD, let ρ be the corresponding standard representation and let
α :=

∑6
i=0 ρ(xi). It follows by (3) and (10) that

0 6
k(k − 1)2

7k3
〈α, α〉 =

k(k − 1)2

k3
(u0(θ) + 2u1(θ) + 2u2(θ) + 2u3(θ))

=
1

k3
{k3 + 2k2(θ − 2) + k(2θ2 − 8θ + 3) + 2θ(θ2 − θ + 2)}

which is equivalent to

F2

(
θ

k

)
>

1

k3
(2θ2 + 8kθ − 4θ + 4k2 − 3k) :=

1

k3
G2(k, θ)

where F2(x) = 2x3 + 2x2 + 2x+ 1. In particular, if k > 4 then G2(k,θ)
k3

> −1
2

as |θ| < k and

2G2(k, θ) + k3 = 4θ2 + (16k − 8)θ + (k3 + 8k2 − 6k) > k(k2 − 4k + 2) > 0.

Since x > −0.86 follows by F2(x) = 2x3 + 2x2 + 2x + 1 > −1
2
, this shows that if k > 4

then θ > −0.86k. If k = 3 then

0 6
4〈α, α〉

63
=

4

9
(u0(θ) + 2u1(θ) + 2u2(θ) + 2u3(θ)) =

2θ(θ + 1 +
√

2)(θ + 1−
√

2)

27
,

which shows θ > −1 −
√

2 > −0.86 × 3. In particular, θ > −0.86k > 2 − k holds for all
k > 15. This completes the proof.
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Remark 12. There are distance-regular graphs Γ with girth g > 6 satisfying g ≡ 1 (mod 4)
or g ≡ 0 (mod 2) and an eigenvalue θ satisfying −k < θ 6 2− k, such as the Biggs-Smith
graph with intersection array ι(Γ) = {3, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 1, 1, 3}, the odd graph on
13 points with ι(Γ) = {7, 6, 6, 5, 5, 4; 1, 1, 2, 2, 3, 3} and the Foster graph with ι(Γ) =
{3, 2, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 2, 2, 2, 3}.
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