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Abstract

We prove tight crossing number inequalities for geometric graphs whose vertex
sets are taken from a d-dimensional grid of volume N and give applications of these
inequalities to counting the number of crossing-free geometric graphs that can be
drawn on such grids.

In particular, we show that any geometric graph with m > 8N edges and with
vertices on a 3D integer grid of volume N , has Ω((m2/N) log(m/N)) crossings. In d-
dimensions, with d > 4, this bound becomes Ω(m2/N). We provide matching upper
bounds for all d. Finally, for d > 4 the upper bound implies that the maximum
number of crossing-free geometric graphs with vertices on some d-dimensional grid
of volume N is NΘ(N). In 3 dimensions it remains open to improve the trivial
bounds, namely, the 2Ω(N) lower bound and the NO(N) upper bound.

1 Introduction

The study of crossings in drawings of graphs has a long history. Euler’s Formula states
that the maximum number of edges in an n vertex planar graph—one that can be drawn
in the plane without crossings—is 3n − 6. Using Euler’s Formula and careful counting,
Ajtai et al. [3] showed that any plane drawing of a graph with n vertices and m > 4n
edges has at least cm3/n2 crossing pairs of edges, for some constant c > 1/100. The
same authors used this to prove their main result: The maximum number of non-crossing
subgraphs of any graph drawn on any fixed set of n points is 2O(n).
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The lower bound, cm3/n2, on the number of crossings in a plane drawing has since
become known as “the Crossing Lemma” or “the Crossing Number Inequality” and has
subsequently found many other applications. Székely [29] showed that this inequality can
be used to give very simple proofs of many results in incidence geometry, including a
proof of the Szemerédi-Trotter Theorem on point-line incidences [30]. Székely’s method
has since been used for many combinatorial geometry problems; the most famous of these
applications is probably the result of Dey [10] on the maximum number k-sets of a point
set.

Ajtai et al.’s proof of the Crossing Lemma works by summing the number of crossings
in two different ways. More recently, a proof “from the book” that uses the probabilistic
method to obtain a better constant, c > 1/64, was discovered by Chazelle, Sharir, and
Welzl (See Aigner and Ziegler [2, Chapter 30, Theorem 4]). By pushing the “from the
book” proof even further, Pach et al. [22] improved the constant c to c > 1024/31827 ≈
1/33.1. Very recently, Ackerman [1], has improved the constant even further to c > 1/29.

The main result of Ajtai et al.—that the maximum number of crossing-free graphs
that can be drawn on any point set of size n is 2O(n)—has also been the starting point
for many research problems. The original bound, which was O(1013n), has been improved
repeatedly to the current record of O(187.53n) [25]. The result has also been tightened for
special classes of crossing-free graphs including triangulations (O(30n)) [24], spanning cy-
cles (O(54.55n)) [26], perfect matchings (O(10.05n)) [27], spanning trees (O(141.07n)) [18],
and forests (O(160.55n)) [18, 24]. A webpage containing an up-to-date compendium of
these types of results is maintained by the third author [28].

1.1 Geometric Grid Graphs

The goal of the present paper is to extend the results of Ajtai et al. to graph drawings in
higher dimensions. In particular, we extend their results to graphs drawn on grids. For
any positive integers X1, . . . , Xd, the d-dimensional X1 × · · · ×Xd grid is a finite subset
of the d-dimensional natural lattice, Nd, given by

N(X1, . . . , Xd) = {(x1, . . . , xd) : xi ∈ {1, . . . , Xi} for all i ∈ {1, . . . , d}} .

The volume of the X1 × · · · ×Xd grid is
∏d

i=1Xi, i.e,. the number of points in the grid.
A (d-D) geometric (grid) graph, G, is a graph with vertex set V (G) ⊆ Nd. Throughout

this paper, for two vertices u and w in a geometric graph, G, we will use the notation uw
to refer both to the open line segment with endpoints u and w and to the edge uw ∈ E(G),
if present. The volume, vol(G), of G is the volume of the minimal X1×· · ·×Xd grid that
contains V (G).

A geometric grid graph, G, is proper if, for every edge uw ∈ E(G), and every vertex
x ∈ V (G), we have that x 6∈ uw. That is, G is proper if no edge passes through a vertex.
For the remainder of this paper, the phrase “geometric grid graph” and “grid graph”
should be interpreted as “proper geometric grid graph.”

Two edges uw and xy in a geometric grid graph cross if they have a point in common.
When this happens, we say that uw and xy form a crossing. We define cr(G) as the
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number of crossings in G.1 To avoid later confusion, the reader should note that cr(G)
counts pairs of crossing edges, so that if k edges meeting in a common point, then this
contributes

(
k
2

)
to the value of cr(G). We say that G is crossing-free if cr(G) = 0. Finally,

we define

crd(N,m) = min {cr(G) : G is a d-D grid graph, |E(G)| = m, and vol(G) 6 N} .

That is, crd(N,m) is the minimum number of crossings in any d-D geometric grid graph
with m edges and volume no more than N .

We are also interested in the maximum number, ncsd(N), of crossing-free d-D geo-
metric grid graphs that can be drawn on any particular grid of volume at most N . That
is,

ncsd(N) = max
{
|{G : V (G) ⊆ N(X1, . . . , Xd) and cr(G) = 0}| :

∏d
i=1Xi 6 N

}
.

Results on plane drawings of graphs have immediate implications for cr2(N,m) and
ncs2(N):

1. Euler’s Formula implies that cr2(N, 3N − 5) > 1,

2. Ajtai et al.’s Crossing Lemma implies that cr2(N,m) > cm3/N2 for m > 4N , and

3. Ajtai et al.’s upper-bound of 2O(n) on the number of planar graphs that can be
drawn on any planar point set of size n implies that ncs2(N) ∈ 2O(N).

Bose et al. [5] show that the maximum number of edges in a crossing-free d-D geometric
grid graph of volume N is at most (2d − 1)N − Θ(N (d−1)/d). This result is analogous to
Euler’s Formula in the sense that it shows that such graphs have a linear number of edges.
It also implies, for example, that crd(N, (2

d−1)N) > 1. Since Euler’s Formula is the main
property of planar graphs used by Ajtai et al. to prove their results, it seems reasonable
that bounds similar to those of Ajtai et al. should hold for d-D geometric grid graphs.

The key difference, however, is that unlike Euler’s formula, the bound of Bose et al.
depends on the volume, N , of the grid and not on the number, n, of vertices in the graph.
For d > 3 it is not possible to obtain non-trivial bounds on the number of crossings
that depend only on the number of edges and vertices. This is because every graph on
n = N1/3 vertices can be drawn as a 3-D geometric grid graph of volume N [9].

1.2 New Results

In this paper, we study crd(N,m) and ncsd(N) for d > 3 and prove the results shown
in Table 1. In Table 1, and throughout this paper, we assume that d is a constant that
is independent of N and m, so that the O, o, Ω, ω, and Θ notations hide factors that
depend only on d.

1Note that this is different from the planar crossing number, usually also denoted cr(G), that is the
minimum number of crossings in any drawing of the (non-geometric) graph G. Our definition is more
akin to the crossing number of a drawing of a graph.
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d crd(N,m) ncsd(N) References

2 Θ(m3/N2) 2Θ(N) [3]

3 Θ((m2/N) log(m/N)) Theorems 1 and 2

> 4 Θ(m2/N) 2Θ(N logN) Theorems 3, 4, and 5

Table 1: Old and new results on crossings in d-D geometric grid graphs.

Our results show that the situation in three and higher dimensions is significantly
different than in two dimensions. For all d > 4, and m > 2dN , crd(N,m) ∈ Θ(m2/N) and
even cr3(N,m) is only Θ((m2/N) log(m/N)). There are therefore geometric grid graphs
with Ω(N2) edges that have only O(N3) crossings (O(N3 logN) crossings in 3-d). In
contrast, in 2 dimensions, any graph with n vertices and Ω(n2) edges has Ω(n4) crossings.

For d > 4, the bounds on crd(N,m) are strong enough to show that ncsd(N) ∈
2Θ(N logN). Thus, the number, 2Θ(N logN), of crossing-free graphs whose vertex set comes
from a specific d-dimensional grid having N points is much larger than the number, 2Θ(N),
of crossing-free graphs that can be drawn on any planar point set of size N .

1.3 Related Work

The study of crossing-free 3-D geometric grid graphs is an active area in the field of graph
drawing. A d-D grid drawing of a graph, G, is a one-to-one mapping ϕ : V (G)→ Nd. Any
drawing, ϕ, yields a geometric grid graph, ϕ(G), with vertex set V (ϕ(G)) = {ϕ(u) : u ∈
V } and edge set E(ϕ(G)) = {ϕ(u)ϕ(w) : uw ∈ E(G)}. The drawing ϕ is crossing-free if
the geometric grid graph ϕ(G) is crossing-free and the volume of ϕ is the volume of ϕ(G).

Cohen et al. [9] showed that the complete graph on n vertices, and therefore any graph
on n vertices, has a crossing-free 3-D grid drawing of volume O(n3) and this is optimal.
However, for many classes of graphs, sub-cubic volume 3-D grid drawings are possible;
this includes sufficiently sparse graphs (O(m4/3n)) [14], graphs with maximum degree ∆
and other ∆-degenerate graphs (O(∆mn), O(∆15/2m1/2n)) [14, 15], χ-colorable graphs
(O(χ2n2), O(χ6m2/3n)) [23, 14], graphs taken from some proper minor-closed family of
graphs (O(n3/2)) [14], planar graphs (O(n log16 n)) [11], outerplanar graphs (O(n)) [16],
and graphs of constant treewidth (O(n)) [12].

The work most closely related to the current work, in that it presents an extremal
result relating crossings, volume, and number of edges, is that of Bose et al. [5], who
showed that the maximum number of edges in a crossing-free d-D geometric grid graph,
G, with vertex set V (G) ⊆ N(X1, . . . , Xd), is exactly

d∏
i=1

(2Xi − 1)−
d∏

i=1

Xi . (1)

For a fixed volume, N =
∏d

i=1Xi, maximizing (1) gives X1 = · · · = Xd = N1/d, in which
case (1) becomes (2d−1)N −Θ(N (d−1)/d) 6 (2d−1)N . We state this here as lemma since
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we make use of it several times.

Lemma 1 (Bose et al. 2004). In any crossing-free d-D geometric grid graph, G, of volume
N , we have that |E(G)| 6 (2d − 1)N .

Lemma 1 immediately yields the upper-bound ncsd(N) ∈ 2O(N logN) (see the beginning
of Section 4). It also yields the lower-bound crd(m) > m− (2d− 1)N since, if a geometric
grid graph G has m > 2d−1N edges, then we can remove an edge from G that eliminates
at least one crossing. Since this can be repeated until G has m 6 2d−1N edges, this
implies that G has at least m− (2d − 1)N crossings.

Finally, we note that Bukh and Hubard [7] present a different definition of crossing
number for 3-dimensional geometric graphs that are not necessarily grid graphs. In their
definition, a 4-tuple of vertex-disjoint edges forms a space crossing if there is a line that
intersects every edge in the 4-tuple. The space crossing number, cr4(G), of a 3-d geometric
graph, G, is the number of space crossings formed by G’s edges. They show that a 3-d
geometric graph G with n vertices and m > 441n edges has a space crossing number
cr4(G) ∈ Ω(m6/(n4 log2 n)). An easy lifting argument shows that this bound on the
space crossing number almost implies the Crossing Lemma; specifically, it shows that
the number of crossings in a graph with n vertices and m edges drawn in the plane is
Ω(m3/(n2 log n)).

2 3-Dimensional Geometric Grid Graphs

In this section, we present upper and lower bounds on cr3(N,m). Here, and in the
remainder of the paper we use the notation ui, i ∈ {1, . . . , d}, to denote the ith coordinate
of the d-dimensional point u. Thus, for a point u ∈ R3, u1, u2, and u3 are u’s x-, y-, and
z-coordinates, respectively.

2.1 The Lower Bound

Theorem 1. For all m > 8N , cr3(N,m) ∈ Ω((m2/N) log(m/N)).

Proof. Let G be any geometric grid graph with V (G) ⊆ N(X, Y, Z), with XY Z 6 N , and
|E(G)| = m. (That is, G is a 3-D geometric grid graph with m edges and volume at most
N .) We may assume, without loss of generality, that no edge of G contains any point of the
X ×Y ×Z grid in its interior; any such edge can be replaced with a shorter edge without
introducing any additional crossings. This modification may change the underlying graph,
but does not change m or N , which are the only quantities considered in the statement
of the theorem. This assumption is subtle, but important, and is equivalent to assuming
that, for every edge uw of G, gcd(u1 − w1, u2 − w2, u3 − w3) = 1.

For any integer, p > 1, define the X × Y × Z p-grid as the set of points

{(x/p, y/p, z/p) : x ∈ {p, p+ 1, . . . , pX}, y ∈ {p, p+ 1, . . . , pY }, z ∈ {p, p+ 1, . . . , pZ}} ,

which we denote by N(pX, pY, pZ)/p. Observe that the size of the p-grid is at most Np3.
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Figure 1: A 2-dimensional piece of the essential 6-grid. Removing the 1-grid, 2-grid, and
3-grid from the 6-grid leaves the essential 6-grid.

Notice that the p-grid and q-grid, for q 6= p are not necessarily disjoint since, for
example, the 4-grid includes the 2-grid. We wish to count crossings in G by counting the
number of crossings that occur on the p-grid for different values of p. However, in order
to do this without double-counting any crossings we need a sequence of disjoint grids. To
obtain these, we define the essential p-grid by starting with the p-grid and removing the
q-grid for all q ∈ {1, . . . , p− 1} such that q divides p. (See Figure 1.)

Next, observe that each edge uw of G contains the p-grid points

P p
uw = {u+ (i/p)(w − u) : i ∈ {1, . . . , p− 1}}

including the subset

Qp
uw = {u+ (i/p)(w − u) : i ∈ {1, . . . , p− 1} and gcd(i, p) = 1} .

We shall now argue, using the assumption that gcd(u1 − w1, u2 − w2, u3 − w3) = 1, that
Qp

uw contains only essential p-grid points, More specifically, the points in Qp
uw are clearly

on the p-grid, so the only concern is that some of these points are on the q-grid for some
q < p. To see why this is not possible, observe that, if some point in Qp

uw were on the
q-grid, for some q < p, this would imply that

((i/p)x, (i/p)y, (i/p)z) = (a/q, b/q, c/q)

for some integers x = w1−u1, y = w2−u2, z = w3−u3, a, b, and c such that gcd(i, p) = 1
and gcd(x, y, z) = 1. Rewriting this gives

(x, y, z) = (pa/(iq), pb/(iq), pc/(iq)) . (2)

Each value on the right hand side has a factor of p in the numerator, so they must also
have a factor of p in the denominator. Otherwise, gcd(pa/(iq), pb/(iq), pc/(iq)) > 1 =
gcd(x, y, z). But this is not possible since gcd(i, p) = 1 and q < p, so gcd(iq, p) 6 q < p.

The size of the set Qp
uw is a well-studied quantity and is given by the Euler totient

function ϕ(p) = p
∏

q|p(1 − 1/q), where q ranges over all primes that divide p [17, Sec-

tion 5.5]. Therefore, the total number of incidences between points of the essential p-grid
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and edges of G is at least m · ϕ(p). In understanding the calculations that follow, it is
helpful to pretend that ϕ(p) > cp for some constant 0 < c < 1, though this is not strictly
correct since, for some p, ϕ(p) ∈ O(p/ log log p).

Let x1, . . . , x` denote the essential p-grid points that are incident to at least one edge
and let Ri, with i ∈ {1, . . . , `}, denote the number of edges incident to xi. Observe that
there are

(
Ri

2

)
crossing pairs of edges that cross at xi. From the preceding discussion, we

have
∑`

i=1 Ri > m ·ϕ(p). Therefore, the total contribution of crossings that occur on the
essential p-grid to cr3(G) is at least

∑̀
i=1

(
Ri

2

)
> `

(
m · ϕ(p)/`

2

)
∈ Ω(`(m · ϕ(p)/`)2) = Ω

(
m2ϕ(p)2

p3N

)
.

The first inequality is an application of Jensen’s Inequality to the function f(x) = x(x−
1)/2. Since ` 6 Np3,

(
m·ϕ(p)/`

2

)
> 0 for p 6 3

√
m/N and the second inequality holds for

p 6 3
√
m/N .

To finish, we need the following number-theoretic result which follows from well-known
theorems and whose proof is included, for completeness, in Appendix A.

Claim 1.
∑k

i=1 ϕ(i)2/i3 ∈ Ω(log k)

Finally, we can finish by summing over p and using Claim 1 to obtain:

cr(G) >

b 3
√

m/Nc∑
p=1

Ω

(
m2ϕ(p)2

p3N

)

= Ω(m2/N)

b 3
√

m/Nc∑
p=1

ϕ(p)2/p3

= Ω(m2/N) log(m/N) ,

as required.

2.2 The Upper Bound

In this section, we prove the following result:

Theorem 2. For all m 6 N2/4, cr3(N,m) ∈ O((m2/N) log(m/N)).

The proof of Theorem 2 follows easily from the following lemma:

Lemma 2. There exists a 3-D grid drawing of the complete bipartite graph Kk2,k2 on the
k × k × 2 grid with O(k6 log k) crossings.

Before proving Lemma 2, we first show how it implies Theorem 2: For simplicity, in
what follows, assume that each of

√
N ,
√
m/N , and N/

√
m are integers. Apply Lemma 2,
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πj

x

u

z

y

x

w

Figure 2: A plane πj, defined by a point x, with skip(πj) = 2. (z-coordinates are exag-
gerated.)

with k =
√
m/N and tile the

√
N ×

√
N × 2 grid with N/k2 copies of this drawing. The

resulting geometric graph has 2N vertices, m = Nk4/k2 = Nk2 edges and

O((N/k2)k6 log k) = O(Nk4 log k) = O((m2/N) log(m/N))

crossings, as required by Theorem 2.

Proof of Lemma 2. The drawing of Kk2,k2 is the obvious one: each point of the k× k× 2
grid with z-coordinate 1 is connected by an edge to every point with z-coordinate 2. We
denote the resulting geometric graph by Gk2 .

We start by considering some edge uw with u3 = 1 (so w3 = 2) and counting the
number of edges that intersect uw. Let π1, π2, . . . be the planes that contain uw and at
least one additional vertex of G, whose z-coordinate is 1. Observe that each such plane,
πj, contains a line in the plane {z ∈ R3 : z3 = 1} and that this line contains u and some
vertex, x such that ux does not contain any other point of Z3 i.e., gcd(u1−x1, u2−x2) = 1
(see Figure 2). Define the skip of πj as

skip(πj) = max{|u1 − x1|, |u2 − x2|} .

Observe that, if skip(πj) = r, then πj contains at most 2k/r vertices of G other than u
and w (at most k/r vertices from each “level” of G) and therefore contains at most (k/r)2

edges that cross uw. Furthermore, the number of planes πj such that skip(πj) = r is at
most 4r since each such plane is defined by two antipodal lattice points on the boundary
of a square of side length 2r centered at u; see Figure 3. Therefore, the total number of
edges that cross uw is at most

k∑
r=1

4r(k/r)2 = 4k2

k∑
r=1

1/r 6 4k2 ln k +O(k2) . (3)
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u

Figure 3: Each plane πj with skip(πj) = r is defined by two antipodal lattice points on
the boundary of a square of side length 2r that is centered at u.

Since this is true for each of the k4 edges, uw, we conclude that the total number of
crossings in Gk2 is at most 2k6 ln k +O(k6) ∈ O(k6 log k), as required.

3 Higher Dimensions

Next, we prove matching upper and lower bounds on crd(N,m) for d > 4.

3.1 The Lower Bound

Theorem 3. For all m > 2dN , crd(N,m) ∈ Ω(m2/N). More specifically, crd(N,m) >
1
2
(m2/(2d − 1N)−m), for all m > 0.

Proof. Let G be any geometric grid graph with m edges whose vertex set is contained
in the X1 × · · · × Xd grid of volume at most N . As in the proof of Theorem 1 we may
assume, without loss of generality, that no edge of G contains a grid point. Observe that,
for each edge uw ∈ E(G), the midpoint (u+w)/2 of uw is contained in the X1×· · ·×Xd

essential 2-grid:

N(2X1, . . . ,2Xd)/2

= {(x1, . . . , xd)/2 : xi ∈ {2, 3, . . . , 2Xi}, i ∈ {1, . . . , d}} \ N(X1, . . . , Xd) .

This 2-grid contains K 6 (2d−1)N points. Order the points of this 2-grid arbitrarily and
let Ri be the number of edges of G whose midpoint is the ith point of this 2-grid. Then
the number of crossings in G is

cr(G) >
∑
i:Ri>1

(
Ri

2

)
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=
1

2

(∑
i:Ri>1

(R2
i −Ri)

)

=
1

2

(∑
i:Ri>1

R2
i −m

)

>
1

2

(
K(m/K)2 −m

)
(by Jensen’s Inequality)

=
1

2

(
m2/K −m

)
>

1

2

(
m2

(2d − 1)N
−m

)
,

as required.

3.2 The Upper Bound

Theorem 4. For all d > 4 and all m 6 N2/4, crd(N,m) ∈ O(m2/N).

Proof. Let ` = kd−1 for some integer k. As in the proof of Theorem 2, it suffices to show
that one can draw the complete bipartite graph K`,` on the k × · · · × k × 2 grid so that
it has O(k3(d−1)) = O(`3) crossings. Briefly, and omitting floors and ceilings: By taking
` = m/N (so that k = (m/N)1/(d−1)), we can tile the N1/(d−1) × · · · × N1/(d−1) × 2 grid
with Θ(N/`) copies of K`,`. The resulting drawing has Θ(`2N/`) = Θ(`N) = Θ(m) edges
and Θ(`3N/`) = Θ(m2/N) crossings.

The remainder of this proof has the same structure as the proof of Lemma 2. The
drawing of K`,` we use is the graph G with V (G) = N(k, . . . , k, 2) and

E(G) = {uw ∈ V (G)2 : ud = 1 and wd = 2} .

Consider some edge uw of G with ud = 1 and wd = 2. Our strategy is to upper bound
the number of edges that cross uw. Any edge xy that crosses uw is contained in some
plane, π, that contains uw and xy. Without loss of generality, assume xd = 1. Let x′ be
some point of the integer lattice Zd that is on the line containing ux and such that ux′

contains no point of Zd. (That is, gcd(u1 − x′1, . . . , ud−1 − x′d−1) = 1.)
The plane π that contains uw and xy can be expressed as

π = {u+ t(w − u) + s(x′ − u) : s, t ∈ R} .

Restricted to the subspace Su = {z ∈ Rd : zd = 1}, π becomes a line

Lu = π ∩ Su = {u+ s(x′ − u) : s ∈ R} .

Similarly, restricted to the subspace Sw = {z ∈ Rd : zd = 2}, π becomes the parallel line:

Lw = π ∩ Sw = {w + s(x′ − u) : s ∈ R} .
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Observe that, since there is no point on the segment ux′, the only points of the integer
lattice Zd contained in Lu are obtained when the parameter s is an integer:

Lu ∩ Zd = {u+ s(x′ − u) : s ∈ Z}

and, similarly,
Lw ∩ Zd = {w + s(x′ − u) : s ∈ Z} .

If we define r = max{|x′i − ui| : i ∈ {1, . . . , d − 1}}, then we see that the number of
vertices of G, other than u and w, contained in each of Lu and Lw is at most k/r (since
G’s vertices are contained in a box whose longest side has length k). Then, we define the
skip of the plane π to be r.

Now, consider all the planes that contain uw and some other vertex of G. We wish
to determine the number of such planes with skip r. Each such plane is defined by two
antipodal grid points on the boundary of a (d− 1)-hypercube of side length 2r, centered
at u, that is contained in the (d − 1)-dimensional subspace {z ∈ Rd : zd = 1}. This
hypercube has 2(d− 1) facets and each facet contains (2r + 1)d−2 grid points. Therefore,
the total number of planes with skip r is at most

(d− 1)(2r + 1)d−2 = (d− 1)
(
(2r)d−2 +O(rd−3)

)
Each plane with skip r contains at most (k/r)2 edges that cross uw. Therefore, the
number, Xuw, of edges that cross uw is at most

Xuw 6
k∑

r=1

(d− 1)
(
(2r)d−2 +O(rd−3)

)
(k/r)2

= (d− 1)2d−2k2

k∑
r=1

(
rd−4 +O(rd−5)

)
6 (d− 1)2d−2k2

(
kd−3

d− 3
+O

(
kd−4 log k

))
(since d > 4)

=
(d− 1)2d−2kd−1

d− 3
+O(kd−2 log k)

= O(kd−1) = O(`).

Since there are `2 edges, the total number of crossings is therefore O(`3), as required.

4 The Number of Non-Crossing Graphs

In this section, we show that, for dimensions d > 4, ncsd(N) ∈ 2Θ(N logN), i.e., the
maximum number of crossing-free graphs that can be drawn on any grid of volume N is
2Θ(N logN).

The upper bound follows easily from Lemma 1 which states that any crossing-free d-D
geometric grid graph of volume N has at most (2d − 1)N edges. Therefore, any such
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graph is a subgraph of a graph obtained by choosing at most (2d−1)N edges from among
the at most

(
N
2

)
possible edges. Each graph with (2d − 1)N edges has 2(2d−1)N subsets of

edges. Therefore, the number of such graphs is at most

ncsd(N) 6 2(2d−1)N

( (
N
2

)
(2d − 1)N

)
6 2(2d−1)N(N2)(2d−1)N

= 22(2d−1)N logN+(2d−1)N ∈ 2O(N logN) .

The preceding argument is standard and is used, for example, by Bárat et al. [4, Lemma 4]
for upper-bounding the maximum number of crossing-free plane graphs with m edges that
can be drawn on any particular set of n points in the plane.

Next we show that the number of crossing-free geometric graphs that can be drawn
on the N1/(d−1) × · · · ×N1/(d−1) × 2 grid is at least 2Ω(N logN).

Theorem 5. For all d > 4, ncsd(N) ∈ 2Ω(N logN).

Proof. Let GN denote the complete bipartite geometric graph described in the proof of
Theorem 4 with the value ` = N/2 (assuming, only for simplicity, that (N/2)1/(d−1) is
an integer). For a geometric graph, G, let ncs(G) denote the number of crossing-free
subgraphs of G that have the same vertex set as G by with a subset of G’s edges. Observe
that ncs(G) > 1 since the subgraph obtained by removing all edges from G is crossing-free.
Now define

f(m) = min{ncs(G) : G is a subgraph of GN having m edges} .

Our goal is to lower-bound f(N2). In order to do this, we establish a recurrence inequality
and base cases.

For our base cases, we have
f(m) > 1 ,

for all m > 0, since ncs(G) > 1 for all graphs, G.
Let c = c(N) ∈ O(1) be a function such that cN is an integer and, for all sufficiently

large N , every edge of GN intersects at most cN−1 other edges. By the proof of Theorem 4
such a function c exists. Fix any subgraph, G, of GN that has m > cN edges. From G,
select any edge e. Then there are at least f(m− 1) crossing-free subgraphs of G that do
not include e. Furthermore, e intersects at most cN − 1 other edges of G, so there are at
least f(m− cN) crossing-free subgraphs of G that include e. Therefore,

f(m) > f(m− 1) + f(m− cN) ,

for m > cN . Repeatedly expanding the first term gives:

f(m) > f(m− 1) + f(m− cN)

> f(m− 1) + f(m− 2cN)

> f(m− 2) + 2f(m− 2cN)
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> f(m− 3) + 3f(m− 2cN)

...

> cN × f(m− 2cN) , (4)

as long as m > 2cN .
For an integer t, we can iterate (4) t times to obtain

f(m) > (cN)t × f(m− 2ctN) , (5)

for m > 2ctN . Taking m = N2, (5) becomes

f(N2) > (cN)t × f(N2 − 2ctN) > (cN)t ,

for t 6 N/(2c). Taking t = bN/(2c)c then yields the desired result:

f(N2) > (cN)bN/(2c)c > (cN)N/(2c)−1 = 2( N
2c
−1)(logN+log c) ∈ 2Ω(N logN) .

We remark that the proof of Theorem 5 also works to lower-bound the number of
crossing-free matchings in GN . When one selects an edge uw to be part of the matching,
the at most cN edges of GN that intersect uw and the 2N − 1 edges that have u or w
as an endpoint must be discarded. Thus, one discards at most (c + 2)N edges and the
remainder of the proof goes through unmodified.

Corollary 1. For all d > 4 and N = 2kd−1, the number of crossing-free matchings with
vertex set N(k, . . . , k, 2) is 2Ω(N logN).

From Corollary 1, we can derive a lower-bound on the number of crossing-free spanning
trees of the k × · · · × k × 2 grid:

Corollary 2. For all d > 4 and N = 2kd−1. The number of crossing-free trees with vertex
set N(k, . . . , k, 2) is 2Ω(N logN).

Proof. Each of the crossing-free matchings counted by Corollary 1 uses only edges uw of
GN such that ud = 1 and wd = 2. Each such matching, M , can be augmented into a
crossing-free connected graph, GM , with vertex set N(k, . . . , k, 2) by, for example, adding
all edges in the set

{uw : u,w ∈ N(k, . . . , k, 2), ud = wd and ‖u− w‖ = 1} .

(The edges in the preceding set are those of two finite (d − 1)-dimensional lattices, one
in the subspace {x ∈ Rd : xd = 1} and the other in the subspace {x ∈ Rd : xd = 2}.)
The graph GM can be reduced to a tree, TM , that includes all edges of M by repeatedly
finding a cycle, C, and removing any edge of C that is not part of M . (An edge of C \M
exists because M is a matching, and hence acyclic.) After each such modification, GM

remains connected and has fewer cycles. This processes terminates when GM becomes
the desired tree TM .

Thus, for each of the 2Ω(N logN) matchings, M , there exists a spanning tree TM that
contains M . Any spanning tree with N vertices contains no more than 2N−1 matchings
and therefore, there are at least 2Ω(N logN)/2N−1 ∈ 2Ω(N logN) crossing-free spanning trees
with vertex set N(k, . . . , k, 2).
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We finish this section by observing that our lower bounds are not just for “flat” grids
like the k × · · · × k × 2 grid. They also hold for the “square” k × · · · × k grid.

Corollary 3. For all d > 4 and N = kd, the number of crossing-free matchings and
spanning trees with vertex set N(k, . . . , k) is 2Ω(N logN)

Proof. Observe that the k × · · · × k grid is made up of k layers, each of which is a
k×· · ·×k×1 grid. Between any consecutive pair of these layers there are, by Corollary 1,
2Ω(kd−1 log k) crossing-free matchings that contain only edges that span both layers. Since
there are k − 1 consecutive pairs of layers, there are therefore(

2Ω(kd−1 log k)
)k−1

= 2Ω(kd log k) = 2Ω(N logN)

crossing-frees graphs whose vertex set is the k × · · · × k grid.
Note that the graphs we obtain in the preceding manner contain no cycles. Therefore,

to obtain a lower-bound of 2Ω(N logN) on the number of spanning trees we can augment any
of these graphs into a crossing-free spanning tree as is done in the proof of Corollary 2.

To obtain a lower-bound on the number of matchings we can simply count the match-
ings that only include edges from layer i to layer i+ 1 with i ≡ 1 (mod 2). There are(

2Ω(kd−1 log k)
)b(k−1)/2c

= 2Ω(kd log k) = 2Ω(N logN)

such matchings.

5 Summary and Remarks

We have given matching upper and lower bounds on the minimum number of crossings
in d-D geometric grid graphs with m edges and volume at most N . The upper-bound
crd(N,m) ∈ O(m2/N), for d > 4, allows the application of a recursive counting technique
to show the lower-bound ncsd(N) ∈ 2Ω(N logN); this is similar to way in which Ajtai et al.
[3] used the lower-bound cr(n,m) ∈ Ω(m3/n2) to show that that the maximum number
of planar graphs that can be drawn on any point set of size n is 2O(n). This 2Ω(N logN)

lower-bound also holds if we restrict the graphs to be spanning trees or matchings, but
we know very little about spanning cycles:

Open Problem 1. Determine the maximum number of crossing-free spanning cycles
whose vertex set is a grid of volume N .

The natural open problem left in this area is that of finding tight bounds on ncs3(N).
A lower bound of 2Ω(n) follows immediately from the fact that there exists a non-crossing
3-D grid graph with volume N and Ω(N) edges (so this graph has 2Ω(n) non-crossing
subgraphs). An upper bound of 2O(N logN) can be obtained using the argument given at
the beginning of Section 4.

Open Problem 2. Find non-trivial bounds—2o(N logN) or 2ω(N)—on ncs3(N).
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Open Problem 2, which was the original motivation for the current work, was commu-
nicated to the first author by David R. Wood and his motivation for asking this question
comes from a question of Pach et al. [23], who ask “Does every graph with n vertices
and maximum degree three have a crossing-free 3-D grid drawing of volume O(n)?” This
question remains unresolved, even when the maximum degree three condition is relaxed
to maximum degree O(1).

If Open Problem 2 can be answered with a non-trivial upper bound, then this would
settle Pach et al.’s question as follows. The number of labelled graphs with n vertices and
having maximum degree 3 is 2(3/2)n logn−O(n) [4, Appendix A]. On the other hand, if one
can show that ncs3(N) ∈ 2o(N logN), then for every constant c > 0,

n! ncs3(cn) = n!2o(n logn) 6 2n logn+o(n logn) < 2(3/2)n logn−O(n) ,

for sufficiently large n. This would answer Pach et al.’s question in the negative, since
there would be more labelled n-vertex graphs of maximum degree three than there are
labelled 3-D geometric grid graphs of volume cn for any constant c. This type of counting
argument has been used successfully to answer similar questions about geometric thickness
[4], distinct distances [8], slope number [21], book thickness [20], and queue number
[20, 31].

Another approach to resolving the question of Pach et al. is to consider that there are
maximum degree 3 graphs that have some properties that would seem to rule out a linear
volume embedding. An obvious candidate property is that of being an expander : There
exist graphs, G, with maximum degree O(1) and such that, for any subset S ⊆ V (G),
|S| 6 n/2 the number of vertices of V (G) \ S adjacent to at least one vertex in S is at
least ε|S|, for some constant ε > 0.

Expanders have no separator of size o(n) and are therefore non-planar [19]. However,
very recently Bourgain and Yehudayoff [6] have shown that there exist bounded degree
graphs that are expanders and that have constant queue number. Through a result of
Dujmović et al. [13, Theorem 8], this implies that there are constant degree expanders
that can be drawn on a 3-dimensional grid with volume O(n). Thus, the property of
expansion is not sufficient to rule out linear volume 3-D grid drawings. We are still no
closer to solving Pach et al.’s 14 year old problem:

Open Problem 3 (Pach et al. 1999). Does every graph with n vertices and maximum
degree three have a crossing-free 3-D grid drawing of volume O(n)?
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A Proof of Claim 1

Proof of Claim 1. We must prove that
∑k

i=1 φ(i)2 ∈ Ω(log k). Recall the following result
on Euler’s totient function [17, Theorem 330]:

(3/π2)n2 −O(n) 6
n∑

i=1

ϕ(i) 6 (3/π2)n2 +O(n log n) .2

Using this result and the Cauchy-Schwartz Inequality, we obtain

(3/π2)n2 −O(n) 6
n∑

i=1

ϕ(i) =
n∑

i=1

ϕ(i) · 1 6

√√√√ n∑
i=1

ϕ(i)2 ·

√√√√ n∑
i=1

1 =

√√√√ n∑
i=1

ϕ(i)2 ·
√
n .

Dividing by
√
n and squaring, we obtain

n∑
i=1

ϕ(i)2 > (9/π4)n3 −O(n2) +O(n) > (9/π4)n3 > n3/11 , (6)

for all n > N0, for some sufficiently large N0. On the other hand, ϕ(i) < i, so

n∑
i=1

ϕ(i)2 <
n∑

i=1

i2 6
n∑

i=1

n2 = n3 . (7)

We can now prove the claim as follows:

k∑
i=1

ϕ(i)2/i3 >
k∑

i=N0

ϕ(i)2/i3 >
blog3 kc∑
j=N0

3j∑
i=3j−1+1

ϕ(i)2/i3

>
blog3 kc∑
j=N0

1

33j

 3j∑
i=3j−1+1

ϕ(i)2


=

blog3 kc∑
j=N0

1

33j

 3j∑
i=1

ϕ(i)2 −
3j−1∑
i=1

ϕ(i)2


>
blog3 kc∑
j=N0

1

33j

(
33j/11− (3j−1)3

)
(by using (6) and (7))

>
blog3 kc∑
j=N0

1

33j

(
33j/11− 33j/27

)
=

blog3 kc∑
j=N0

Ω(1) = Ω(log k) .

2Hardy and Wright state the result as
∑n

i=1 ϕ(i) = (3/π2)n2 +O(n log n). However, in their notation
f(n) = O(g(n)) means |f(n)| 6 cg(n) for some constant c > 0. This leads to the statement given here.
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