
Polynomial sequences of binomial-type
arising in graph theory

Jonathan Schneider
Department of Computer Science

Princeton University, Princeton, NJ 08540, U.S.A.

js44@princeton.edu

Submitted: Sep 8, 2013; Accepted: Feb 8, 2014; Published: Feb 28, 2014

Mathematics Subject Classifications: 05A40, 05C31

Abstract

In this paper, we show that the solution to a large class of “tiling” problems
is given by a polynomial sequence of binomial type. More specifically, we show
that the number of ways to place a fixed set of polyominos on an n × n toroidal
chessboard such that no two polyominos overlap is eventually a polynomial in n, and
that certain sets of these polynomials satisfy binomial-type recurrences. We exhibit
generalizations of this theorem to higher dimensions and other lattices. Finally, we
apply the techniques developed in this paper to resolve an open question about the
structure of coefficients of chromatic polynomials of certain grid graphs (namely
that they also satisfy a binomial-type recurrence).

1 Introduction

A sequence p0 = 1, p1, p2, . . . of polynomials is a polynomial sequence of binomial type if
it satisfies the identity (

∞∑
i=0

pi(1)xi

)n

=
∞∑
i=0

pi(n)xi. (1)

Binomial-type sequences were introduced by Rota, Kahaner, and Odlyzko in 1975 [10]
and play an important role in the theory of umbral calculus. Outside of the context of
umbral calculus, polynomial sequences of binomial type possess the useful property that
they are completely determined by the sequence of their values when evaluated at a single
point. Several important polynomial sequences, such as the Abel polynomials and the
Touchard polynomials, are of binomial type.

In this paper we demonstrate that polynomial sequences of binomial type arise from
a large class of problems occurring in graph theory. In particular, these sequences occur
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in problems where we wish to enumerate the number of ways to place some objects on
a “toroidal” periodic structure such that no two overlap. One simple example of this
phenomenon is the following. Take an n × n chessboard and identify opposite edges to
make it toroidal. If we let pk(n

2) equal the number of ways to place k dominoes on this
grid (aligned with the grid’s edges) such that no two dominoes overlap, then it turns out
that, for sufficiently large n the values pk(n

2) are given by a polynomial in n2. Moreover,
this sequence of polynomials (viewed as a sequence in k) is a polynomial sequence of
binomial type.

Our methods allow us to easily generalize these results. The main result of our paper
is a generalization of the above phenomenon to arbitrary sets of polyominos on toroidal
grids of any dimension. We also demonstrate some interesting further generalizations of
this result; for example, we show that the same binomial-type relation holds when we
can assign arbitrary integer weights to polyominos and then count placements that have
a total weight of k. In addition, we show that there is a very natural continuous analogue
of these results concerning placing arbitrary bounded measurable ‘shapes’ in a continuous
d-dimensional torus.

Finally, we apply these results to provide a proof of an open problem due to Stanley [9]
concerning coefficients of the chromatic polynomial χn(x) of the two-dimensional toroidal
grid graph. Much previous research into the chromatic polynomial χn(x) of toroidal grid
graphs focused primarily on the asymptotics of this polynomial, particularly the limit
limn→∞(χn(x))1/nd

(see, for instance [1, 2, 3, 4, 5, 6, 7, 8]). For example, it is known that
for d = 2 and x = 3, this limit is equal to (4/3)3/2.

The open problem due to Stanley asks to show that the coefficient of xn
2−k in χn(x)

is (up to sign) for sufficiently large n a polynomial in n2, and that the polynomials for
different k form a polynomial sequence of binomial type. By using Whitney’s broken-
circuit theorem to reduce this to an overlap problem of the style above, we resolve this
open problem (and in fact, provide a generalization that holds for chromatic polynomials
of toroidal grid graphs of any positive dimension).

Our paper is structured as follows. In Section 2, we define some terminology that we
use throughout this paper. In Section 3, we prove that the problem of enumerating the
number of non-overlapping placements does in fact give rise to a polynomial for sufficiently
large n. We additionally show how to write these polynomials in a nice form reminiscent
of certain generating functions. In Section 4, we introduce the notion of an intersection
schema and use it to prove our main theorem. In Section 5, we discuss generalizations of
our main result to the cases of assigning integer weights of polyominos, continuous tori,
non-toroidal grids, and other types of lattices. Finally, in Section 6, we apply our main
result along with Whitney’s broken-circuit theorem to solve the open problem mentioned
above.

2 Background and Definitions

We begin with some graph-theoretic notation. We let Cn denote the cycle on n vertices,
Pn denote the path on n vertices, and C∞ denote the doubly infinite path.

the electronic journal of combinatorics 21(1) (2014), #P1.43 2



Definition 1. Given two graphs G1 and G2, we define the product graph G1 × G2 as
follows. The vertices of G1 × G2 are given by ordered pairs (v1, v2) where v1 ∈ G1 and
v2 ∈ G2. The two vertices (v1, v2) and (v′1, v

′
2) are adjacent if either v1 = v′1 and v2 is

adjacent to v′2 in G2 or v2 = v′2 and v1 is adjacent to v′1 in G1. We write Gr for the
expression G×G× · · · ×G (with r copies of G).

Definition 2. The d-dimensional toroidal grid graph of size n, T dn , is the graph (Cn)d.
Similarly, the d-dimensional infinite toroidal grid graph T d∞ is the graph (C∞)d, and the
d-dimensional grid graph of size n, Ldn, is the graph (Pn)d.

Definition 3. A d-dimensional figure is a finite subset of vertices of T d∞, up to translation.
That is, two figures are considered equivalent if we can get from one to the other by adding
a fixed integer vector to the coordinates of each of its vertices. We say a figure is of size
s if it contains s vertices. We also say a figure is of girth g if the maximum `∞ norm
between two vertices in the figure is equal to g.

We have defined figures above as subsets of T d∞. However, it is clear that, for any
specific figure, if n is large enough (in particular, larger than the girth of the figure), then
we can also view the figure as a subset of T dn (up to translation). We will often abuse
notation in this way by talking about “placing” figures on T dn . In such cases, we will
always assume that we are taking n large enough so that this makes sense.

We next define what it means for a sequence of polynomials to be of binomial type.

Definition 4. The sequence of polynomials {pi(n)}i>0 is of binomial-type if it satisfies
the following three properties: i. p0(n) = 1, ii. pi(0) = 0 for i > 0, and iii. the identity
given by equation (2) holds for all nonnegative n.(

∞∑
i=0

pi(1)xi

)n

=
∞∑
i=0

pi(n)xi (2)

An equivalent reformulation of our third condition is that the identity given by equa-
tion (3) holds for all nonnegative n.

pn(x+ y) =
n∑
i=0

pi(x)pn−i(y) (3)

Our definition of binomial-type differs slightly from the definition most often found in
the literature, where equation (3) contains an additional factor of

(
n
i

)
. The two definitions

are easily interchangeable, however; if {pi(n)} is a sequence of binomial-type under our
definition, then {i!pi(n)} is a sequence of binomial-type under the traditional definition.

3 Polynomiality

In this section, we demonstrate that several sequences related to the number of ways to
place a fixed set of figures on a lattice are eventually described by polynomials. More
specifically, we have the following main result.
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Theorem 5. Let S be a finite multiset of d-dimensional figures. Let fS(n) be the number
of ways to place all of the figures in S on T dn with no overlap (for a finite set of small
values of n, there may be figures that are impossible to place on T dn ; in this case, let
fS(n) = 0). Then there exists a positive integer n0 and an integer polynomial p(x) such
that fS(n) = p(nd) for all n > n0.

Since there is some subtlety in dealing with multisets containing repeated indistin-
guishable figures, in the first half of this section (Subsection 3.1) we prove this result only
for sets of distinct figures. In the second half (Subsection 3.2), we generalize to the case
where repeats of figures are allowed.

3.1 Without repeats

In this subsection, we prove Theorem 5 for the case where S contains no repeated figures.
In particular, we prove the following simpler result.

Theorem 6. Let S be a finite set of distinct d-dimensional figures. Let fS(n) be the
number of ways to place all of the figures in S on T dn such that none overlap (for a finite
set of small values of n, there may be figures that are impossible to place on T dn ; in this
case, let fS(n) = 0). Then there exists a positive integer n0 and an integer polynomial
p(x) such that fS(n) = p(nd) for all n > n0.

Throughout this subsection and the next, we will repeatedly make use of the following
notion of an overlap graph.

Definition 7. An overlap graph is a graph G whose vertices are labelled by d-dimensional
figures (for some d). A placement of these figures on T dn (or T d∞) is consistent with G if,
whenever figures f1 and f2 are adjacent in G, they overlap in T dn (or T d∞).

Note that if a placement of figures is consistent with an overlap graph, so are all
translations of this placement of figures. This inspires the following definition.

Definition 8. A configuration of d-dimensional figures is an equivalence class of place-
ments of d-dimensional figures on T dn (or T d∞) where two configurations are equivalent if
they are translations of each other in T dn (or T d∞). A configuration c is consistent with a
graph G if all of its placements are consistent with G; in this case, we write cEG.

If f1 and f2 are not adjacent in G, they may or may not overlap in T dn (or T d∞); only
one direction of the above implication holds. In addition, for now we will assume that the
vertices of our overlap graphs are labelled with distinct d-dimensional figures; we will lift
this constraint in the following subsection.

We next prove three useful lemmas about overlap graphs.

Lemma 9. If an overlap graph G is connected, then, there are only finitely many config-
urations of these figures on T d∞ consistent with G. We call this number v(G).
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Proof. Since G is connected, there exists a path of edges of G between any two vertices
of G. This implies that, for any two figures f1 and f2 in a consistent placement of these
figures on T d∞, we can construct a sequence of figures starting at f1 and ending at f2 such
that each figure intersects the next figure in the sequence.

Now, since each of the figures has finite size, and since there are a finite number of
figures, this implies that the maximum distance (along edges of the graph) between any
two points belonging to figures in our placement is bounded. Since there are only finitely
many ways to place a finite number of figures in a bounded region of T d∞, this establishes
that v(G) is finite.

Lemma 10. Let G be a connected overlap graph. Then the number of placements of
figures on T dn consistent with G is equal to v(G)nd for sufficiently large n.

Proof. By Lemma 9, we know that there are v(G) distinct consistent configurations of
these figures on T d∞. For sufficiently large n, it will be possible to embed each of these
v(G) configurations in T dn . Finally, for each choice of consistent configuration, there are nd

possible translations in T dn . Therefore, there are a total of v(G)nd consistent placements
on T dn for sufficiently large n.

Lemma 11. Let G be an overlap graph with connected components G1, G2, . . . , Gr. Then,
the number of placements of figures on T dn consistent with G is equal to v(G1) . . . v(Gr)n

rd.

Proof. Note that we can place all the connected components of G independently. Since
by Lemma 10, there are v(Gi)n

d placements on T dn consistent with Gi (for sufficiently
large n), overall there will be

r∏
i=1

v(Gi)n
d =

(
r∏
i=1

v(Gi)

)
nrd (4)

placements of figures on T dn consistent with G (for sufficiently large n), as desired.

With these lemmas, the proof of Theorem 6 reduces to a straightforward application
of the principle of inclusion-exclusion.

Proof of Theorem 6. Label the figures in S as f1, f2, . . . , fm. We wish to count the
number of placements of these figures on T dn such that no two figures overlap. Thus, for
each pair 1 6 i < j 6 m, let E(i, j) be the set of placements of these figures where fi
and fj intersect, and let U be the set of all placements of these figures. For convenience
of notation, let P be the set of all pairs (i, j) where 1 6 i < j 6 m; if p = (i, j), we will
also let E(p) stand for E(i, j). Finally, let U be the set of all possible placements of these
figures on T dn ; equivalently, the number of placements consistent with the overlap graph
G containing no edges. Note that, for sufficiently large n, |U | = (nd)m, since there are at
nd ways to place each figure.

Then, by the principle of inclusion-exclusion, the number of placements where no two
figures overlap is equal to
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|U | −
∑
p1∈P

|E(p1)|+
∑

p1,p2∈P

|E(p1) ∩E(p2)| −
∑

p1,p2,p3∈P

|E(p1) ∩E(p2) ∩E(p3)|+ · · · . (5)

To show that this expression is eventually a polynomial in nd, it suffices to show that
each of the individual terms is eventually a polynomial in nd. Now, |E(p1)∩E(p2)∩ · · · ∩
E(pk)| = |E(i1, j1)∩E(i2, j2)∩ · · ·∩E(ik, jk)| is equal to the number of placements where
figure fir intersects figure fjr for each r between 1 and k. But this is simply equal to
the number of placements consistent with the overlap graph G which contains an edge
between fir and fjr for each r between 1 and k. By Lemma 11, this is eventually a
polynomial in nd. This concludes the proof.

For a connected overlap graph G, let a(G) = (−1)|E|v(G). By substituting values into
Equation 5 from Lemma 11, we have the following corollary.

Corollary 12. Let N = nd, and let m be the number of figures in S. Then, for sufficiently
large n, the function fS(n) defined in Theorem 6 is equal to

m∑
r=1

∑ 1

r!
a(g1)a(g2) · · · a(gr)N

r (6)

where the inner sum runs over all ordered r-tuples of connected overlap graphs that
union to an overlap graph for the set S (equivalently, the union of the sets of figures
corresponding to the vertices of the gi is equal to the set S).

Note that since S contains only distinct figures, we could easily remove the factor of
1/r! in equation (6) and instead sum over all unordered r-tuples. However, for reasons to
be explained in Section 4, it is more convenient to write our polynomial in this form.

3.2 With repeats

In the previous section, we proved Theorem 5 for the specific case where S contained no
repeated indistinguishable figures. In the case that we have several of the same figure,
certain details in the above proof (in particular, Lemma 11) fail to hold. For example, if
our set S contains two identical figures, the number of total possible placements is neither
n2d nor n2d/2, but rather (n2d + nd)/2; the extra nd term arises from the fact that our
two indistinguishable figures can occupy exactly the same location.

However, if we have repeated distinguishable figures, all of the logic in the previous
section continues to hold. This observation gives rise to a simple proof of Theorem 5.

Proof of Theorem 5. Assume that S contains ci copies of figure fi, for each 1 6 i 6 m.
For each group of indistinguishable repeated figures in S, “color” them to make them

distinguishable. Then the proof of Theorem 6 implies that the number of ways to place
these figures on T dn such that no two figures overlap is eventually some polynomial p(nd)
for large enough n.
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But now, if we ignore the different colors, each configuration where no two figures
overlap is counted exactly c1!c2! . . . cm! times. Therefore in the case of indistinguishable
repeated figures, the number of placements of these figures such that no two figures overlap
is eventually p(nd)/(c1!c2! . . . cm!), which is also a polynomial in nd.

For reasons that will be explained in the next section, we would also like to write this
polynomial in the same form as equation (6). In order to construct the correct function
a(g), we must introduce some more notation.

Definition 13. For any configuration c, we can partition the figures of c into k maximal
sets Oi such that all the figures in Oi are identical and overlap completely. Then the
weight wc of a configuration c is defined to equal

∏k
i=1(oi!)

−1, where oi = |Oi|.

Definition 14. In a connected overlap graph G, assume that there are a total of ci
(vertices labeled with) figures of type fi for each 1 6 i 6 m. Then we define α(G) =
|Aut(G)|−1

∏m
i=1 ci!, where Aut(G) is the group of automorphisms of the graph G that

preserve labelling (that is, they send vertices labelled with figures of type fi to vertices
labelled with figures of type fi).

Note that if we let H be the group of all permutations of the vertices of G which
send figures of type fi to figures of type fi, then α(G) can be equivalently defined as
|H|/|Aut(G)|. Similarly, this is just the number of non-isomorphic ways to color each set
of ci figures of type fi with ci distinguishable colors. We will make use of this fact in the
proof of the following theorem.

Theorem 15. For a connected overlap graph g, define

a(g) = (−1)|E|α(g)
∑
cEg

wc (7)

where the sum runs over all configurations c consistent with g. Then, as before, we have
that

fS(n) =
m∑
r=1

∑ 1

r!
a(g1)a(g2) · · · a(gr)N

r (8)

where the inner sum runs over all ordered r-tuples of connected overlap graphs that union
to an overlap graph for the set S.

Proof. Let S contain µ different types of figures, with ci figures of type fi for each i
between 1 and µ (so

∑
ci = m). Our goal will be to show that the right hand side of

formula (8) is exactly

fS̄(n)∏µ
i=1 ci!

, (9)

where S̄ is the set obtained by coloring all the figures in S so that they are distinguishable;
it then follows from the above proof of Theorem 5 that this is equal to fS(n), as desired.
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Let p be any placement of the figures of S onto T dn . We will show that the number of
times p is counted in the right hand side of formula (8) is equal to the number of times it
is counted in formula (9).

To do this, first note that by the definition of α(G), for any connected overlap graph g,
we can write a(g) =

∑
a′(h), where the sum runs over all graphs h obtained by coloring

all the figures of type fi distinguishably (note that there are α(g) such graphs). Our new
function α′(h) is now given just by α′(h) = (−1)|E|

∑
cEhwc (where for a configuration c

to be consistent with h, it simply has to be consistent with the original graph g). We can
therefore write fS(n) as

fS(n) =
m∑
r=1

∑ 1

r!
a′(h1)a′(h2) · · · a′(hr)N r (10)

where this new sum runs over ordered r-tuples of these additionally colored overlap graphs
hi.

The terms of this sum that contribute to the total count for our placement p are
indexed by a choice of additionally colored overlap graphs hi and partitions of p into r
subplacements pi such that each pi is consistent with hi. We can write one such term as

t(h,p) =
1

r!
(−1)

∑
|Ei|wp1wp2 · · ·wpr (11)

where wpi is the weight of placement pi (which is the same as the weight of the configura-
tion ci to which pi belongs), and h and p represent the two r-tuples (h1, h2, . . . , hr) and
(p1, p2, . . . , pr) respectively.

Now, as in Definition 13, partition S into k maximal sets Oi such that all the figures in
Oi are identical and overlap completely in p (and let oi = |Oi|). Note that the overlap sets
Oi for placement p can be further partitioned among the r subplacements that union to
p. Therefore, for each 1 6 j 6 r, let Oij be the subset of Oi that belongs to subplacement
pj, and let oij = |Oij|. Note then that wpi = (o1i!o2i! . . . oki!)

−1, and thus that

t(h,p) =
1

r!
(−1)

∑
|Ei|

k∏
i=1

r∏
j=1

(oij!)
−1. (12)

Let us now count the number of times placement p is counted in fS̄(n). Let p̄ be a
placement of the (colored) figures of S̄ such that, when color is ignored, is equal to p.
We will say that p̄ decolors to p. By Corollary 6 and as per the logic above, for each
choice of overlap graphs hi and each partition of p̄ into r subplacements p̄i (such that p̄i
is consistent with hi), we contribute

t(h, p̄) =
1

r!
(−1)

∑
|Ei| (13)

towards the overall count for placement p̄.
Now, consider the number of choices of p̄ such that p̄ decolors to p and p̄i decolors

to pi for each i between 1 and r. We would like the sum of t(h, p̄) over these choices to
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equal (
∏µ

i=1 ci!)t(h,p), as this would imply that placement p is accounted for a multiple
of
∏µ

i=1 ci! more times in fS̄(n) than in fS(n). From formulas (12) and (13), this occurs
if the number of such choices equals(

µ∏
i=1

ci!

)(
k∏
i=1

r∏
j=1

(oij!)
−1

)
(14)

We can rewrite this as (∏µ
i=1 ci!∏k
i=1 oi!

)(
k∏
i=1

oi!
r∏
j=1

(oij!)
−1

)
(15)

The first term,
∏µ

i=1 ci!/
∏k

i=1 oi!, counts the number of ways to, for each i between 1
and µ, assign ci distinct colors to all the sets Oi containing figures of type fi. The second
term, oi!

∏r
j=1(oij!)

−1, is the number of ways to partition oi colors among r subplacements
such that subplacement pi receives oij of these colors. Altogether, this counts the number
of ways to color the figures of the subplacements pi as to obtain a valid set of subplacements
p̄i that decolor to pi. It follows that fS(n)

∏µ
i=1 ci! = fS̄(n), as desired.

4 Intersection Schemas

In the previous section, we showed that we can write the function fS(n) in the form given
in equation (6). In particular, we have that

fS(n) =
m∑
r=1

∑ 1

r!
a(g1)a(g2) · · · a(gr)N

r (16)

where the function a is given as in equation (7).
In this section, we will prove that a large class of functions written in this form give

rise to polynomial sequences of binomial type. To do this, we will define an object called
an intersection schema, which will generalize many of the properties of overlap graphs we
encountered in the previous section.

Definition 16. A weighted set is a set S (either finite or infinite) along with a weight
function w : S → Z+ (from S to the positive integers) such that for any W , there are
only finitely many elements x of S such that w(x) 6 W .

Definition 17. Given a weighted set S, the set of S-labeled graphs is the set of graphs
where each vertex is labelled by an element in S. We shall denote this set as LG(S). We
define the weight w(g) of an element g of LG(S) to simply be the sum of the weights
of its labels. We will also denote the subset of LG(S) consisting of connected S-labeled
graphs as LCG(S). Note that we consider two graphs in LG(S) to be equivalent if they
are equivalent under a graph isomorphism that sends labeled vertices to similarly labeled
vertices.
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Definition 18. An intersection schema is a weighted set S along with a function a :
LCG(S)→ C. Given an intersection schema, we define the polynomial qi(N) as:

qi(N) =
∞∑
r=1

∑ 1

r!
a(g1)a(g2) · · · a(gr)N

r (17)

where the inner sum runs over all ordered r-tuples (g1, g2, . . . , gr) of elements of
LCG(S) such that

∑r
j=1 w(gj) = i. By default, we set q0(N) = 1.

Finally, we will need the following binomial identity:

Lemma 19. We have that

nk =
∞∑
r=1

∑
m1+···+mr=k

k!

m1!m2! · · ·mr!

(
n

r

)
(18)

where the inner sum runs over all compositions of k.

Proof. The left hand side is the number of ways to color a set of k items with n colors.
The right hand side counts this same number; here the mi correspond to sizes of sets of
items colored the same color, the first multinomial coefficient corresponds to the number
of ways to distribute the k items into these groups of size mi, and the binomial coefficient
corresponds to the number of ways to choose r colors for these r groups out of the total
n colors.

We can now state and prove our main theorem.

Theorem 20. Let I be an intersection schema. Then(
∞∑
i=0

qi(1)xi

)N

=

(
∞∑
i=0

qi(N)xi

)
. (19)

Proof. Let

F (x) =
∞∑
i=0

qi(1)xi (20)

and let

FN(x) =
∞∑
i=0

qi(N)xi. (21)

By the formula for qi(n) given in Definition 18, we can rewrite F (x) as

F (x) = 1 +
∞∑
r=1

∑ 1

r!
a(g1)a(g2) . . . a(gr)x

w(g1)+w(g2)+···+w(gr) (22)
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where the inner sum runs over all ordered r-tuples (g1, g2, . . . , gr) of elements of LCG(S).
We will now show by comparing terms that F (x)N = FN(x). For sake of convenience,

we will assume that the a(g) are arbitrary non-commuting variables; i.e. that we do not
necessarily have a(g1)a(g2) = a(g2)a(g1) (of course, since a(gi) ∈ C, they do commute,
but we will remove this restriction for now).

A general term in FN(x) looks like

N r

r!
a(g1)a(g2) . . . a(gr)x

w(g1)+w(g2)+···+w(gr). (23)

We will show that the coefficient of a(g1)a(g2) . . . a(gr)x
w(g1)+w(g2)+···+w(gr) in F (x)N is

also
N r

r!
, thus completing the proof. To see this, first note that since we are assuming

the a(g)s do not commute, the terms in F (x) which could contribute to this coefficient in
F (x)N are of the form

1

j!
a(gi)a(gi+1) . . . a(gi+j−1)xw(gi)+w(gi+1)+···+w(gi+j−1) (24)

(in other words, consecutive blocks of a(gi)s). But now, it follows directly from expansion
that the coefficient of

a(g1)a(g2) . . . a(gr)x
w(g1)+w(g2)+···+w(gr) (25)

in F (x)N is equal to ∑
s

∑
m1+···+ms=r

1

m1!m2! . . .ms!

(
N

s

)
(26)

which by Lemma 19 is simply equal to
N r

r!
, as desired. (The ordered partitions arise from

the different ways to divide the product a(g1)a(g2) . . . a(gr) into consecutive “blocks”).

We can now directly apply this theorem about intersection schemas to the case of
non-overlapping placements.

Theorem 21. Let S be a (possibly infinite) set of connected d-dimensional figures, and
let pk(n

d) be the number of ways to place some collection of these figures (possibly using
the same figure in S repeatedly) that have a total of k edges on T dn . Then the pk(n

d) are
eventually polynomials in nd, and these polynomials form a sequence of binomial type.

Proof. Define the following intersection schema. Our weighted set S is just the set S of
d-dimensional figures, where the weight of a figure is simply its number of edges. The
function a is defined as in equation (7); note that graphs in LCG(S) are just connected
overlap graphs for some set of figures. Then Theorem 15 shows that for each k, pk(n

d) is
eventually equal to qk(n

d). Our main theorem about intersection schemas (Theorem 20)
then shows that the polynomials qk(n

d) form a sequence of binomial type, as desired.
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5 Generalizations

Up until now, this paper has been concerned only with placing d-dimensional figures on
d-dimensional toroidal grid graphs. However, the machinery of intersection schemas and
inclusion-exclusion on overlap graphs allow us to prove a much wider range of results.
In fact, it seems that any problem involving placing finite non-overlapping collections
of subgraphs on larger and larger periodic graphs gives rise to an eventual polynomial
sequence; in addition, if the underlying periodic graphs are (in some sense) “toroidal”,
then this polynomial sequence is of binomial type. In this section, we will consider some
generalizations of Theorems 5 and 21 that capture this idea.

5.1 Other weights

In the proof of Theorem 21, we assigned the weight of a figure to be its number of edges.
However, since Theorem 20 works for any valid weight function, we can essentially assign
whatever weights we want to figures (as long as not too many figures have small weight).
We can formalize this in the following statement.

Theorem 22. Let S be a (possibly infinite) set of connected d-dimensional figures, and
let w be a function from S to Z+ such that for any x, there are only finitely many figures
f ∈ S such that w(f) = x. Let pk(n

d) be the number of ways to place some collection of
these figures (possibly using the same figure in S repeatedly) that have a total of k edges on
T dn . Then the pk(n

d) are eventually polynomials, and these polynomials form a sequence
of binomial type.

For example, all the following polynomial sequences are polynomial sequences of
binomial-type:

• Let pk(n
2) be the number of ways to place a L-shaped triominos and b T-shaped

pentominos on an n×n toroidal grid such that 7a+2b = k. Then pk(n
2) is eventually

a polynomial sequence of binomial type.

• Let pk(n
d) be the number of ways to place some number of d-dimensional figures on

a d-dimensional toroidal grid graph such that the sum of the squares of the number
of edges over all figures equals k. Then pk(n

d) is eventually a polynomial sequence
of binomial type.

• Let pk(n
d) be the number of ways to place some number of d-dimensional figures

on a d-dimensional toroidal grid graph such that the total number of edges in the
figures equals k, and then to color each figure that has at least 3 edges with one of
50 colors. Then pk(n

d) is eventually a polynomial sequence of binomial type.
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5.2 Continuous variant

We can easily adapt intersection schemas to handle a continuous variant of our problem.
To do this, we replace the d-dimensional toroidal grid graph T dn with a continuous d-
dimensional torus of side length n, and the concept of a d-dimensional figure with a
bounded measurable set in d-dimensional Euclidean space. Then instead of counting the
number of ways to place some number of objects so that they do not overlap, we instead
consider the total measure of non-overlapping placements in state space.

For the case where our collection of figures contains only one object, we have the
following nice probabilistic result.

Theorem 23. Let S be a bounded measurable set in d-dimensional Euclidean space. Let
pk(n

d) be the probability that no two copies intersect when we place k copies of S inde-
pendently and uniformly at random inside a d-dimensional torus of side-length n. Then
ndkpk(n

d) is eventually a polynomial for each k, and these polynomials form a sequence
of binomial-type.

5.3 Non-toroidal grids

We can also ask what happens if, instead of placing our figures on the toroidal grid graph
T dn , we place them on the regular grid graph Ldn. It turns out that in this case we lose the
binomial-type property. However, the number of possible placements is still a polynomial
(in n instead of nd, however), and we therefore have the following analogue to Theorem
5.

Theorem 24. Let S be a finite multiset of d-dimensional figures. Let fS(n) be the number
of ways to place all of the figures in S on Ldn such that none overlap. Then there exists a
positive integer n0 and a polynomial p(x) such that fS(n) = p(n) for all n > n0.

Proof. We follow the proof of Theorem 5, with the slight change that for each configura-
tion, instead of there being nd valid translations, there are only (n−g1)(n−g2) . . . (n−gd)
valid translations, where gi is the girth of the configuration in dimension i (that is,
gi(c) = maxx,y∈c |xi − yi|).

We can extend this even farther. By the same reasoning as in the proof of Theorem
5, the above result holds for grid “rectangles” with unequal dimensions (like n × 2n
rectangles, or 4n× 5n× 6n boxes). In fact, we have the following general result:

Theorem 25. Let G be a graph formed by taking a finite subset of the unit d-dimensional
cells comprising T d∞. Let Gn be the graph obtained by replacing each unit cell by a cell of
length n divided regularly into nd unit cells. Let S be a finite multiset of d-dimensional
figures, and let fS(n) be the number of ways to place all of the figures in S on Gn such
that none overlap. Then there exists a positive integer n0 and a polynomial p(x) such that
fS(n) = p(n) for all n > n0.
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Proof. Again, by following the same reasoning in 5, it suffices to show that the number
of ways to place any one figure on Gn is a polynomial in n.

To show this, call our figure f , and divide Gn into copies of Ldn (in the same way that
we can divide G1 into unit d-dimensional cells). The number of ways to place f in Ldn is
a polynomial in n (namely, the same polynomial used in the proof of Theorem 24 above),
so the total number of ways to place f so that it stays entirely within one of these copies
of Ldn is also a polynomial in n. Now, by similar reasoning, the number of ways this figure
can intersect exactly c of these n-dimensional cells is a polynomial in n (since for each
specific choice of c cells, the number of ways this figure can intersect exactly those cells
will be a polynomial in n). By summing all of these polynomials (and there are a finite
number of these, since G contains a finite number of unit cells), we find that the total
number of ways to place f in Gn is a polynomial in n, as desired.

5.4 Other lattices

Finally, the only discrete lattice we have considered is the square lattice. However, ana-
logues of all of the above theorems exist for other lattices, such as triangular lattices and
hexagonal lattices (and by exactly the same logic).

6 Application to Chromatic Polynomials

The following open problem appears as Exercise 4.82 in Enumerative Combinatorics, vol.
1.

Theorem 26. Let χn(x) be the chromatic polynomial of the n×n toroidal grid graph, and
let qk(n

2) be the coefficient of xn
2−k in χn(x). Then (−1)kqk(n

2) is eventually a polynomial
in n2, and this sequence of polynomials is of binomial-type.

In this section, we will provide a proof of this theorem, thus resolving this open
problem. In addition, we will prove that the above claim holds not just for the n × n
toroidal grid graph but for T dn , for any number of dimensions d.

To do this, we will reduce the problem of computing the coefficient of xn
2−k in χn(x)

to a placement problem, and then apply Theorem 21. Our main tool for doing this will
be Whitney’s broken-circuit theorem, stated below.

Definition 27. In a graph G = (V,E) with a total ordering on the edges, a broken circuit
is a subset of E formed by taking a cycle in G and removing the largest edge (with respect
to the ordering).

Theorem 28. (Whitney’s broken-circuit theorem) Let G be a finite graph with a
strict ordering on the edge set E. Then, for n between 0 and |V | inclusive, the coefficient
of λ|V |−k in χG(λ) is equal to (−1)k times the number of k-element subsets of E which do
not contain any broken-circuit of G as a subset.

Proof. See [11].
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It would be ideal if we could choose as our set S of figures the set of connected
d-dimensional figures which do not contain any broken-circuits. Unfortunately, the defi-
nition of broken-circuit depends on the ordering of the edges in the graph. Fortunately,
we can choose an ordering of edges on T dn that largely remedies this problem.

Definition 29. In the graph T dn , we call a total ordering of the edge set E natural if it
satisfies the following properties:

1. Each segment parallel to ui (where ui is the unit vector in dimension i) for i > 2
occurs before all edges parallel to u1 (call these edges horizontal).

2. If a horizontal edge e connects points (x1, x2, . . . , xn) and (x1 + 1, x2, . . . , xn), let
the projection of edge e, p(e), be the (n− 1)-tuple (x2, x3, . . . , xn). To compare two
horizontal edges e1 and e2, let the larger edge be the edge with the lexicographically
later projection vector.

A natural ordering of the edge set of the graph T d∞ is defined in the same way.

For the remainder of this paper, for each of the graphs T dn and T d∞, fix a natural edge
ordering; we will refer to this ordering below as “the natural edge ordering”.

Definition 30. We say a figure is locally good if its embedding in T d∞ contains no broken-
circuit under the natural edge ordering (note that if a translate of some subset of T d∞
contains a broken-circuit iff the subset contains a broken-circuit, by construction of the
natural edge ordering). We say that the placement of a figure in T dn is globally good if the
corresponding subset of T dn contains no broken-circuit under the natural edge ordering. If
a figure is not locally/globally good, then it is locally/globally bad.

Now, we can let S be the set of all locally good figures. However, note that it is possible
to place a figure that is locally good on T dn such that it is globally bad (for example, for
d = 2, we can achieve this in certain cases by placing it so that it intersects the vertical
line x2 = n). Similarly, it is possible to place a figure which is locally bad on T dn so that
it is globally good. The following theorem will allow us to ignore such cases.

Theorem 31. The total number of ways to place a globally bad cycle-free figure with k
edges on T dn (over all possible figures with k edges) is equal to the number of ways to place
a locally bad cycle-free figure with k edges on T dn .

Proof. We will exhibit a bijection between these two sets. Assume we have a figure f
(with |E| = k) which is cycle-free but globally bad. Since it is globally bad, it must
contain some number of broken-circuits (under the natural edge ordering for T dn). Let
the number of broken-circuits be b, and let ei be the edge needed to make the ith broken
circuit a cycle. Note first that we cannot have ei = ej for i 6= j, because if this were
the case, then there would be two distinct paths between the endpoints of ei in f , which
would imply that there is a cycle in f . Thus the ei comprise b different edges.

Let f̄ be the graph formed by adding all of these edges to f (so f̄ now has k + b
edges). Now, consider f̄ as a subgraph of T d∞ with its natural edge ordering. Let f ′ be

the electronic journal of combinatorics 21(1) (2014), #P1.43 15



the minimum spanning tree of f̄ , where we let the weight of the rth largest edge of f̄ be
r. We now claim that f ′ is locally bad (it is cycle-free since it is a tree). To see this,
note first that since f ′ and f are both spanning trees of f̄ , they both must have the same
number k of edges. Next, let e′1, e

′
2, . . . , e

′
b be the b edges belonging to f̄ but not to f ′.

Note that (by the properties of minimum spanning trees) if we add in e′i for any i, we will
construct a unique simple cycle; moreover (again by the properties of minimum spanning
trees), e′i will have the heaviest weight in this cycle. This implies that this set of edges in
f ′ (minus e′i) forms a broken circuit under the local natural edge ordering, so f ′ is locally
bad (and in fact, it contains b broken-circuits under this edge ordering).

This procedure is a map which sends placements of globally bad cycle-free figures f
with k edges to placements of locally bad cycle-free figures f ′ with k edges. Now, note
that we can invert this map via the following procedure, thus showing that this map is a
bijection. As before, we take the b broken-circuits and the b edges e′i required to make the
ith broken circuit a cycle. We then add these b edges to f ′ to construct f̄ , and once we do
this we let f be the minimum spanning tree of f̄ with respect to the natural edge ordering
of T dn . To see that this restores the original f , note first that the figure f̄ constructed in
going from f to f ′ contains exactly the same edges as the figure f̄ constructed in going
back from f ′ to f . Next, note that none of the edges ei can belong to the minimum
spanning tree of f̄ with respect to the natural edge ordering of T dn ; this is since each such
edge ei is the largest edge in a cycle, and such edges never occur in minimum spanning
trees. But since f̄ has k + b edges, and there are b edges ei, this must mean that this
minimum spanning tree is exactly f , as desired.

Corollary 32. The total number of ways to place a locally good cycle-free figure with k
edges on T dn (over all possible figures with k edges) is equal to the number of ways to place
a globally good cycle-free figure with k edges on T dn .

Proof. Consider the following four sets of possible placements of figures with k edges:
SGG, the set of locally good and globally good placements, SGB, the set of locally good
but globally bad placements, SBG, the set of locally bad but globally good placements,
and SBB, the set of locally bad and globally bad placements. We wish to show that
|SGG|+ |SGB| = |SGG|+ |SBG|, or equivalently, that |SGB| = |SBG|.

To do this, it suffices to show that |SGB| + |SBB| = |SBG| + |SBB|. Let C be the set
of placements of a figure with k edges that has a cycle; note that any such placement
must be both locally bad and globally bad, since any graph with a cycle contains a
broken-circuit under any edge-ordering. We thus have that C ⊂ SBB. Because of this,
Theorem 31 implies that |SGB| + |SBB| − |C| = |SBG| + |SBB| − |C|, and therefore that
|SGB|+ |SBB| = |SBG|+ |SBB|, as desired.

We can now prove the following generalization of Theorem 26.

Theorem 33. Fix d, and let χn(x) be the chromatic polynomial of T dn . Let qk(n
d) be the

coefficient of xn
d−k in χn(x). Then (−1)kqk(n

d) is eventually a polynomial in nd, and this
sequence of polynomials is of binomial-type.
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Proof. By Whitney’s broken-circuit theorem, qk(n
d) is equal to (−1)k times the number

of k-element subsets of T dn which contain no broken-circuit. By choosing a natural edge-
ordering for T dn and using the notation above, (−1)kqk(n

d) is just the number of ways to
place a globally good figure with k edges on T dn . By Corollary 32, this is equal to the
number of ways to place a locally good figure with k edges on T dn . By choosing S to be
the set of locally good connected figures, it follows from Theorem 21 that this number is
indeed a polynomial in nd and that these polynomials form a sequence of binomial-type,
as desired.

Acknowledgements

This research was performed as part of MIT’s Undergraduate Research Opportunities
Program (UROP) in the summer of 2011. The author would like to thank Prof. Richard
Stanley for introducing him to this problem and mentoring him over the course of this
project.

References

[1] G. A. Baker, Linked-Cluster Expansion for the Graph-Vertex Coloration Problem,
J. Comb. Theory 10 (1971), 217–231.

[2] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, 1982.

[3] N. L. Biggs, Chromatic and thermodynamic limits, J. Phys. A 8 (1975), L110–L112.

[4] S.C. Chang, R. Shrock, General structural results for Potts partition functions on
lattice strips, Phys. A 316 (2002), 335–379.

[5] S.C. Chang, R. Shrock, Tutte polynomials and related asymptotic limiting functions
for recursive families of graphs, Adv. in Appl. Math. 32 (2004), 44–87.

[6] D. Kim, I.G. Enting, The limit of chromatic polynomials, J. Comb. Theory B 26
(1979), 327–336.

[7] E. H. Lieb, Residual entropy of square ice, Phys. Rev. 162 (1967), 162–172.

[8] J. F. Nagle, A new subgraph expansion for obtaining coloring polynomials for graphs,
J. Comb. Theory 10 (1971), 42–59.

[9] R. P. Stanley, Enumerative Combinatorics, Cambridge University Press, Vol. 1, ed.
2, 2011.

[10] G.-C. Rota, D. Kahaner, A. Odlyzko, Finite Operator Calculus, J. Math. Anal. Appl.
42 (1973), 685–760.

[11] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932),
572–579.

the electronic journal of combinatorics 21(1) (2014), #P1.43 17


