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Abstract

A function g, with domain the natural numbers, is a quasi-polynomial if there
exists a period m and polynomials p0, p1, . . . , pm−1 such that g(t) = pi(t) for t ≡
i mod m. Quasi-polynomials classically – and “reasonably” – appear in Ehrhart the-
ory and in other contexts where one examines a family of polyhedra, parametrized
by a variable t, and defined by linear inequalities of the form a1x1+· · ·+adxd 6 b(t).

Recent results of Chen, Li, Sam; Calegari, Walker; and Roune, Woods show a
quasi-polynomial structure in several problems where the ai are also allowed to vary
with t. We discuss these “unreasonable” results and conjecture a general class of
sets that exhibit various (eventual) quasi-polynomial behaviors: sets St ⊆ Nd that
are defined with quantifiers (∀, ∃), boolean operations (and, or, not), and statements
of the form a1(t)x1 + · · · + ad(t)xd 6 b(t), where ai(t) and b(t) are polynomials in
t. These sets are a generalization of sets defined in the Presburger arithmetic. We
prove several relationships between our conjectures, and we prove several special
cases of the conjectures. The title is a play on Eugene Wigner’s “The unreasonable
effectiveness of mathematics in the natural sciences”.

Keywords: Ehrhart polynomials; generating functions; Presburger arithmetic;
quasi-polynomials; rational generating functions

1 Reasonable Ubiquitousness

In this section, we survey classical appearances of quasi-polynomials (though Section 1.3
might be new even to readers already familiar with Ehrhart theory). In Section 2, we

∗With apologies to Wigner [18] and Hamming [9]. Extended abstract appeared in FPSAC 2013.
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survey some recent results where the appearance of quasi-polynomials is more surprising.
In Section 3, we make several conjectures generalizing these “unreasonable” results. We
state theorems relating these conjectures and state theorems proving certain cases. In
particular, we conjecture that any family of sets St – defined with quantifiers (∀, ∃),
boolean operations (and, or, not), and statements of the form a(t) ·x 6 b(t) (where a(t) ∈
Z[t]d, b(t) ∈ Z[t], and · is the standard dot product) – exhibits eventual quasi-polynomial
behavior, as well as rational generating function behavior. Of course, reasonable people
may disagree on what is unreasonable; the title is a play on Eugene Wigner’s “The
unreasonable effectiveness of mathematics in the natural sciences” [18]. All proofs are
contained in Section 4. We use bold letters such as x = (x1, . . . , xd) to indicate multi-
dimensional vectors.

Definition 1.1. A function g : N → Q is a quasi-polynomial if there exists a period m
and polynomials p0, p1, . . . , pm−1 ∈ Q[t] such that

g(t) = pi(t), for t ≡ i mod m.

Example 1.2.

g(t) =

⌊
t+ 1

2

⌋
=

{
t
2

if t even,
t+1

2
if t odd,

is a quasi-polynomial with period 2.

This example makes it clear that the ubiquitousness of quasi-polynomials shouldn’t be
too surprising: anywhere there are floor functions, quasi-polynomials are likely to appear.

Floor functions can also create multivariate quasi-polynomials:

Example 1.3. Let g(s, t) = b(t+ s+ 1)/2c. The behavior of g depends on the parity of
t + s + 1. Let Λ be the lattice (0, 2)Z + (1, 1)Z, the set of (s, t) ∈ Z2 for which t + s + 1
is odd. Then the lattice coset (0, 1) + Λ is the set for which t+ s+ 1 is even, and

g(s, t) =

{
t+s
2

if (s, t) ∈ Λ,
t+s+1

2
if (s, t) ∈ (0, 1) + Λ.

This motivates the definition of a multivariate quasi-polynomial; “residues modulo a
period” are replaced by “cosets of a lattice”:

Definition 1.4. g : Nn → Q is a (multivariate) quasi-polynomial if there exists an n-
dimensional lattice Λ ⊆ Zn, a set {λi} of coset representatives of Zn/Λ, and polynomials
pi ∈ Q[t] such that

g(t) = pi(t), for t ∈ λi + Λ.

We will generally be concerned with integer-valued quasi-polynomials, those quasi-
polynomials whose range lies in Z. Note that Examples 1.2 and 1.3 demonstrate that
such quasi-polynomials may still require rational coefficients.
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t 6 s 6 2t 0 6 2t 6 s 0 6 s 6 t

Figure 1: Polyhedra defined in Example 1.7 for various (s, t) ∈ N2.

1.1 Ehrhart theory

Perhaps the most well-studied quasi-polynomials are the Ehrhart quasi-polynomials :

Theorem 1.5 (Ehrhart [8]). Suppose P is a polytope (bounded polyhedron) whose vertices
have rational coordinates. Let g(t) be the number of integer points in tP , the dilation of
P by a factor of t. Then g(t) is a quasi-polynomial, with period the smallest m such that
mP has integer coordinates.

Example 1.6. Let P be the triangle with vertices (0, 0),
(

1
2
, 0
)
, and

(
1
2
, 1

2

)
. Then

g(t) = #(tP ∩ Z2) =

(
bt/2c+ 1

)(
bt/2c+ 2

)
2

=

{
(t+ 2)(t+ 4)/8 if t even,

(t+ 1)(t+ 3)/8 if t odd,
(1)

is a quasi-polynomial with period 2.

Writing tP from this example as{
(x, y) ∈ R2 : 2x 6 t, y − x 6 0, −y 6 0

}
suggests a way to generalize this result: for t ∈ Nn, let St be the set of integer points,
x ∈ Zd, in a polyhedron defined with linear inequalities of the form a · x 6 b(t), where
a ∈ Zd and b(t) ∈ Z[t] is linear.

Example 1.7. Let

Ss,t =
{

(x, y) ∈ Z2 : 2y − x 6 2t− s, x− y 6 s− t, x, y > 0
}
.

For a fixed (s, t), Ss,t is the set of integer points in a polyhedron in R2. As (s, t)
varies, the “constant” term of these inequalities change, but the coefficients of x and y
do not; in other words, the normal vectors to the facets of the polyhedron do not change,
but the facets move “in and out”. In fact, they can move in and out so much that the
combinatorial structure of the polyhedron changes. Figure 1 shows the combinatorial
structure for different (s, t) ∈ N2. Using various methods, Beck [3] and Verdoolaege and
Woods [17] compute that
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g(s, t) = |Ss,t| =


s2

2
− b s

2
cs+ s

2
+ b s

2
c2 + b s

2
c+ 1 if t 6 s 6 2t,

st− b s
2
cs− t2

2
+ t

2
+ b s

2
c2 + b s

2
c+ 1 if 0 6 2t 6 s,

t2

2
+ 3t

2
+ 1 if 0 6 s 6 t.

In this example, the function g(s, t) is a quasi-polynomial, at least on pieces of
parameter-space for which the combinatorial type is constant.

Definition 1.8. A function g : Nn → Q is a piecewise quasi-polynomial if there exists a
finite partition

⋃
i(Pi∩Nn) of Nn with Pi polyhedra (which may not all be full-dimensional)

and there exist quasi-polynomials gi such that

g(t) = gi(t) for t ∈ Pi ∩ Nn.

Sturmfels [15] effectively proved the following generalization of Ehrhart theory:

Theorem 1.9. Let St be the set of integer points, x ∈ Zd, in a polyhedron defined with
linear inequalities of the form a · x 6 b(t), where a ∈ Zd and b(t) ∈ Z[t] is linear. Then
g(t) = |St| is a piecewise quasi-polynomial.

Remark 1.10. Sections 2 and further will predominantly be concerned with univariate
functions. Being a univariate piecewise quasi-polynomial g : N → Q is equivalent to
eventually being a quasi-polynomial; that is, there exists a T such that for all t > T , g(t)
agrees with a quasi-polynomial.

1.2 Generating functions

Many classical proofs of Ehrhart’s Theorem (Theorem 1.5) use generating functions. To
prove that a function g(t) is a quasi-polynomial of period m, it suffices (see Stanley [14,
Section 4.4]) to prove that the Hilbert series

∑
t∈N g(t)yt can be written as a rational

function of the form
p(y)

(1− ym)d
,

where p(y) is a polynomial of degree less than md. For g(t) = |tP ∩Z2| with P the triangle
in Example 1.6, we can see that∑

t∈N

g(t)yt = 1 + y + 3y2 + 3y3 + 6y4 + · · · = 1 + y

(1− y2)3
. (2)

Indeed, these proofs of Ehrhart’s Theorem start by considering the generating function∑
t∈N,s∈tP∩Zd xsyt (where xs = xs11 · · ·x

sd
d ) and substituting in x = (1, . . . , 1) to get the

Hilbert series. For P in Example 1.6,∑
t∈N,s∈tP∩Z2

xsyt = 1 + y + (1 + x1 + x1x2)y2 + (1 + x1 + x1x2)y3 + (1 + · · ·+ x2
1x

2
2)y4 + · · ·

=
1 + y

(1− y2)(1− x1y2)(1− x1x2y2)
,
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as can be checked by expanding as a product of infinite geometric series. Substituting
x1 = x2 = 1 yields the Hilbert series in (2).

Definition 1.11. We call any generating function or Hilbert series a rational generating
function if it can be written in the form

p(x)

(1− xb1) · · · (1− xbk)
,

where p is a Laurent polynomial over Q and bi ∈ Zd are lexicographically positive (first
nonzero entry is positive).

While we will generally be assuming that the generating functions are for subsets of
Nd, we need bi to be lexicographically positive rather than simply in Nd\{0} for examples
like the following:

Example 1.12. Let S =
{

(x, y) ∈ N2 : x+ y = 1000
}

. While y1000 + xy999 + · · ·+ x1000

is a legitimate rational generating function, it makes more sense to write it as

y1000 − x1001y−1

1− xy−1
.

Remark 1.13. Having b lexicographically positive guarantees that 1/(1− xb) = 1 + xb +
x2b + · · · is the Laurent series convergent on a neighborhood of a

.
= (e−ε, e−ε

2
, . . . , e−ε

d
),

for sufficiently small ε, as follows: Let bi > 0 be the first nonzero coordinate of b. Then

ln
(
ab
)

= −εb1 − ε2b2 − · · · − εdbd = −εibi − · · · − εdbd.

For sufficiently small ε, the −εibi term dominates, and ln(ab) < 0. This implies that
|ab| < 1, and indeed 1 + xb + x2b + · · · does converge on a neighborhood of a.

Remark 1.14. If b is lexicographically negative, then we may instead write

1

1− xb
=

1

1− xb
· −x−b

−x−b
=
−x−b

1− x−b

with −b lexicographically positive.

Several classic results start with a simple generating function, and use it to find quasi-
polynomial behavior.

Definition 1.15. Given a1, . . . , ad ∈ Nn, the vector partition function g : Nn → N is
defined by

g(t) = #{(λ1, . . . , λd) ∈ Nd : t = λ1a1 + · · ·+ λdad},

that is, the number of ways to partition the vector t into parts taken from {ai}.
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The generating function
∑

t∈Nn g(t)yt can be written as∑
t∈Nn

g(t)yt =
1

(1− ya1) · · · (1− yad)
,

obtained by rewriting the rational function as a product of infinite geometric series. The
following is proved by Sturmfels [15]:

Theorem 1.16. Any vector partition function is a piecewise quasi-polynomial.

See Beck [3] for a self-contained explanation utilizing the partial fraction expansion of
the rational function. For example, if a1 = 1 and a2 = a3 = 2, then the vector partition
function is encoded by the generating function

1

(1− y)(1− y2)2
=

1 + y

(1− y2)3
.

We saw previously that this generating function corresponds to the quasi-polynomial in
Example 1.6.

In Section 3, we will use a different generating function: for fixed t, examine the
generating function

∑
s∈tP∩Zd xs.

Example 1.17. In the triangle from Example 1.6, this gives us(
1 + x1 + x2

1 + · · ·+ x
bt/2c
1

)
+
(
x1 + x2

1 + · · ·+ x
bt/2c
1

)
x2 + · · ·+

(
x
bt/2c
1

)
x
bt/2c
2 .

We can write this more compactly as∑
s∈tP∩Zd

xs =
1

(1− x1)(1− x1x2)
− x

bt/2c+1
1

(1− x1)(1− x2)
+

x
bt/2c+1
1 x

bt/2c+2
2

(1− x2)(1− x1x2)
, (3)

which we can verify directly by expanding the fractions as products of geometric series.
Given this generating function, we can count the number of integer points in tP by
substituting in x = (1, . . . , 1). Substituting x1 = x2 = 1 into (3), we see that (1, 1)
is a pole of these fractions. Fortunately, getting a common denominator and applying
L’Hôpital’s rule to find the limit as x1 and x2 approach 1 will work, and it is evident that
the differentiation involved in L’Hôpital’s rule will yield a quasi-polynomial in t as the
result; careful calculation will show that it matches (1).

In general, Proposition 2.11 of Verdoolaege and Woods [17] or Theorem 4.4 of Barvinok
and Pommersheim [2] both give an algorithmic version of the following theorem:

Theorem 1.18. For t ∈ Zn, let St be the set of integer points, x ∈ Zd, in a polyhedron
defined with linear inequalities of the form a · x 6 b(t), where a ∈ Zd and b(t) ∈ Z[t] is
linear. Then there is a finite decomposition of Zn into pieces of the form P ∩ Zn (with P
a polyhedron) such that, considering the t in each piece separately,∑

s∈St

xs =
m∑
i=1

εi
xui(t)

(1− xdi1) · · · (1− xdiki )
,

where εi = ±1, the coordinates of ui are linear quasi-polynomials in t, and dij ∈ Zd \{0}.
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Substituting x = (1, . . . , 1), using L’Hôpital’s rule as necessary, recovers Theorem 1.9.
A key step in proving Theorem 1.18 is Brion’s Theorem [5] (see Chapter 9 of Beck and

Robins [4] for a proof and discussion), which reduces computing generating functions for
polyhedra to computing generating functions for cones:

Theorem 1.19 (Brion’s Theorem). Let P be a polyhedron in the nonnegative orthant
Rd

>0. For each vertex v of P , define its vertex cone Cv to be the set of points in Rd

satisfied by those inequalities defining P that are equalities at v. Then∑
s∈P∩Zd

xs =
∑

v a vertex of P

∑
s∈Cv∩Zd

xs.

Note that, for different vertices v, the
∑

s∈Cv∩Zd
xs may converge on different neighbor-

hoods. If they are written as rational functions, Remarks 1.13 and 1.14 fix this problem.

Example 1.20. For S =
{

(x, y) ∈ N2 : x + y = 1000
}

from Example 1.12, the two
vertex cones are

C1 =
{

(0, 1000) + λ(1,−1) : λ > 0
}

and C2 =
{

(1000, 0) + λ(−1, 1) : λ > 0
}
,

and so∑
s∈S

xs =
∑

s∈C1∩Z2

xs +
∑

s∈C2∩Z2

xs =
(
y1000 + xy999 + · · ·

)
+
(
x1000 + x999y + · · ·

)
=

y1000

1− xy−1
+

x1000

1− x−1y
=
y1000 − x1001y−1

1− xy−1
,

as seen in Example 1.12.

Example 1.21. The triangle from Example 1.6 has three vertex cones. Brion’s Theorem
applied to tP ∩ Z2 is illustrated in (3), with Remark 1.14 already applied.

Remark 1.22. Note that Brion’s Theorem is often stated for polyhedra in Rd (unrestricted
to the nonnegative orthant). If the polyhedron contains straight lines, one must be more
careful when talking about generating functions. For example, the set Z has generating
function

· · ·+ x−1 + 1 + x1 + x2 + · · · = x−1

1− x−1
+

1

1− x
= − 1

1− x
+

1

1− x
= 0.

See, for example, Barvinok [1] for more details. In this paper, we will constrain the sets
that we are interested in to be nonnegative, to avoid issues like this.

1.3 Presburger arithmetic

So far, our examples have been integer points in polyhedra. A key property of such
sets is that they can be defined without quantifiers. However, even for sets defined with
quantifiers, we end up with reasonable appearances of quasi-polynomials.
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Definition 1.23. A Presburger formula is a boolean formula with variables in N that
can be written using quantifiers (∃,∀), boolean operations (and, or, not), and linear
(in)equalities in the variables. We write a Presburger formula as F (u) to indicate the free
variables u (those not associated with a quantifier).

Presburger [11] (see [12] for a translation) examined this first order theory and proved
it is decidable.

Example 1.24. Given t ∈ N, let

St =
{
x ∈ N : ∃y ∈ N, 2x+ 2y + 3 = 5t and t < x 6 y

}
.

We can compute that

St =

{{
t+ 1, t+ 2, . . . ,

⌊
5t−3

4

⌋}
if t odd, t > 3,

∅ else.

This set has several properties, cf. Section 3:

1. The set of t such that St is nonempty is {3, 5, 7, . . .}. This set is eventually periodic.

2. The cardinality of St is

St =

{⌊
5t−3

4

⌋
− t if t odd, t > 3,

0 else,

which is eventually a quasi-polynomial of period 4.

3. When St is nonempty, we can obtain an element of St with the function x(t) = t+1,
and x(t) is eventually a quasi-polynomial.

3a. More strongly, when St is nonempty, we can obtain the maximum element of St
with the function x(t) = b(5t− 3)/4c, and x(t) is eventually a quasi-polynomial.

4. We can compute the generating function

∑
s∈St

xs =

{
xt+1 + xt+2 + · · ·+ xb(5t−3)/4c if t odd, t > 3,

0 else,

=


xt+1 − xb(5t−3)/4)c+1

1− x
if t odd, t > 3,

0 else.

We see that, for fixed t, this generating function is a rational function. Considering
each residue class of t mod 4 separately, the exponents in the rational function can
eventually be written as polynomials in t.
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Versions of these properties always hold for sets defined in Presburger arithmetic. For
example, Woods [19] gave several properties of Presburger formulas that hold even for
sets defined with multivariate parameters, t ∈ Nn:

Theorem 1.25 (from Theorems 1 and 2 of Woods [19]). Suppose F (s, t) is a Presburger
formula, with s and t collections of free variables. Then

• g(t) = #
{
s ∈ Nd : F (s, t)

}
is a piecewise quasi-polynomial,

•
∑

s,t:F (s,t) xsyt is a rational generating function, and

•
∑

t∈Nn g(t)yt is a rational generating function.

Property 4 from Example 1.24 can be proved in general by using Theorem 1.25 to
write

∑
s,t:F (s,t) xsyt as a rational generating function and applying Theorem 3.6. The

proof of Theorem 3.3 then shows that all of the other properties follow.

2 Unreasonable Ubiquitousness

We now turn to the inspiration for this paper. Three recent results exhibit quasi-
polynomial behavior, in situations that seem “unreasonable”. In particular, all three
involve sets St defined by inequalities of the form a(t) · x 6 b(t), where a(t) is a polyno-
mial in t; that is, the normal vectors to the facets change as t changes. First we give an
example showing that, unlike in Section 1, it is now important that we restrict to only
one parameter, t.

Example 2.1. Define Ss,t =
{

(x, y) ∈ N2 : sx+ ty = st
}

. Then Ss,t is an interval in Z2

with endpoints (t, 0) and (0, s), and

|Ss,t| = gcd(s, t) + 1.

There is no hope for simple quasi-polynomial behavior here, as the cardinality depends
on the arithmetic relationship of s and t.

2.1 Three results

This first result most directly generalizes Ehrhart Theory. Chen, Li, and Sam [7] prove
that, if St is the set of integer points in a polytope defined by inequalities of the form
a(t) · x 6 b(t), then |St| is eventually a quasi-polynomial.

Theorem 2.2 (Theorem 2.1 of Chen et al. [7]). Let A(t) be an r × d matrix and b(t)
be a column vector of length r, all of whose entries are in Z[t]. Assume Pt = {x ∈ Rd :
A(t)x 6 b(t)} is eventually a bounded set (a polytope). Then |Pt ∩ Zd| is eventually a
quasi-polynomial.
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Figure 2: The twisting square Pt from Example 2.3.

(a) Pt for t = 1, . . . , 5. (b) Integer hull of P5.

Example 2.3. Let Pt be the “twisting square” in Figure 2a, defined by

Pt =
{

(x, y) ∈ R2 : |2x+ (2t− 2)y| 6 t2 − 2t+ 2, |(2− 2t)x+ 2y| 6 t2 − 2t+ 2
}
.

Then |Pt ∩ Z2| is given by the quasi-polynomial

|Pt ∩ Z2| =

{
t2 − 2t+ 2 if t odd,

t2 − 2t+ 5 if t even.

Note that Theorem 2.2 can be equivalently phrased (Theorem 1.1 of Chen et al. [7])
using equalities A(t)x = b(t), where x is constrained to be nonnegative, or it can be
phrased (Theorem 1.4 of Chen et al. [7]) by listing the vertices of Pt as rational functions
of t.

Calegari and Walker [6] were similarly concerned with the integer points in polyhedra
defined by A(t)x 6 b(t). Rather than counting |Pt ∩Zd|, they wanted to find the vertices
of the integer hull of Pt, that is, the set of vertices of the convex hull of Pt ∩ Zd.

Theorem 2.4 (Theorem 3.5 of Calegari and Walker [6]). Let vi(t) be vectors in Qd whose
coordinates are rational functions of size O(t), and let Pt be the convex hull of the vi(t).
Then there exists a modulus m and functions pij : N → Zd with polynomial coordinates
such that, for 0 6 i < m and for sufficiently large t ≡ i mod m, the set of vertices of the
integer hull of Pt is {pi1(t),pi2(t), . . . ,piki(t)}.

Example 2.5. Consider the twisting square, Pt, from Example 2.3. When t is even, the
vertices of Pt are integers, so the vertices of the integer hull are simply the vertices of Pt:(

±t− 2

2
,± t

2

)
and

(
± t

2
,∓t− 2

2

)
.
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When t is odd, the integer hull of Pt is an octagon (pictured in Figure 2b for t = 5) with
vertices (

0,±t− 1

2

)
,

(
±t− 3

2
,±t− 1

2

)
,

(
±t− 1

2
, 0

)
,

(
±t− 1

2
,∓t− 3

2

)
.

Theorem 2.4 could be similarly phrased using facet definitions of the polyhedra, rather
than vertex definitions. That the vertices are O(t) (grow no faster that ct for some constant
c) is important for the proof, though Calegari and Walker conjecture that the theorem
still holds without this restriction.

A third recent result concerns the Frobenius number.

Definition 2.6. Given a1, . . . , ad ∈ N, let S be the semigroup generated by the ai, that
is,

S = {a ∈ N : ∃λ1, . . . , λd ∈ N, a = λ1a1 + · · ·+ λdad}.

If the ai are relatively prime, then S contains all sufficiently large integers, and the
Frobenius number is defined to be the largest integer not in S.

Now we let ai = ai(t) vary with t. Roune and Woods [13] prove that, if the ai(t) are
linear functions of t, then the Frobenius number is eventually a quasi-polynomial, and
they conjecture that this is true if the ai(t) are any polynomial functions of t:

Theorem 2.7. Let ai(t) ∈ Z[t] be linear and eventually positive. Then the set of t such
that the ai(t) are relatively prime is eventually periodic, and, for such t, the Frobenius
number is eventually given by a quasi-polynomial.

Example 2.8. Consider a1(t) = t, a2(t) = t+ 3. These are relatively prime exactly when
t ≡ 1, 2 mod 3. Since there are only two generators, a well-known formula (seemingly due
to Sylvester [16]) gives that the Frobenius number is

a1a2 − a1 − a2 = t2 + t− 3.

Note that Theorem 2.7 utilizes sets defined with quantifiers; Presburger arithmetic
seems a good place to look for generalizations encompassing these three results.

2.2 Common tools

Each of these three results has their own method for proving quasi-polynomial behavior,
but there are several common tools needed. Chen et al. [7] and Calegari and Walker [6]
independently prove Theorems 2.9 through 2.13, Chen et al. [7] prove Theorem 2.14, and
Calegari and Walker [6] prove Theorem 2.15.

Theorem 2.9 (Division Algorithm). Given f(t), g(t) integer-valued polynomials,

1. if deg g > 0, there exist integer-valued quasi-polynomials q1(t) and r1(t) such that
f(t) = q1(t)g(t) + r1(t), with deg r1 < deg g, and
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2. if g 6= 0, there exist integer-valued quasi-polynomials q2(t) and r2(t) such that f(t) =
q2(t)g(t) + r2(t), with eventually 0 6 r2(t) < |g(t)|.

These are both useful results, and only slightly different. For example, suppose f(t) =
2t − 3 and g(t) = t. Then Statement 1 is a traditional polynomial division algorithm:
f = 2g+−3. Statement 2, however, is a numerical division algorithm: f = 1g+(t−3), and
the remainder t− 3 is between 0 and g as long as t > 3. In other words, if we have found
q1 and r1, but we eventually have r1(t) < 0, then we should use quotient q2 = q1− sgn(g)
and remainder r2 = |g|+ r1 instead, as eventually 0 6 |g(t)|+ r1(t) < |g(t)|.

The main subtlety in proving Statement 1 of this theorem is the following: Suppose
f(t) = t2+3t and g(t) = 2t+1. Then the leading coefficient of g does not divide the leading
coefficient of f , and the traditional polynomial division algorithm would produce quotients
that are not integer-valued. Instead, we look at t modulo the leading coefficient of g; for
example, if t is odd, so t = 2s+1 for some s ∈ N, substituting gives f(2s+1) = 4s2+10s+3
and g(2s+ 1) = 4s+ 3, and now the leading term does divide evenly.

The division algorithm in hand, one can prove some stronger results:

Theorem 2.10 (Euclidean Algorithm and gcds). Let f and g be integer-valued quasi-
polynomials. Then there exists integer-valued quasi-polynomials p(t), q(t), and d(t) such
that gcd

(
f(t), g(t)

)
= d(t) and d(t) = p(t)f(t) + q(t)g(t).

This is obtained by repeated applications of the division algorithm.

Example 2.11.

gcd(2t+ 1, 5t+ 6) = gcd(t+ 4, 2t+ 1) = gcd(7, t+ 4) =

{
7 if t ≡ 3 mod 7,

1 else.

Similarly, repeated application of the Euclidean algorithm can produce the Hermite or
Smith normal forms of matrices. We won’t define those here, but they are important, for
example, in producing a basis for lower-dimensional sublattices of Zd (see Newman [10]).

Theorem 2.12 (Hermite/Smith Normal Forms). Given a matrix A(t) with integer-valued
quasi-polynomial entries, the Hermite and the Smith Normal forms, as well as their as-
sociated change-of-basis matrices, also have quasi-polynomial entries.

The following theorem is obvious, but is repeatedly used.

Theorem 2.13 (Dominance). Suppose f, g ∈ Q[t] with f 6= g. Then either eventually
f(t) > g(t) or eventually g(t) > f(t).

Repeated use of this property, for example, shows that the combinatorial structure of
a polyhedron Pt eventually stabilizes, when Pt is defined by A(t)x 6 b(t):

Theorem 2.14 (Stabilization). Let A(t) be an r × d matrix and b(t) be a column vector
of length r, all of whose entries are in Z[t], and let Pt = {x ∈ Rd : A(t)x 6 b(t)}. For
sufficiently large t, the set of vertices of Pt are given by rational functions vi(t), and the
combinatorial type of Pt (the subsets of vertices lying on common faces) is constant.
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Note that the vertices in this result are rational functions of t: a vertex will be a point
where several of the inequalities are equalities, i.e., the solution to some A′(t)x = b′(t),
where A′(t) is a full-rank d×d matrix of polynomials in t. Solving for x using the adjunct
matrix of A′ will result in x(t) given as a rational function of t.

For large t, the behavior of a rational function is predictable:

Theorem 2.15 (Rounding). Let f(t), g(t) ∈ Z[t]. Then f(t)/g(t) converges to a polyno-
mial, and bf(t)/g(t)c is eventually a quasi-polynomial.

3 Conjectures

Let St, for t ∈ N, be a family of subsets of Nd. We now discuss some properties that it
would be nice (though unreasonable!) for such sets to have, cf. Example 1.24.

Property 1: The set of t such that St is nonempty is eventually periodic.

This is the weakest of the properties we will discuss, but an important one, as it is related
to the decision problem – “Is there a solution?”

Property 2: There exists a function g : N → N such that, if St has finite cardinality,
then g(t) = |St|, and g(t) is eventually a quasi-polynomial. The set of t such that
St has finite cardinality is eventually periodic.

This is the property found in Theorem 2.2, where St is the set of integer points in a
polytope defined by inequalities of the form a(t) · x 6 b(t). Theorems 2.4 and 2.7, on the
other hand, are not about counting points but about finding points:

Property 3: There exists a function x : N → Nd such that, if St is nonempty, then
x(t) ∈ St, and the coordinate functions of x are eventually quasi-polynomials. The
set of t such that St is nonempty is eventually periodic.

This function x(t) acts as a certificate that the set is nonempty. But we may want to go
further and pick out particular elements of St:

Property 3a: Given c ∈ Zd \ {0}, there exists a function x : N → Nd such that, if
maxy∈St c ·y exists, then it is attained at x(t) ∈ St, and the coordinate functions of
x are eventually quasi-polynomials. The set of t such that the maximum exists is
eventually periodic.

This corresponds to Theorem 2.7, where we want to find the Frobenius number, the
maximum element of the complement of the semigroup. On the other hand, we may want
to list multiple elements of the set:
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Property 3b: Fix k ∈ N. There exist functions x1, . . . ,xk : N→ Nd such that, if |St| >
k, then x1(t), . . . ,xk(t) are distinct elements of St, and the coordinate functions of
xi are eventually quasi-polynomials. The set of t such that |St| > k is eventually
periodic.

If there is a uniform bound on |St|, then this property can be used to enumerate all
elements of St, for all t. This is the content of Theorem 2.4. Property 2 is about counting
all solutions and Properties 3/3a/3b are about obtaining specific solutions, and so they
seem somewhat orthogonal to each other. The following property, we shall see, unifies
them:

Property 4: There exists a period m such that, for t ≡ i mod m,

∑
s∈St

xs =

∑ni

j=1 αijx
qij(t)

(1− xbi1(t)) · · · (1− xbiki
(t))

,

where αij ∈ Q, and the coordinate functions of qij,bij : N → Zd are polynomials
with the bij(t) lexicographically positive.

For what sets St can we hope for these properties to hold? Here is a candidate:

Definition 3.1. A family of sets St is a parametric Presburger family if they can be
defined over the natural numbers using quantifiers, boolean operations, and inequalities
of the form a(t) · x 6 b(t), where b ∈ Z[t] and a ∈ Z[t]d.

We conjecture that these properties do, in fact, hold for any parametric Presburger
family:

Conjecture 3.2. Let St be a parametric Presburger family. Then Properties 1, 2, 3, 3a,
3b, and 4 all hold.

Note that one can define a family St of subsets of Zd rather than of Nd, but care must
be taken with generating functions; see Remark 1.22.

As evidence that Property 4 is interesting, we will show that it generalizes both 2 and
3/3a/3b:

Theorem 3.3. Let St be any family of subsets of Nd. We have the following implications
among possible properties of St.

2
�%

4

'/

+3

,4

3a +3 3 +3 1

3b

<D

As a final relationship between these properties, we note that, for the class of para-
metric Presburger families, 3, 3a, and 3b are equivalent:

the electronic journal of combinatorics 21(1) (2014), #P1.44 14



Theorem 3.4. Suppose all parametric Presburger families have Property 3. Then all
parametric Presburger families have Properties 3a and 3b.

Theorem 3.4 is a weaker implication than Theorem 3.3, which holds for a single family
St in isolation. To prove that 3 “implies” 3a and 3b, on the other hand, we will need to
create new families S ′t using additional quantifiers or boolean operators, and we need to
know that these new families still have Property 3.

Finally, we give evidence that these properties might actually hold. We can show that
they all hold for two broad classes of parametric Presburger families:

Theorem 3.5. Suppose St is a parametric Presburger family such that either

(a) St is defined without using any quantifiers, or

(b) the only inequalities used to define St are of the form a · x 6 b(t), where b(t) is a
polynomial (that is, the normal vectors to the hyperplanes must be fixed).

Then Properties 1, 2, 3, 3a, 3b, and 4 all hold.

We isolate a piece of the proof of Part (b), in order to point out that Property 4 is a
weaker property than we might hope for, but seems to be as strong a property as we can
get. Indeed, we might hope that

∑
t∈N,s∈St

xsyt is a rational generating function. Theorem
1.25 shows that this is true for sets defined in the normal Presburger arithmetic, and the
following theorem shows that this implies Property 4.

Theorem 3.6. Suppose Sp, for p ∈ Nn, is a family of subsets of Nd. If
∑

p∈Nn,s∈Sp
xsyp

is a rational generating function, then there is a finite decomposition of Nn into pieces
of the form P ∩ Zn (with P a polyhedron) such that, considering the p in each piece
separately, ∑

s∈Sp

xs =
m∑
i=1

εi
xqi(p)

(1− xbi1) · · · (1− xbiki )
,

where εi = ±1, bij ∈ Zd are lexicographically positive, and the coordinate functions of
qi : Nn → Zd are linear quasi-polynomials in p.

In general, however,
∑

t∈N,s∈St
xsyt will not be a rational generating function:

Example 3.7. Let St be the set {(s1, s2) ∈ N2 : ts1 = s2}. Then∑
s∈St

xs = 1 + x1x
t
2 + x2

1x
2t
2 + · · · = 1

1− x1xt2

is a rational generating function with exponents depending on t, so Property 4 is satisfied.
Nevertheless, ∑

t∈N,s∈St

xsyt =
1

1− x1

+
y

1− x1x2

+
y2

1− x1x2
2

+ · · ·

cannot be written as a rational function. To prove that it cannot be so written, note
that the set

{
(s1, s2, t) : s ∈ St

}
cannot be written as a finite union of sets of the form

P ∩ (λ + Λ), where P is a polyhedron, λ ∈ Z3 and Λ ⊆ Z3 is a lattice; Theorem 1 of
Woods [19] then implies that

∑
t∈N,s∈St

xsyt is not a rational generating function.
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4 Proofs

Because of dependencies among these proofs, we present them out of numerical order.
We first prove Theorem 3.6. Then we prove that Property 4 holds for the sets given in
Theorem 3.5. Next we prove Theorem 3.3. The rest of the properties in Theorem 3.5 are
an immediate corollary. Finally, we prove Theorem 3.4.

4.1 Proof of Theorem 3.6

We want to compute the coefficient of yp as a rational generating function in x. We can
reduce to computing the coefficient of yp for a single term of the form

xqyr

(1− xc1yd1) · · · (1− xckydk)
, (4)

where q, ci ∈ Nd, r,di ∈ Nn, and ci,di are nonzero: indeed, by the assumption that∑
p∈Nn,s∈Sp

xsyp is a rational generating function, it can be written as a linear combination

of such terms as (4), so we could examine each such term separately and then apply the
linear combination.

Let p ∈ Nn be fixed. Expanding (4) as a product of geometric series, we see that we
get a term xsyp exactly when there exist λi ∈ N such that

p = r +
∑
i

λidi and s = q +
∑
i

λici. (5)

Define the parametric polyhedron

Qp =
{
λ ∈ Rk : λi > 0 and p = r +

∑
i

λidi

}
.

Then (5) tells us that, for every λ ∈ Qp ∩Zk, we will get a monomial xq+
∑

i λiciyp in the
expansion of (4), and therefore∑

s∈Sp

xs =
∑

λ∈Qp∩Zk

xq+
∑

i λici .

Theorem 1.18 implies that there is a finite decomposition of Zn into pieces of the form
P ∩ Zn (with P a polyhedron) such that, considering the p in each piece separately,

∑
λ∈Qp∩Zk

zλ =
m∑
i=1

εi
zui(p)

(1− zbi1) · · · (1− zbiki )
,

where εi = ±1, the coordinates of ui are linear quasi-polynomials in p, and bij ∈
Zd are lexicographically positive. Substituting zi = xci and multiplying by xq yields∑

λ∈Qp∩Zk xq+
∑

i λici . This is the desired generating function,
∑

s∈Sp
xs, in the form re-

quired by the theorem.
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4.2 Proof of Property 4 in Theorem 3.5

Part (a): We want to apply a key idea of Chen et al. [7, Lemma 3.2], but first we need to
simplify by reducing our problem (that of showing Property 4 holds for any quantifier-free
Presburger formula) to simpler ones.

Let the set of inequalities used in the quantifier-free Presburger formula be given by
{ai(t) · x 6 bi(t)}, 1 6 i 6 n. Our domain Nd is partitioned into (at most) 3n pieces, as
follows: to create a piece, for each i, choose either ai(t) · x < bi(t), ai(t) · x > bi(t), or
ai(t) · x = bi(t), and let a piece of the partition be the set of x satisfying the conjunction
of these (in)equalities. Within each piece, either all points will satisfy the Presburger
formula or all will fail to satisfy the Presburger formula. It suffices to prove Property 4
for one of these pieces that satisfy the Presburger formula, because the final generating
function is simply a sum of the generating functions of these pieces. These pieces are
polyhedra (since we are looking at integer points, we may replace the open ai(t) ·x < bi(t)
with the closed ai(t) · x 6 bi(t)− 1), so it suffices to prove Property 4 for polyhedra, Pt,
defined with equations of the form a(t) · x 6 b(t).

We still can’t apply Chen et al. [7], because that will only apply to bounded polyhedra.
For sufficiently large t, Theorem 2.14 shows that the combinatorics of the vertex cones
of Pt stabilize. Since Theorem 1.19 (Brion’s Theorem) gives that the generating function
for Pt is the sum of the generating functions for these vertex cones, it suffices to prove
Property 4 for such cones

Kt = v(t) + cone
(
u1(t), . . . ,un(t)

)
=
{
v(t) +

∑
i

λiui(t) : λi > 0
}

where the coordinates of v are rational functions and the coordinates of ui are polynomials.
Now take Πt to be the fundamental parallelepiped of Kt, that is,

Πt =
{
v(t) +

∑
i

λiui(t) : 0 6 λi < 1
}
,

and note that ∑
s∈Kt∩Zd

xs =

∑
s∈Πt∩Zd xs

(1− xu1(t)) · · · (1− xun(t))
.

It therefore suffices to prove Property 4 for Πt, which is a bounded polyhedron, so Chen
et al. [7] finally applies, as follows. Given k, define the map ψ : Zd(k+1) → Zd, taking
s̄ = (s̄ij)16i6d,06j6k to s = (si)16i6d, given by(

ψ(s̄)
)
i

= s̄ikt
k + · · ·+ s̄i1t+ s̄i0.

Then Lemma 3.2 of Chen et al. [7] states that, for some k and some Rt ⊆ Zd(k+1),
ψ : Rt → Πt ∩ Zd is a bijection, and furthermore that Rt can be defined as the disjoint
union of the integer points in polyhedra which satisfy particular linear inequalities of the
form

ā · x̄ 6 b(t),
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where x̄ = (x̄ij)ij, b(t) is linear, and ā no longer depends on t. Then Theorem 1.18 shows
that (for sufficiently large t so that the combinatorial structure of this set stabilizes)∑

s̄∈Rt

x̄s̄ =
m∑
i=1

εi
x̄ui(t)

(1− x̄di1) · · · (1− x̄diki )
, (6)

where ε = ±1, the coordinates of ui are linear quasi-polynomials in t, and dij ∈ Zd(k+1)

are nonzero. Substituting x̄ij = xt
j

i into a monomial x̄s̄ gives∏
i,j

x
s̄ijt

j

i

∏
i

xs̄ikt
k+···+s̄i1t+s̄i0

i = xψ(s̄).

Therefore substituting x̄ij = xt
j

i into (6) shows that
∑

s∈Πt∩Zd xs has Property 4, as
desired.

Part (b): Let the set of inequalities used in the Presburger formula be given by {ai ·x 6
bi(t)}, 1 6 i 6 n. For the moment, replace each bi(t) with a single variable pi, so that we
have a Presburger formula F (x,p), defined using inequalities ai · x 6 pi. Let

Sp =
{
x ∈ Nd : F (x,p)

}
,

so that St = S(b1(t),...,bn(t)).
Theorem 1.25 implies that

∑
p∈Nn,s∈Sp

xsyp is a rational generating function. Theorem
3.6 then implies that there is a finite decomposition of Nn into pieces of the form P ∩ Zn
(with P a polyhedron), such that, considering the p in each piece separately,∑

s∈Sp

xs =
m∑
i=1

εi
xqi(p)

(1− xdi1) · · · (1− xdiki )
,

where εi = ±1, dij ∈ Zd are lexicographically positive, and the coordinate functions of
qi are linear quasi-polynomials in p. For sufficiently large t, the vector

(
b1(t), . . . , bn(t)

)
eventually stays in one of these pieces of the decomposition. Therefore, we may substitute
p =

(
b1(t), . . . , bn(t)

)
into the appropriate generating function. This proves Property 4

for St.

4.3 Proof of Theorem 3.3

2 ⇒ 1 : Suppose g(t) = |St| is eventually a quasi-polynomial. Let m be a period and pi(t)
be polynomials such that, eventually, g(t) = pi(t) for t ≡ i mod m. Let I be the indices i
such that pi is not identically 0. For i ∈ I, we have |St| = pi(t) > 0 for sufficiently large
t, so, eventually, St is nonempty if and only if t mod m is in I.

3 ⇒ 1 : Property 1 is in the definition of Property 3.

3a ⇒ 3 : Take c = (−1, . . . ,−1). Then St ⊆ Nd is nonempty if and only if c · y has
a maximum on St. By property 3a, the set of such t is eventually periodic, and when
nonempty, 3a gives an element x(t) ∈ St.
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3b ⇒ 3 : Property 3 is Property 3b with k = 1.

4 ⇒ 2 : Let f(x) =
∑

s∈St
xs. Let us examine a particular residue class, so that, for

sufficiently large t ≡ i mod m, we have

f(x) =

∑
j αjx

qj(t)

(1− xb1(t)) · · · (1− xbk(t))
,

where αj ∈ Q, and the coordinate functions of qj,bj : N → Nd are polynomials. When
f is defined at (1, . . . , 1), f(1, . . . , 1) = |St| < ∞, and when f has a pole at (1, . . . , 1),
St has infinite cardinality. So we attempt to compute limx→1 f(x), letting xj → 1 one
variable at a time, repeatedly using L’Hôpital’s rule.

We will repeatedly take partial derivatives of the numerator (and denominator) and
set some of the xj to 1. At each point, we will see that the numerator (and denominator)
will look like

g(x̄) =
∑
j

βj(t)x̄
rj(t), (7)

where βj and the coordinate functions of rj are polynomials, and x̄ is a subset of the
variables of x. Our base case, f , certainly has numerator and denominator of this form.

Note that, at each step, we may simplify (7) so that the rj are distinct polynomials and
the βj are not identically zero. Then for sufficiently large t, x̄rj(t) are distinct monomials
and βj(t) are nonzero. Therefore g(x̄) is either a nonzero polynomial in x̄ for all sufficiently
large t or identically zero for all sufficiently large t.

Starting with x1, we substitute x1 = 1 into the numerator and denominator of f . If
both are eventually nonzero, we continue to x2. If the numerator is eventually nonzero but
the denominator is eventually zero, then (1, . . . , 1) is eventually a pole of f(x), meaning
that for sufficiently large t ≡ i mod m, |St| is infinite. If the numerator is eventually
zero but the denominator is eventually nonzero, then |St| = f(1, . . . , 1) = 0. If both the
numerator and denominator are eventually 0, then we apply L’Hôpital’s rule, taking the
derivatives of the numerator and denominator with respect to x1. Our new numerator
and denominator will continue having the form (7).

We continue with x1 in this way, and then continue with x2, etc., until we have either
established that |St| is infinite for all t ≡ i mod m, zero for all t ≡ i mod m, or we
have eliminated all of the variables among x. In this last case, the numerator and the
denominator of the result are still in the form (7), so we must have |St| = g(t)/h(t), where
g, h ∈ Q[t]. To conclude, we need to show that g(t)/h(t) must actually be a polynomial.
Indeed, this follows from the fact that g(t)/h(t) must always be an integer, |St|: Apply
the standard polynomial division algorithm in Q[t] so that

g(t)

h(t)
= q(t) +

r(t)

h(t)
,

with deg r < deg h. Let n be a common multiple of the denominators of the coefficients of
q(t), so that nq(t) is always an integer. Since ng(t)/h(t) is always an integer, nr(t)/h(t)
must also always be an integer. Since deg r < deg h, eventually |nr(t)/h(t)| < 1, so
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the only possibility is that r = 0. Then |St| = g(t)/h(t) = q(t) is a polynomial (for
t ≡ i mod m), and we have proven Property 2.

4 ⇒ 3a :
Without loss of generality, assume c1 6= 0 (otherwise, reorder the variables). Define

the map φ : Nd → Z× Nd−1 by

φ(x) = (−c · x, x2, x3, . . . , xd).

Since c1 6= 0, this map is injective, and therefore the map is bijective from St onto its
image φ(St).

Assume that c · x has a maximum on St. Then φ(St) has a unique lexicographically
minimal element; this is the element we will give a function for. Given

∑
s∈St

xs as in

Property 4, substitute in x1 = y−c11 and xi = y−ci1 yi for 2 6 i 6 d; note that

xs11 · · ·x
sd
d becomes y−c1s11

(
y−c2s21 ys22

)
· · ·
(
y−cdsd1 ysdd

)
= y−c·s1 ys22 · · · y

sd
d = yφ(s),

and so the generating function becomes

∑
p∈φ(St)

yp =

∑n
j=1 αjy

rj(t)

(1− yd1(t)) · · · (1− ydk(t))
. (8)

Restricting our attention to sufficiently large t and a particular residue class of t mod m,
we have αj ∈ Q \ {0} and the coordinate functions of rj, dj, are polynomials. We may
assume that dj(t) are lexicographically positive, by taking sufficiently large t so that the
signs of the coordinate functions do not change, and then using Remark 1.14.

Since we are assuming that c · x has a maximum, M , on St, we see that all p ∈ φ(St)
have (−M, 0, 0, . . . , 0) 6 p coordinatewise. Therefore

∑
p∈φ(St)

yp is a Laurent power

series convergent on a neighborhood of y = (e−ε, e−ε
2
, . . . , e−ε

d
), for any ε > 0. Expanding

the right-hand side of (8) as a product of geometric series also gives a Laurent power series
convergent on a neighborhood of y = (e−ε, e−ε

2
, . . . , e−ε

d
), for sufficiently small ε (since the

dj are lexicographically positive; see Remark 1.13). Therefore they must be identical as
Laurent power series expansions. But the lexicographically minimal term of the expanded
right-hand side is clear: for sufficiently large t, it is the unique lexicographical minimum
among the rj(t), 1 6 j 6 n. Inverting φ yields an element of St maximizing c · x.

Finally, we will show that, c · x either eventually always achieves a maximum or
eventually always doesn’t (at least for this residue class of t mod m; this implies that the
set of all t for which it achieves a maximum is eventually periodic). If the maximum
exists, we have found it above; call it M(t), which is a polynomial. Define the set Rt =
{x ∈ Nd : c · x > M(t) + 1}. Then c · x attains a maximum on St if and only if St ∩ Rt

is empty.
Given two Laurent power series f(s) =

∑
s∈Zd psx

s and g(x) =
∑

s∈Zd qsx
s (ps, qs ∈

Q) convergent on a neighborhood of some (e−ε, e−ε
2
, . . . , e−ε

d
), define their Hadamard

product, f ? g, to be
∑

s∈Zd psqsx
s. We are given that f(x)

.
=
∑

s∈St
xs has Property 4.
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By Theorem 1.18, g(x)
.
=
∑

s∈Rt
xs also has Property 4. In particular, their numerator

and denominator have the form ∑
j

βj(t)x
rj(t), (9)

where βj and the coordinate functions of rj are polynomials. Note that f?g =
∑

s∈St∩Rt
xs;

we want to decide whether this is identically zero. We will show that f ? g also has
numerator and denominator in the form (9), in which case (for sufficiently large t) it is
identically zero if and only if its numerator is identically zero.

Since the Hadamard product is a bilinear operator, it suffices to show that

xq(t)

(1− xb1(t)) · · · (1− xbk(t))
?

xr(t)

(1− xd1(t)) · · · (1− xd`(t))

has numerator and denominator of the form (9). What is the coefficient of xs in this
Hadamard product? Expanding the first rational function as a product of geometric
series, the coefficient of xs in it is

#λ ∈ Nk : q(t) + λ1b1(t) + · · ·+ λkbk(t) = s,

and similarly the coefficient of xs in the second is #µ ∈ N` : r + µ · d(t) = s. Therefore
the coefficient of xs in the Hadamard product is the product of these, that is,

#(λ,µ) ∈ Nk × N` : q + λ · b(t) = r + µ · d(t) = s. (10)

There are no quantifiers in this expression (10), so it is of the form in Part (a) of
Theorem 3.5, meaning we proved in Section 4.2 that the generating function∑

s∈Nd,λ∈Nk,µ∈N` satisfying (10)

xsyλzµ

satisfies Property 4. Substituting y = 1, z = 1 gives the Hadamard product; following
the proof of 4⇒ 2 (which may involve L’Hôpital’s rule and therefore differentiation of the
numerator and denominator), we see that the Hadamard product indeed has numerator
and denominator in the form (9). Therefore f ?g is either identically zero (and hence c ·x
is always maximized on St) or eventually never zero (and hence c · x does not achieve a
maximum). This is true for every residue class of t, so, all together, the set of t for which
a maximum is achieved will eventually be periodic.

4 ⇒ 3b : Since we have proven that 4⇒ 3a⇒ 3, we can get a single element y1(t) ∈ St,
when St is nonempty. Now we can continue inductively:

∑
s∈St\{y1(t)} x

s =
(∑

s∈St
xs
)
−

xy1(t) can be written as a rational function of the appropriate form, so St \ {y1(t)} has
Property 4. Thus we can use Property 3 to get another element y2(t) and also conclude
that the set of t for which |St| > 2 (which is the set of t for which |St\{y1(t)}| is nonempty)
is eventually periodic. Continue inductively.
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4.4 Proof of Theorem 3.5

Section 4.2 proved Property 4 for the sets given in Theorem 3.5. The other properties
follow immediately using Theorem 3.3.

4.5 Proof of Theorem 3.4

Assume that Property 3 holds for all parametric Presburger families. For t ∈ N, let
St = {x ∈ Nd : F (x, t)} be a parametric Presburger family defined by formula F . We
must show that 3a and 3b hold for St.

To prove that 3a holds, let c ∈ Zd \ {0} be given. Define a new set S ′t to be the
solutions x to

F (x, t) ∧ ∀y
(
F (y, t)⇒ c · y 6 c · x

)
.

These are exactly the set of elements x maximizing c ·x in St (and it is empty if there is no
such x). By Property 3, the set of t such that S ′t is nonempty is eventually periodic, and
there exists an eventually quasi-polynomial x(t) such that x(t) ∈ S ′t when it is nonempty.
This is the desired x(t).

To prove that 3b holds, we induct on k. The base case k = 1 is Property 3 and so is
true. Inductively applying Property 3 to the sentence

F (x, t) ∧
(
x 6= x1(t)

)
∧ · · · ∧

(
x 6= xk−1(t)

)
yields new elements, and this formula has solutions exactly when |St| > k, so the set of
such t is eventually periodic, by Property 3.
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