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Abstract

Let d > 3 be a fixed integer. We give an asympotic formula for the expected
number of spanning trees in a uniformly random d-regular graph with n vertices.
(The asymptotics are as n → ∞, restricted to even n if d is odd.) We also obtain
the asymptotic distribution of the number of spanning trees in a uniformly random
cubic graph, and conjecture that the corresponding result holds for arbitrary (fixed)
d. Numerical evidence is presented which supports our conjecture.

Keywords: spanning trees; random regular graphs; small subgraph conditioning

1 Introduction

In this paper, d denotes a fixed integer which is at least 2 (and usually at least 3). All
asymptotics are taken as n→∞, with n restricted to even integers when d is odd.

The number of spanning trees in a graph, also called the complexity of the graph,
is of interest for a number of reasons. The complexity of a graph is an evaluation of
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the Tutte polynomial (see for example [14]). The Merino-Welsh conjecture [10] relates
the complexity of a graph with two other graph parameters, namely, the number of
acyclic orientations and the number of totally cyclic orientations of a graph. (Noble and
Royle [13] recently proved that the Merino-Welsh conjecture is true for series-parallel
graphs.) The complexity of a graph also plays a role in the theory of electrical networks
(see for example [12]).

We are interested in the number of spanning trees in random regular graphs. The first
significant result in this area is due to McKay [7], who proved that for d > 3, the nth root
of the number of spanning trees of a random d-regular graph with n vertices converges to

(d− 1)d−1

(d2 − 2d)d/2−1
(1)

as n→∞, with probability one. An alternative proof of this was later given by Lyons [6,
Example 3.16].

McKay [8, Theorem 4.2] gave an asymptotic expression for the expected number of
spanning trees in a random graph with specified degrees, up to some unknown constant.
His result holds when the maximum degree is bounded and the average degree is bounded
away from 2 (independently of n). When specialised to regular degree sequences, [8,
Theorem 4.2] states that the expected number of spanning trees in Gn,d is asymptotic to

cd
n

(
(d− 1)d−1

(d2 − 2d)d/2−1

)n

, (2)

for some unknown constant cd.
Other work on asymptotics for the number of spanning trees has focussed on circulant

graphs, grid graphs and tori (see for example [2] and the references therein).
Our first result, Theorem 1.1, provides the value of the constant cd from (2), proving

that

cd = exp

(
6d2 − 14d+ 7

4(d− 1)2

)
(d− 1)1/2

(d− 2)3/2
.

For our second result we investigate the distribution of the number of spanning trees
in random d-regular graphs using the small subgraph conditioning method, and obtain
the asymptotic distribution in the case of cubic graphs, presented in Theorem 1.2. We
provide partial calculations for arbitrary fixed degrees, which lead us to conjecture that
the corresponding result holds in general (see Conjecture 1.3).

In order to precisely state our main results we must introduce some notation and
terminology.

1.1 Notation and our main results

Let N denote the natural numbers (which includes 0). For integers n, k let (n)k denote
the falling factorial n(n − 1) · · · (n − k + 1). Square brackets without subscripts denote
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extraction of coefficients of a generating function. We use 1(·) to denote both the indicator
variable of an event and the characteristic function of a set (the particular set will appear
as a subscript). We use standard asymptotic notation throughout, with the exception
that  indicates convergence in distribution of a sequence of random variables. (We use

this notation rather than
d→ to avoid overloading the symbol “d”, which we use for the

degree of the graph.)
Let Gn,d denote the uniform model of d-regular simple graphs on the vertex set

{1, . . . , n}. Define the random variable YG to be the number of spanning trees in a
random G ∈ Gn,d.

Clearly YG is identically zero if n > 3 and d < 2. A 2-regular graph has a spanning
tree if and only if it is connected (that is, forms a Hamilton cycle), in which case it has
exactly n spanning trees. Hence the distribution of YG can be inferred from [15, Equation
(11)]. For the remainder of the paper we assume that d > 3.

Our first result gives an asymptotic expression for the expectation of YG.

Theorem 1.1. Let d > 3 be a fixed integer. Then

EYG ∼ exp

(
6d2 − 14d+ 7

4(d− 1)2

)
(d− 1)1/2

n(d− 2)3/2

(
(d− 1)d−1

(d2 − 2d)d/2−1

)n

.

This theorem is proved at the end of Section 3.
Next, for fixed d > 3 and for each positive integer j, define

λj(d) =
(d− 1)j

2j
, ζj(d) = −2(d− 1)j − 1

(d− 1)2j (3)

Our second theorem gives the asymptotic distribution of the number of spanning trees
in the case of cubic graphs.

Theorem 1.2. Let Zj ∼ Poisson(λj(3)), with each Zj independent. Consider the number
of spanning trees in a random cubic graph, normalized by the expectation given in Theorem
1.1 for d = 3. The asymptotic distribution of this quantity is given by

YG
EYG

 
∞∏
j=3

(1 + ζj(3))Zj e−λj(3)ζj(3).

This theorem is proved in Section 4. We conjecture that an analogous result holds for
arbitrary (fixed) d > 3.

Conjecture 1.3. Let d > 3 be fixed. Then

YG
EYG

 
∞∏
j=3

(1 + ζj(d))Zj e−λj(d)ζj(d),

where Zj ∼ Poisson(λj(d)) and each Zj is independent.

We present numerical evidence which supports this conjecture in Section 4.1.
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1.2 Plan of attack

From now on, we omit explicit mention of d in the constants ζj = ζj(d) and λj = λj(d)
from (3).

As is standard in this area, most of our calculations will be performed in the uniform
probability space Pn,d of pairings (also called the configuration model [1, 9, 15]. Let d and
n be positive integers such that dn is even. Consider a set of dn prevertices distributed
evenly into n sets, called buckets. (We prefer the terminology “prevertices” to “points”.)
A pairing is a partition of the prevertices into dn/2 sets of size 2, called pairs. Then

|Pn,d| = #P (dn) =
(dn)!

(dn/2)! 2dn/2
∼
√

2

(
dn

e

)dn/2
, (4)

using Stirling’s formula.
By contracting the prevertices in each bucket to a vertex, each pairing projects to

a labelled d-regular multigraph, with loops permitted. Let Ωn,d denote the set of such
multigraphs, and denote the projection of a pairing P by G(P ). (We will occasionally
informally refer to “partial” pairings, where only a subset of the prevertices are paired.
The projection of a partial pairing is defined in the same way.)

Each G ∈ Gn,d is the projection of (d!)n different pairings (permuting the prevertices
in each bucket), so we can recover the uniform model Gn,d from Pn,d by conditioning on
the event that the projected multigraph of a random pairing is simple.

We will apply the small subgraph conditioning method in the form given by Janson [4,
Theorem 1].

Theorem 1.4. Let λj > 0 and ζj > −1, j = 1, 2, . . . , be constants. Suppose that for
each n we have a sequence X = (X1, X2, X3, . . .) of non-negative integer valued random
variables and a random variable Y with EY 6= 0 (at least for large n). Further suppose
the following conditions are satisfied:

(A1) For m > 1, (X1, . . . , Xm)  (Z1, . . . , Zm), where Zj are independent Poisson ran-
dom variables with means λj;

(A2) For any m > 0, ρ ∈ Nm,

E[Y |X1 = ρ1, . . . , Xm = ρm]

EY
−→

m∏
j=1

(1 + ζj)
ρje−λjζj ;

(A3)
∞∑
j=1

λjζ
2
j <∞;

(A4)
EY 2

(EY )2 → exp

(
∞∑
j=1

λjζ
2
j

)
.
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Then
Y

EY
 W :=

∞∏
j=1

(1 + ζj)
Zje−λjζj . (5)

Moreover, this and the convergence in (A1) hold jointly.

We also need a related lemma:

Lemma 1.5. ([4, Lemma 1]) Let λ′j > 0, j = 1, 2, . . . , be constants. Suppose that (A1)
holds and that Y > 0. Suppose:

(A2′) For any m > 0, ρ ∈ Nm,

E
[
Y
∏m

j=1(Xj,n)ρj

]
EY

−→
m∏
j=1

(
λ′j
)ρj .

Then (A2) holds with λj(1 + ζj) = λ′j for all positive integers j.

We now define the random variables Xj and Y to which these results will be applied.
For each j > 1, let γj : Ωn,d → N give the number of cycles of length j in a multigraph.

(A loop is a 1-cycle, and a pair of edges on the same two vertices is a 2-cycle.) Then the
random variable Xj = γj◦G is the number of j-cycles in the projection of a random pairing
P ∈ Pn,d. Write X = (Xj)j>1 for the sequence of all cycle counts. It is well known [1]
that for any positive integer m, the random variables X1, . . . , Xm are asymptotically
independent Poisson random variables, and that the mean of Xj tends to the quantity
λj = λj(d) given in (3). Hence Condition (A1) of Theorem 1.4 holds.

Let τ : Ωn,d → N be the function which counts spanning trees in d-regular multigraphs.
Define YG as the restriction of τ to Gn,d, and define Y = τ ◦ G. Then, YG is the number
of spanning trees in a random G ∈ Gn,d, as in Section 1.1. Y is accordingly the number
of spanning trees in the projection of a random pairing P ∈ Pn,d. We will investigate the
asymptotic distribution of YG through analysis of Y .

In Section 2 we obtain an asymptotic formula for the expected value of Y . In Section 3
we analyse the interaction of the number of spanning trees with short cycles, establishing
that (A2) holds for λj and ζj as given in (3). This enables us to prove Theorem 1.1 and to
prove that (A3) holds. Then in Section 4 we investigate the second moment of Y . We can
prove that Condition (A4) holds when d = 3, leading to a proof of Theorem 1.2. Using
our partial calculations for general degrees, we provide numerical evidence that strongly
supports Conjecture 1.3.

2 Expected number of spanning trees

In this section we compute EY . Let Tn denote the set of labelled trees on n vertices, so
that |Tn| = nn−2 by Cayley’s formula (see for example, [11]).
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Recalling the definition of Y , we have

EY =
∑

P∈Pn,d

1

|Pn,d|
τ(G(P )),

and hence
|Pn,d| EY =

∑
P∈Pn,d

∑
T∈Tn

MT,P , (6)

where MT,P is the number of ways to embed T into the multigraph G(P ). (When G(P )
is simple, MT,P is zero or one).

Now, we want to condition on the degree of each of the n vertices in T . Define the set
of possible degree sequences

Dn =

{
δ ∈ Nn :

n∑
j=1

δj = 2(n− 1)

}
.

We can decompose |Pn,d| EY as∑
δ∈Dn

∑
T∈Tn

1(T ∼ δ)
∑

P∈Pn,d

MT,P , (7)

where T ∼ δ denotes the event that vertex j has degree δj in T , for all j = 1, . . . n.
To evaluate the innermost sum in (7), fix some δ ∈ Dn and some T ∈ Tn with

T ∼ δ. We need to count the number of pairings that include T , with the embedding
of T identified. That is, if for some pairing P , the tree T can be embedded in G(P ) in
multiple ways, then we count each different way separately.

Now, exactly δj of the prevertices in bucket j must contribute to T , and there are (d)δj
ways to choose and order these prevertices. So, there are

n∏
j=1

(d)δj

ways to pair up the n− 1 edges corresponding to a copy of T . Then, there are

dn− 2(n− 1) = (d− 2)n+ 2

prevertices remaining, which can be paired in #P ((d− 2)n+ 2) ways. This yields

|Pn,d|EY = #P ((d− 2)n+ 2)
∑
δ∈Dn

n∏
j=1

(d)δj

∑
T∈Tn

1(T ∼ δ). (8)

The inner sum in (8) is the number of trees with degree sequence δ, which is the multi-
nomial (

n− 2

δ1 − 1, . . . , δn − 1

)
=

(n− 2)!∏n
j=1(δj − 1)!

. (9)
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(See for example Moon [11, Theorem 3.1].)
Hence

|Pn,d| EY = (n− 2)! #P (nd− 2(n− 1))
∑
δ∈Dn

n∏
j=1

(d)δj
(δj − 1)!

.

It follows that the total number of ways to choose a spanning tree on n vertices and choose
a partial pairing that projects to that tree is

(n− 2)!
∑
δ∈Dn

n∏
j=1

(d)δj
(δj − 1)!

= (n− 2)!
[
x2(n−1)

]( ∞∑
j=1

(d)j
(j − 1)!

xj

)n

= (n− 2)!
[
x2(n−1)

] (
dx(1 + x)d−1

)n
= (n− 2)! dn

(
(d− 1)n

n− 2

)
. (10)

Hence, by Stirling’s approximation and (4) we conclude that

|Pn,d|EY = (n− 2)! #P (nd− 2(n− 1)) dn
(

(d− 1)n

n− 2

)
∼
√

2(d− 1)1/2

n(d− 2)3/2

(
d(d− 2)(d− 1)d−1

(
n

(d− 2)e

)d/2)n

. (11)

It follows that

EY =
(n− 2)! #P (nd− 2(n− 1))

#P (nd)
dn
(

(d− 1)n

n− 2

)
∼ (d− 1)1/2

n(d− 2)3/2

(
(d− 1)d−1

(d2 − 2d)d/2−1

)n

. (12)

Hence for d > 3 and n sufficiently large, we have EY 6= 0.

3 Interaction with short cycles

Recall that Xj = γj ◦G is the number of cycles of length j in the projection of a random
pairing P ∈ Pn,d. For some fixed m > 0, ρ ∈ Nm, let Xρ =

∏m
j=1(Xj)ρj . In this section we

will compute an asymptotic formula for E[Y Xρ]/EY , in the form required by Condition
(A2′).

We have

E[Y Xρ] =
∑

P∈Pn,d

1

|Pn,d|
τ(G(P ))

m∏
j=1

(γj(G(P )))ρj .

Note that
m∏
j=1

(γj(G(P )))ρj
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is the number of ways to choose, for each j ∈ {1, . . . ,m}, an ordered set of ρj cycles of
length j. This will result in an ordered set of

|ρ| =
m∑
j=1

ρj

cycles.
We make the decomposition

m∏
j=1

(γj(G(P )))ρj = γ(0)
ρ + γ′ρ,

where γ
(0)
ρ is the number of ordered sets of cycles in which each cycle is disjoint, and γ′ρ is

the number of ordered sets in which some vertices are shared between multiple cycles. We
can further decompose γ′ρ by the structure of the interaction between the cycles. That is,
according to the multigraph that is the union of the cycles, and the specification of which
edges of this union belong to which cycle. This expresses γ′ρ as a sum of terms γ

(j)
ρ . The

number of terms J in this decomposition depends on ρ, but is O(1) as n→∞.
Define

E(j) =
∑

P∈Pn,d

τ(G(P )) γ(j)
ρ ,

so that we have |Pn,d|E[Y Xρ] =
∑J

j=1E
(j).

We proceed to calculate E(0). As is standard when applying this method (see for
example, [5, Theorem 9.6]), E[Y Xρ] is asymptotically dominated by E(0) (the contribution
due to disjoint cycles). See Lemma 3.1 for some justification for this fact.

Let Cn,j be the set of all j-cycles on the vertex set {1, . . . , n}, and define the Cartesian
product

Cn,ρ =
m∏
j=1

Cρjn,j.

Each R ∈ Cn,ρ is an ordered set of |ρ| cycles. We use the notation Rj,k for the kth cycle
of length j in R. Next, define

Rn,ρ = {R ∈ Cn,ρ : the cycles in R are pairwise disjoint}.

Similarly to (6), we have

E(0) =
∑

R∈Rn,ρ

∑
T∈Tn

∑
P∈Pn,d

M(T,R),P ,

where M(T,R),P is the number of ways to embed the tree T and the cycles in R into the
multigraph G(P ).

We further condition on the edge intersection between the embedding of T and the
cycles in R. We use a binary sequence of length j to encode the intersection of an j-cycle
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with a spanning tree. Picking an arbitrary start vertex and direction for the cycle, if the
kth edge of the cycle is to be included in the intersection, then the kth element of the
corresponding sequence is one; otherwise it is zero. All sequences q ∈ {0, 1}j represent
possible intersections, except the sequence (1, . . . , 1), because a tree contains no cycles.

Define the set of all possible intersection sequences for a cycle of length j, by

Ij = {0, 1}j \ (1, . . . , 1).

Also, define the Cartesian product

Qρ =
m∏
j=1

Iρjj .

So, for each R ∈ Rn,ρ, specifying some Q ∈ Qρ fully specifies the intersection between the
cycles in R and a tree T .

We have
E(0) =

∑
Q∈Qρ

∑
R∈Rn,ρ

∑
T∈Tn

∑
P∈Pn,d

M(T,R,Q),P , (13)

where M(T,R,Q),P is the number of ways to embed T and the cycles in R in P , such that
the intersection between the embedding of T and the cycle Rj,k is consistent with Qj,k,
for j = 1, . . . ,m and k = 1, . . . , ρj.

Fixing Q ∈ Qρ, we will now evaluate the innermost triple sum in (13). Consider the
following process:

1. Choose some R ∈ Rn,ρ.

2. Choose a partial pairing that projects to R.

3. Extend this to a pairing of a spanning tree consistent with Q.

4. Pair the remaining prevertices arbitrarily.

We will find that the number of ways to complete each step is independent of the other
steps. Then, E(0) is a product of the number of ways to complete each step, summed over
all Q ∈ Qρ.

First let nρ =
∑m

j=1 jρj be the total number of vertices in each R ∈ Rn,ρ. The number
of ways to choose the vertices for some R ∈ Rn,ρ is(

n

nρ

)
and the number of different arrangements of disjoint cycles on those vertices is

nρ!∏m
j=1(jχ(j))ρj

,
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where jχ(j) is the size of the automorphism group of a j-cycle:

χ(j) =

{
1 for j 6 2

2 for j > 2.

That is, the number of ways to complete Step 1 is

s
(0)
1 =

n!

(n− nρ)!
∏m

j=1(jχ(j))ρj
.

Next, the number of ways to complete Step 2 is

s
(0)
2 =

m∏
j=1

(
χ(j)(d(d− 1))j

2

)ρj

.

Note for future reference that we have

s
(0)
1 s

(0)
2 ∼ nnρ

m∏
j=1

(
(d(d− 1))j

2j

)ρj

. (14)

Next, we count the number of ways to extend this pairing to a tree T consistent with Q.
We do this by constructing a new irregular pairing model Pn,ρ from the prevertices still
unpaired after Step 2. Recall that Q describes a union of disjoint paths; for each of these
paths, combine the unpaired prevertices remaining in each constituent vertex of the path
to form a super-bucket. If the path has k vertices then the resulting super-bucket has
k(d− 2) prevertices. Let |Q| be the number of super-buckets formed in this way, so the
total number of buckets in Pn,ρ is n′ := n− nρ + |Q|.

Now, consider an extension of a pairing of cycles from Step 2, to a (partial) pairing
of the edges of a tree T consistent with Q, as per Step 3. The pairs from this extension
correspond uniquely to a (partial) pairing P ′ in the pairing model Pn,ρ. By the construc-
tion of Pn,ρ, the projection T ′ = G(P ′) of this pairing is simply T with some subpaths
contracted to single vertices. Since contracting edges of a tree cannot create cycles, G(P ′)
is itself a (spanning) tree. Similarly, every pairing of a tree in Pn,ρ corresponds to an
extension of a pairing of cycles to a pairing of a tree in Pn,d consistent with Q. So the

number of ways s
(0)
3 to complete Step 3 equals the number of ways to choose and pair up

a spanning tree in Pn,ρ.
We will perform this count as in Section 2, by conditioning on the degree in T ′ of

each bucket in Pn,ρ. Put an arbitrary ordering on the |Q| super-buckets, and let dj be
the number of prevertices in the jth super-bucket. For a degree sequence δ, let |δ| be its
degree sum. Define the sets

DQ =
{
δ′ ∈ N|Q| : δ′j 6 dj for all j

}
,

Dδ′ =

{
δ ∈ Nn−nρ :

n−nρ∑
j=1

δj = 2(n′ − 1)− |δ′|

}
.
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The set DQ contains all possible degree-in-T ′ sequences for the |Q| super-buckets. For
some δ′ ∈ DQ, the set Dδ′ contains all possible degree sequences for the n− nρ remaining
ordinary buckets. So, we have

s
(0)
3 =

∑
δ′∈DQ

∑
δ∈Dδ′

∑
T ′∈Tn′

1(T ′ ∼ (δ′, δ))
∑

P ′∈Pn,ρ

MT ′,P ,

where T ′ ∼ (δ′, δ) denotes the event that the super-buckets have degree-in-T ′ sequence
δ′ and the remaining vertices have degree-in-T ′ sequence δ. Proceeding as before, after
fixing some (T ′, δ′, δ), there are (

n−nρ∏
j=1

(d)δj

) |Q|∏
j=1

(dj)δ′j


ways to pair the edges of T ′. There are

(n′ − 2)!(∏n−nρ
j=1 (δj − 1)!

)(∏|Q|
j=1

(
δ′j − 1

)
!
)

trees with T ′ ∼ (δ′, δ), by (9). So, we have

s
(0)
3 =

∑
δ′∈DQ

Aδ′

|Q|∏
j=1

(dj)δ′j(
δ′j − 1

)
!
, (15)

where

Aδ′ = (n′ − 2)!
∑
δ∈Dδ′

n−nρ∏
j=1

(d)δj
(δj − 1)!

= (n′ − 2)!
[
x2(n′−1)−|δ′|

](
dx(1 + x)d−1

)n−nρ
= (n′ − 2)! dn−nρ

(
(d− 1)(n− nρ)

2(n′ − 1)− |δ′| − (n− nρ)

)
∼ (d− 2)2|Q|−|δ′|−5/2 (d− 1)1/2

nnρ−|Q|+2

(
(d− 2)d−2

d(d− 1)d−1

)nρ(
d(d− 1)d−1n

e(d− 2)d−2

)n

. (16)

Finally, for Step 4 there are dn − 2nρ − 2(n′ − 1) = (d− 2)n − 2(|Q| − 1) prevertices
remaining, which can be paired in

s
(0)
4 = #P ((d− 2)n− 2(|Q| − 1)) ∼

√
2

(
(d− 2)n

e

)(d/2−1)n

((d− 2)n)1−|Q| (17)

ways.
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Combining (11), (14), (15), (16) and (17), we have

E(0)

|Pn,d|EY
=
∑
Q∈Qρ

s
(0)
1 s

(0)
2 s

(0)
3 s

(0)
4

|Pn,d|EY

→

(
m∏
j=1

(
(d(d− 1))j

2j

)ρj)

×
∑
Q∈Qρ

∑
δ′∈DQ

(d− 2)|Q|−|δ
′|

(
(d− 2)d−2

d(d− 1)d−1

)nρ |Q|∏
j=1

(dj)δ′j(
δ′j − 1

)
!
. (18)

As is standard in these arguments, the only significant contribution to E[Y Xρ] comes
from E(0), where the cycles do not overlap. For completeness we sketch a proof of this
below.

Lemma 3.1. E[Y Xρ] is dominated by the contribution from E(0). That is,

E[Y Xρ]

EY
∼ E(0)

|Pn,d|EY
.

Proof. We can estimate general E(j) with some slight modifications to the above calcu-
lations. We would need a different R′n,ρ ⊆ Cn,ρ that contains all possible ways to embed
an ordered set of cycles with a particular union U into the vertex set {1, . . . , n}. The
intersection between a spanning tree and the cycles in some R ∈ Rn,ρ would then be a
subforest of U , so it would be more complicated to explicitly define a set Qρ that encodes
all possibilities for the intersection. However, the number of possible intersections is still
independent of n.

Using the same 4 steps, the decomposition E(j) = s
(j)
1 s

(j)
2 s

(j)
3 s

(j)
4 is still valid. Let |U |

and ‖U‖ be the number of vertices and edges in the multigraph U , respectively. Carefully

adjusting the calculations for E(0), we have s
(j)
1 /s

(0)
1 = O

(
n|U |−nρ

)
, s

(j)
2 /s

(0)
2 = O(1) and

s
(j)
3 /s

(0)
3 = O(1). For Step 4 there would be dn− 2‖U‖ − 2(n′ − 1) prevertices remaining,

so s
(j)
4 /s

(0)
4 = O

(
nnρ−‖U‖

)
.

We conclude that E(j)/E(0) = O
(
n|U |−‖U‖

)
. Any non-disjoint union between distinct

cycles has more edges than vertices, so the lemma is proved.

We now want to to express (18) in the form required by (A2′). So, we consider each
cycle independently. For a sequence q ∈ Ij, let q[k] be the number of paths with k vertices
in the intersection encoded by q. So, for Q ∈ Qρ we have

|Q| =
m∑
j=1

ρj∑
`=1

j∑
k=1

Qj,`[k].

Also, let |q| =
∑j

k=1 q[k] be the total number of paths in the intersection encoded by q.
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Now, recall that if the jth super-bucket was collapsed from a path of length k, then
dj = k(d− 2). Also recall that nρ =

∑m
j=1 jρj and note that

(d− 2)|Q|−|δ
′| =

|Q|∏
j=1

(d− 2)1−δ′j .

As a result, we have
E[Y Xρ]

EY
→

m∏
j=1

(
λ′j
)ρj ,

where

λ′j =
(d(d− 1))j

2j

(
(d− 2)d−2

d(d− 1)d−1

)j∑
q∈Ij

j∏
k=1

k(d−2)∑
`=1

(k(d− 2))`
(`− 1)! (d− 2)`−1

q[k]

.

Note that ` takes the role of δ′j for the jth super-bucket. We have proved that Condition
(A2′) is satisfied. It remains to simplify our expression for λ′j. We have

λ′j =
1

2j

(
d− 2

d− 1

)j(d−2) ∑
q∈Ij

j∏
k=1

k(d− 2)

k(d−2)−1∑
`=0

(
k(d− 2)− 1

`

)
(d− 2)−`

q[k]

=
1

2j

(
d− 2

d− 1

)j(d−2) ∑
q∈Ij

j∏
k=1

(
k(d− 2)

(
1

d− 2
+ 1

)k(d−2)−1
)q[k]

=
1

2j

∑
q∈Ij

(
(d− 2)2

d− 1

)|q| j∏
k=1

kq[k].

Now, recall that (1, . . . , 1) /∈ Ij. So, to evaluate the sum over q, we may identify a
particular element in the sequence to be zero. By symmetry, we arbitrarily choose the
last. We also condition on |q|: define

µ =
(d− 2)2

d− 1
, Λj,t =

∑
q∈Ij
|q|=t
qj=0

µt
j∏

k=1

kq[k]. (19)

Note that Λj,1 = jµ for all j, because the only sequence q ∈ Ij with |q| = 1 and qj = 0
is (1, . . . , 1, 0). For |q| > 1, the first path in (the intersection encoded by) a sequence can
contain anywhere between 1 and j − 1 vertices. Ranging over the possibilities, we have

Λj,t =

j−1∑
k=1

kµΛj−k,t−1
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for t > 0. To solve this recurrence, define the generating function

Λ(x, y) =
∞∑
j=1

∞∑
t=1

Λj,tx
jyt.

We have

Λ(x, y)−
∞∑
j=1

Λj,1x
jy =

∞∑
j=1

∞∑
t=2

j−1∑
k=1

kµΛj−k,t−1x
jyt,

so

Λ(x, y) =
∞∑
k=1

kxkyµ
∞∑

j=k+1

∞∑
t′=1

Λj−k,t′x
j−kyt

′
+
∞∑
j=1

jxjyµ

= (Λ(x, y) + 1)
∞∑
k=1

kxkyµ.

Now, defining

g(x) =
∞∑
k=1

kxkµ =
xµ

(1− x)2 ,

we have

Λ(x, y) =
g(x)y

1− g(x)y
.

If q ∈ Ij, then there are j positions to place a zero, and if |q| = t then there are t zeros
in q. Hence

λ′j =
1

2j

j∑
t=1

jΛj,t

t

=
1

2

[
xj
] j∑
t=1

1

t

[
yt−1

] g(x)

1− g(x)y

=
1

2

[
xj
] ∫ 1

0

g(x)

1− g(x)y
dy

= −1

2

[
xj
]

log(1− g(x)).

Now, defining κ =
√
d− 1 we have

1− g(x) =
1 + x2 − (2 + µ)x

(1− x)2 =
(1− κ2x)(1− κ−2x)

(1− x)2 ,
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so

λ′j =
1

2

[
xj
](

2 log(1− x)− log
(
1− κ2x

)
− log

(
1− κ−2x

))
=

1

2

[
xj
] ∞∑
k=1

−2xk + (κ2x)
k

+ (κ−2x)
k

k

=
1

2j

(
κj − κ−j

)2

=

(
(d− 1)j − 1

)2

2j(d− 1)j
(20)

for j > 1.
To complete this section we will establish that conditions (A2) and (A3) of Theorem 1.4

hold, and prove Theorem 1.1.

Lemma 3.2. Let d > 3 be a fixed integer. Then Conditions (A2) and (A3) of Theorem 1.4
are satisfied, and

exp

(
∞∑
j=1

λjζ
2
j

)
=

d2√
(d− 1)(d− 2)(d2 − d+ 1)

.

Proof. The calculations of this section show that Condition (A2′) of Lemma 1.5 is satisfied
with λ′j given by (20). Then Lemma 1.5 guarantees that (A2) is satisfied. Using the Taylor
expansion of log(1− z), it follows from (3) that

∞∑
j=1

λjζ
2
j

=
∞∑
j=1

1
2j

(
4(d− 1)−j − 4(d− 1)−2j + (d− 1)−3j

)
= 1

2

(
−4 log

(
1− (d− 1)−1)+ 4 log

(
1− (d− 1)−2)− log

(
1− (d− 1)−3)).

Taking the exponential of both sides and rearranging establishes the stated expression for

exp
(∑∞

j=1 λjζ
2
j

)
, which is finite for d > 3. Hence Condition (A3) holds, as required.

Proof of Theorem 1.1. We know that condition (A2) holds (as proved above), and hence

EYG = E[Y |X1 = X2 = 0]→ EY exp(−λ1ζ1 − λ2ζ2).

Substituting using (3) and (12) completes the proof.
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4 The second moment

We now want to calculate EY 2. As a first step we transform this problem into one of
evaluating the coefficient of a certain generating function.

Lemma 4.1. Let d > 3 be fixed and define

N(n, d) =

{
n if d > 4,

n/2 + 2 if d = 3.

Then

|Pn,d|EY 2

=
n! ((d− 2)n)! dn

2(d/2−1)n+2

N(n,d)∑
b=1

2b

b! ((d/2− 1)n− b+ 2)!
[zn]

(
∞∑
j=1

(
(d− 1)j

j

)
zj

)b

.

Proof. We write

|Pn,d|EY 2 =
∑

P∈Pn,d

∑
T1∈Tn

∑
T2∈Tn

M(T1,T2),P ,

where M(T1,T2),P is the number of ways to embed the ordered pair of trees (T1, T2) into the
multigraph G(P ). We will estimate this sum by choosing some T1, T2 ∈ Tn and counting
the ways to pair up their edges, then counting the ways to complete the pairing. We
break up this process in a similar way to Section 3:

1. Choose b ∈ {1, . . . , n}, which will be the number of connected components in the
intersection of the embeddings of T1 and T2. (As we will see later, when d = 3 we
must restrict to b ∈ {1, . . . , n/2 + 2}.)

2. Choose a partition (ν1, . . . , νb) of n into positive parts. That is, νj is a positive

integer for j = 1, . . . , b and
∑b

j=1 νj = n. Here νj will be the number of vertices
in the jth connected component of the interesection. (We should divide by b! to
account for our assumption that the connected components are labelled).

3. Choose a partition of the n vertices into b groups, where the size of the jth group
is νj.

4. In each group, choose a spanning tree on that group and choose a partial pairing
that projects to that tree. This specifies a component of the intersection.

Now, collapse the buckets in each group into a single super-bucket, giving exactly b
super-buckets. The jth super-bucket has dνj − 2(νj − 1) unpaired prevertices. We now
want to pair up two pair-disjoint spanning trees T ′1, T

′
2 in the collapsed pairing model.

These will extend to T1 and T2 using the intersection subtrees chosen in Step 4.
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5. For j = 1, . . . , b, choose δ1
j and δ2

j , the degree of vertex j in T ′1 and T ′2 respectively,
in such a way that δ1

j + δ2
j 6 dνj − 2(νj − 1). These must also satisfy

b∑
j=1

δ1
j =

b∑
j=1

δ2
j = 2(b− 1),

as they are the degree sequence of a spanning tree on b vertices.

6. Choose two trees T ′1, T
′
2 on the b vertices that are consistent with the degree se-

quences chosen in Step 6.

7. Pair up these two trees in a pair-disjoint way.

8. Pair all remaining prevertices to complete a d-regular pairing.

Given ν, the number of ways to complete Step 3 is

s3 =

(
n

ν1, . . . , νb

)
.

By (10), the number of ways to complete Step 4 is

s4 = dn
b∏

j=1

(νj − 2)!

(
(d− 1)νj
νj − 2

)
.

The number of ways to complete Step 6 is

s6 =

(
b− 2

δ1
1 − 1, . . . , δ1

b − 1

)(
b− 2

δ2
1 − 1, . . . , δ2

b − 1

)
,

by (9), and the number of ways to complete Step 7 is

s7 =
b∏

j=1

((d− 2)νj + 2)δ1j+δ2j
.

Finally, for Step 8 there are

b∑
j=1

(
dνj − 2(νj − 1)− δ1

j − δ2
j

)
= (d− 2)n− 2(b− 2)

prevertices remaining, so the number of ways to complete Step 8 is

s8 = #P ((d− 2)n− 2(b− 2)).

For this construction to make sense, the quantity (d−2)n−2(b−2) must be nonnegative.
This is certainly true when d > 4, but when d = 3 this imposes the constraint that
b 6 n/2 + 2. (This explains the definition of N(n, d) in the lemma statement.)
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It will be convenient to work with the nonnegative variables

η1
j = δ1

j − 1, η2
j = δ2

j − 1 and η3
j = (d− 2)νj − η1

j − η2
j (21)

defined for j = 1, . . . , b. Let

S2(b) = {ν ∈ {1, . . . , n}b :
b∑

j=1

νj = n}

be the set of possible sequences ν from Step 2 and let

S5(ν) =
{(
η1, η2, η3

)
∈
(
Nb
)3

: η1
j + η2

j + η3
j = (d− 2)νj for j = 1, . . . , b,

b∑
j=1

η1
j =

b∑
j=1

η2
j = b− 2

}

be the set of sequences arising from Step 5 using (21).
Combining all of the above gives

|Pn,d|EY 2 =

N(n,d)∑
b=1

1

b!

∑
ν∈S2(b)

s3s4

∑
(η1,η2,η3)∈S5(ν)

s6s7s8

=

N(n,d)∑
b=1

n! dn

b! ((d/2− 1)n− b+ 2)! 2(d/2−1)n−b+2

∑
ν∈S2(b)

b∏
j=1

((d− 1)νj)!

νj!

×
∑

(η1,η2,η3)∈S5(ν)

(
b− 2

η1
1, . . . , η

1
b

)(
b− 2

η2
1, . . . , η

2
b

)(
(d− 2)n− 2(b− 2)

η3
1, . . . , η

3
b

)
.

Now ∑
(η1,η2,η3)∈S5(ν)

(
b− 2

η1
1, . . . , η

1
b

)(
b− 2

η2
1, . . . , η

2
b

)(
(d− 2)n− 2(b− 2)

η3
1, . . . , η

3
b

)

=
∑

(η1,η2,η3)∈S5(ν)

[
z
η11
1 . . . z

η1b
b

]( b∑
j=1

zj

)b−2

×
[
z
η21
1 . . . z

η2b
b

]( b∑
j=1

zj

)b−2[
z
η31
1 . . . z

η3b
b

]( b∑
j=1

zj

)(d−2)n−2(b−2)

=
[
z

(d−2)ν1
1 z

(d−2)ν2
2 · · · z(d−2)νb

b

]( b∑
j=1

zj

)(d−2)n

=

(
(d− 2)n

(d− 2)ν1, . . . , (d− 2)νb

)
.
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It follows that

|Pn,d|EY 2

=
n! ((d− 2)n)! dn

2(d/2−1)n+2

N(n,d)∑
b=1

2b

b! ((d/2− 1)n− b+ 2)!

∑
ν∈S2(b)

b∏
j=1

(
(d− 1)νj

νj

)
.

This is equal to the expression in the lemma statement, by definition of S2(b).

We now seek to evaluate

[zn]

(
∞∑
j=1

(
(d− 1)j

j

)
zj

)b

.

By Stirling’s approximation and the ratio test, the radius of convergence of the series∑∞
j=1

(
(d−1)j
j

)
zj equals (d−2)d−2

(d−1)d−1 . Hence,

f(z) :=
∞∑
j=1

(
(d− 1)j

j

)(
(d− 2)d−2

(d− 1)d−1

)j

zj

is analytic in the disk {z : |z| < 1}. Define β = b/n and let rβ ∈ (0, 1) be fixed for each
β (we will determine this later). Then, with the contour Γ : [−π, π] → C defined by
θ 7→ rβe

iθ, we have

[zn]f(z)b =
1

2πi

∫
Γ

f(z)b

zn+1
dz

=
1

2π

∫ π

−π

(
f
(
rβe

iθ
)β

rβeiθ

)n

dθ, (22)

by Cauchy’s coefficient formula. Let

Xn =
{

1
n
, 2
n
, . . . ,

N(n,d)
n

}
× [−π, π]

be the sample space for pairs (β, θ), and define an : Xn → C by

an(β, θ) =
2βn

(βn)! ((d/2− 1)n− βn+ 2)!

(
f
(
rβe

iθ
)β

rβeiθ

)n

. (23)

Finally, let

Fn =

N(n,d)∑
b=1

∫ π

−π
an(b/n, θ) dθ. (24)
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Then, by Lemma 4.1 and (22),

|Pn,d|EY 2 =
(d− 1)n(d−1)n! ((d− 2)n)! dn

2π(d− 2)n(d−2)2(d/2−1)n+2
Fn. (25)

We now apply the saddle point method to estimate the sum in (24) in the case that
d = 3. Our proof is adapted from that of [3, Theorem 2.3].

When d = 3 the function f satisfies

f(z) =
∞∑
j=1

(
2j

j

)(z
4

)j
= (1− z)−1/2 − 1.

We note for later that if θ ∈ [−π, π] is nonzero then

∣∣f(rβeiθ)∣∣ =

∣∣∣∣∣
∞∑
j=1

(
2j

j

)(rβ
4

)j
eijθ

∣∣∣∣∣ <
∞∑
j=1

(
2j

j

)(rβ
4

)j
= |f(rβ)|, (26)

using the triangle inequality. Hence for each β the function θ 7→ |f(rβe
iθ)| on [−π, π] is

uniquely maximised at θ = 0.
Define X = (0, 1] × [−π, π] and let X ∗ ⊂ X be a set (to be determined) such that

for (β, θ) ∈ X ∗, both β and d/2 − 1 − β = 1/2 − β are bounded below by some positive
constant. Then Stirling’s approximation gives, for β ∈ X ∗ ∩ Xn,

an(β, θ)

∼ en/2

2π nn/2+3
√
β(1/2− β) (1/2− β)2

( (
2f
(
rβe

iθ
))β

rβeiθββ(1/2− β)(1/2−β)

)n

. (27)

Next, define the half-spaces X 1/2 = (0, 1/2]× [−π, π] and X̄ 1/2 = [0, 1/2]× [−π, π]. Define
the real-valued sequence (cn)n∈N and the functions ψ : X̄ 1/2 → R and φ : X 1/2 → C by

cn =
en/2

2πnn/2+3
,

ψ(β, θ) = β−1/2(1/2− β)−5/2,

φ(β, θ) = β log
(
2f
(
rβe

iθ
))
− log rβ − iθ − β log β − (1/2− β) log(1/2− β),

so that we have
an(β, θ) ∼ cn ψ(β, θ) enφ(β,θ) (28)

uniformly for (β, θ) ∈ Xn ∩ X ∗.
Let D denote the differential operator

(Dφ(x))j =
∂φ(x)

∂xj
.
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We seek a stationary point of φ. The condition ∂φ(β,0)
∂θ

= 0 is equivalent to the condition
βrβf

′(rβ) = f(rβ). Solving for rβ gives

rβ =
1

8

(
8− 4β − β2 ±

√
β3(8 + β)

)
.

We choose rβ = 1
8

(
8− 4β − β2 −

√
β3(8 + β)

)
∈ (0, 1), which ensures that ∂φ(β,0)

∂θ
= 0.

Next, we calculate that with this choice of rβ,

∂φ

∂β
(β, 0) = log


(

4− β −
√
β(8 + β)

)
(1− 2β)

β
(
β +

√
β(8 + β)

)
.

Setting this equal to 0 and solving for β gives the equation (3β − 1)(β2 − 4β + 2) = 0.
The only solution with β ∈

(
0, 1

2

]
is β = 1

3
so we choose x∗ =

(
1
3
, 0
)

and check that
Dφ(x∗) = 0.

Note that φ(x∗) = log
(

4
√

2
3

)
, and

H = −
(

63
5

0
0 5

2

)
is the Hessian matrix of φ at x∗. Define C1 = 5/8, so that −4C1 is the largest eigenvalue
of H.

Now, define φ̂ by φ̂(x) = φ(x)− φ(x∗), and define ân : Xn → C by

ân(x) = c−1
n e−nφ(x∗) an(x).

With a Taylor expansion about x∗, for x ∈ X 1/2 we have

φ̂(x) =
1

2
(x− x∗)TH(x− x∗) + h(x)|x− x∗|2, (29)

where h(x) is complex and h(x)→ 0 as x→ x∗. For all v ∈ R2 we have vTHv 6 −2C1|v|2,
so we can choose ξ < 1

6
such that <φ̂(x) 6 −C1|x− x∗|2 for |x− x∗| < ξ. Define

X ∗ =
{
x ∈ X 1/2 : |x− x∗| < ξ

}
, satisfying the requirement for (27).

Next, define the sets

X (1) =
{
x ∈ X ∗ : |x− x∗| < n−1/3

}
,

X (2) = X ∗ \ X (1),

X (3) = X 1/2 \ X ∗,
X (4) = X \ X 1/2,

so that with

F (j)
n =

n/2+2∑
b=1

∫ π

−π
ân(b/n, θ)1X (j)(b/n, θ) dθ

we have
c−1
n e−nφ(x∗)Fn = F (1)

n + F (2)
n + F (3)

n + F (4)
n . (30)
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Lemma 4.2. With notation as above, we have

F (1)
n + F (2)

n + F (3)
n + F (4)

n ∼ F (1)
n ∼

144π√
7
.

Proof. Note that ψ is a continuous function defined on a compact set. So, ψ is absolutely

bounded on its domain, by C2 say. By (28), it follows that |ân(x)| = O
(
en<φ̂(x)

)
uniformly

for x ∈ X ∗. For x ∈ X (2) we have

n<φ̂(x) 6 −nC1|x− x∗|2 6 −C1n
1/3 → −∞

and consequently

∣∣F (2)
n

∣∣ 6 n∑
b=1

∫ π

−π
|ân(b/n, θ)|1X (2)(b/n, θ) dθ = O

(
ne−C1n1/3

)
= o(1). (31)

Now (26) implies that for each β, <φ̂(β, θ) is uniquely maximized when θ = 0. Also
∂<φ̂
∂β

(β, 0) = ∂φ̂
∂β

(β, 0) = 0 only for (β, 0) = x∗, since φ̂ is real along the line θ = 0. Checking

the values of <φ̂(β, 0) in the limit as β → 0 and β → 1
2
, it follows that <φ̂ attains a unique

maximum on X 1/2 at x∗. Let −C3 < 0 be the maximum value of <φ̂ on X (3).
Let u ∨ w = max{u,w} for real numbers u,w. We now redo the calculations of

(27) using an alternate form of Stirling’s inequality which holds for all k > 0, namely√
k ∨ 1

(
k
e

)k
6 k!. For (β, θ) ∈ X 1/2 ∩ Xn,

|ân(β, θ)| 6 ne2√
(βn ∨ 1)((n/2− βn+ 2) ∨ 1)(1/2− β)2

en<φ̂(x)

= en<φ̂(x)+o(n).

It follows that ∣∣F (3)
n

∣∣ = O
(
ne−C3n/2

)
= o(1). (32)

Next suppose that (β, θ) ∈ F
(4)
n ∩ Xn. Then we have 1

2
< β 6 1

2
+ o(1) and

(n/2− b+ 2)! = 1. By the alternate form of Stirling’s inequality and (26),

|an(β, θ)| 6 n3e2√
(βn ∨ 1)

cn

∣∣∣∣∣
(
2f
(
rβe

iθ
))β

rβeiθββ

∣∣∣∣∣
n

6 eo(n)cn

((
2f
(
r1/2

))1/2

r1/2

(
1
2

)1/2

)n

.

By direct computation,

log

(
2f
(
r1/2

))1/2

r1/2

(
1
2

)1/2
= φ(x∗) + C4
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for some C4 > 0. It follows that∣∣F (4)
n

∣∣ = O
(
ne−C4n/2

)
= o(1). (33)

It remains to consider F
(1)
n . Define d(β, θ)e =

(
dβne
n
, θ
)

, so that Fn = n
∫
X ân(dxe)dx. For

any y ∈ R2, define xy = x∗+ y/
√
n and Bn =

{
y : dxye ∈ X (1)

}
, so that we can make the

change of variables

F (1)
n =

∫
Bn

ân(dxye)dy.

Note that∣∣y/√n∣∣ = |xy − x∗| 6 |xy − dxye|+ |dxye − x∗| = O
(
n−1/3 + n−1

)
= O

(
n−1/3

)
for y ∈ Bn, so that Bn is approximately a ball of radius O

(
n1/6

)
.

Next, a first-order Taylor expansion of Dφ about x∗ gives

|Dφ(xy)| = O
(∣∣y/√n∣∣) = O

(
n−1/3

)
.

Another first-order Taylor expansion of φ about xy gives

φ(dxye)− φ(xy) = O(|Dφ(xy)||dxye − xy|) = O
(
n−4/3

)
,

so that
enφ(xy) ∼ enφ(dxye) (34)

uniformly. Now, for each y ∈ R2, we have dxye → x∗. For n large enough so that y ∈ Bn,

we have ψ(dxye)→ ψ(x∗) by continuity and enφ(xy) → e
1
2
yTHy by (29). We therefore have

1Bn(y)ân(dxye)→ ψ(x∗)e
1
2
yTHy for all y.

Recalling that C2 and 2C1 are bounds involving ψ and φ respectively, with (34) we

have |1Bn(y)ân(dxye)| 6 2C2e
−C1|y|2 for sufficiently large n. Since

(det(−H))−1/2 =
1

3

√
2

7
, ψ(x∗) = 108

√
2

we obtain, by the dominated convergence theorem,

F (1)
n → ψ(x∗)

∫
R2

e
1
2
yTHy dy = 2π ψ(x∗) (det(−H))−1/2 =

144π√
7
.

Combining this with (31–33) completes the proof.

We now pull these calculations together to prove the following.

Lemma 4.3. Let d = 3. Then

E[Y 2] ∼ 18√
14

(
16

3

)n
,

and hence
E[Y 2]

[EY ]2
→ 9√

14
.

It follows that Condition (A4) holds when d = 3.
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Proof. Lemma 4.2 and (30) prove that

Fn ∼
72

n3
√

7

(
4

√
2e

3n

)n

.

Substituting d = 3 into (25) and applying (4) gives

EY 2 =
(6
√

2)n (n!)2

4π#P (3n)
Fn ∼

18√
14

(
16

3

)n
,

using Stirling’s approximation. Then, with (12) and Lemma 3.2, we conclude that

EY 2

(EY )2
→ 9√

14
= exp

(
∞∑
j=1

λjγ
2
j

)
.

This establishes Condition (A4), as required.

We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We will prove that for general d > 3, if Condition (A4) holds then
Conjecture 1.3 is true. In particular, this will prove Theorem 1.2, using Lemma 4.3.

Suppose that Condition (A4) is satisfied for some fixed integer d > 3. Then by
Lemma 3.2 we may apply Theorem 1.4 to conclude that (5) holds for Y . Therefore, for
all real numbers y we have

P(YG/EYG < y) = P(Y/EYG < y|X1 = X2 = 0)

→ P(W exp(λ1ζ1 + λ2ζ2) < y|Z1 = Z2 = 0)

= P

(
∞∏
j=3

(1 + ζj)
Zje−λjζj < y

)
.

Hence Conjecture 1.3 is a consequence of (A4).

4.1 Support for Conjecture 1.3

Let pd(n) denote the quotient

EY 2

(EY )2

/
exp

(
∞∑
j=1

λjζ
2
j

)
.

For any fixed integer d > 4, Conjecture 1.3 holds if and only Condition (A4) from Theo-
rem 1.4 is satisfied; that is, if and only if pd(n) ∼ 1. Using Lemma 4.1 we can compute
pd(100) for various values of d:

d 3 4 5 6 100
pd(100) 0.9761 0.9881 0.9921 0.9942 0.9998
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Figure 1: A plot of pd(n) for d ∈ {3, 4, 5, 6, 100}

Figure 1 is a plot of pd(n) for d ∈ {3, 4, 5, 6, 100} and n 6 50.
This plot supports our conjecture that pd(n) ∼ 1 for all d > 4. Indeed, the rate of

convergence to 1 appears to increase as d increases.
We now give an asymptotic result which is equivalent to Conjecture 1.3. Combining

(4), (A4), (12), Lemma 3.2, Lemma 4.1 and applying Stirling’s formula shows that for a
fixed integer d > 4, Conjecture 1.3 holds if and only if

n∑
b=1

2b

b! ((d/2− 1)n− b+ 2)!
[zn]

(
∞∑
j=1

(
(d− 1)j

j

)
zj

)b

∼ 2d2

π(d− 2)4 n3

√
2d− 2

d2 − d+ 1

(
(d− 1)2(d−1)

(d− 2)2(d−2)

(
2e

dn

)d/2−1
)n

. (35)
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