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Abstract

Let G be an edge colored graph. A rainbow path in G is a path in which all the
edges are colored with distinct colors. Let dc(v) be the color degree of a vertex v in
G, i.e. the number of distinct colors present on the edges incident on the vertex v.
Let t be the maximum length of a rainbow path in G. Chen and Li (2005) showed
that if dc > k (k > 8), for every vertex v of G, then t >

⌈
3k
5

⌉
+ 1. Unfortunately,

the proof by Chen and Li is very long and comes to about 23 pages in the journal
version. Chen and Li states in their paper that it was conjectured by Akira Saito,
that t >

⌈
2k
3

⌉
. They also state in their paper that they believe t > k − c for some

constant c.
In this note, we give a short proof to show that t >

⌈
3k
5

⌉
, using an entirely

different method. Our proof is only about 2 pages long. The draw-back is that
our bound is less by 1, than the bound given by Chen and Li. We hope that the
new approach adopted in this paper would eventually lead to the settlement of the
conjectures by Saito and/or Chen and Li.
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1 Introduction

Given a graph G = (V,E), a map c : E → N (N is the set of non-negative integers) is
called an edge coloring of G. A graph G with such a coloring c is called an edge colored
graph. We denote the color of an edge e ∈ E(G) by color(e). For a vertex v of G, the
color neighborhood CN(v) of v is defined as the set {color(e)|e is incident on v} and the
color degree of v, denoted by dc(v) is defined to be dc(v) = |CN(v)|.
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A path in an edge colored graph with no two edges sharing the same color is called a
rainbow path. Similarly, a cycle in an edge colored graph is called a rainbow cycle if no
two edges of the cycle share the same color. A survey on rainbow paths, cycles and other
rainbow sub-graphs can be found in [5]. Several theorems and conjectures on rainbow
cycles can be found in a paper by Akbari, Etesami, Mahini and Mahmoody in [1].

Let t denote the length of the maximum length rainbow path in G. In [2], Chen and
Li studied the maximum length rainbow path problem in edge-colored graphs and proved
that if G is an edge colored graph with dc(v) > k (k > 8), for every vertex v of G, then G
has a rainbow path of length at least

⌈
3k
5

⌉
+ 1. Chen and Li state in their paper that it

was conjectured by Akira Saito, that t >
⌈
2k
3

⌉
. They also state in their paper that they

believe t > k − c for some constant c, after showing an example where the rainbow path
cannot be more than k − 1.

In this note, we give a short proof to show that t >
⌈
3k
5

⌉
, using an entirely different

method. Our proof is only about 2 pages long. The draw-back is that our bound is less
by 1, than the bound given by Chen and Li. We hope that the new approach adopted
in this paper would eventually lead to the settlement of the conjectures by Saito and/or
Chen and Li.

1.1 Preliminaries

All graphs considered in this paper are finite, simple and undirected. A graph is a tuple
(V,E), where V is a finite set of vertices and E is the set of edges. For a graph G, we
use V (G) and E(G) to denote its vertex set and edge set, respectively. The neighborhood
N(v) of a vertex v is the set of vertices adjacent to v but not including v. The degree
of a vertex v is dv = |N(v)|. A path is a non-empty graph P = (V,E) of the form
V = {p1, p2, . . . , pk} and E = {(p1, p2), (p2, p3), . . . , (pk−1, pk)}, which we usually denote
by the sequence {p1, p2, . . . , pk}. The length of a path is its number of edges. If P =
{p1, p2, . . . , pk} is a path, then the graph C with V (C) = V (P ) and E(C) = P ∪{(pk, p1)}
is a cycle, and |E(C)| is the length of C. We represent this cycle by the cyclic sequence
of its vertices, for example C = {p1, p2, . . . , pk, p1}.

2 Proof of the main results

Let G be an edge colored graph with dc(v) > k, for every vertex v of G and t be the
maximum length rainbow path in G. Let C denote the set of colors used in the edge
coloring of G. The following lemma ensures a rainbow path of length

⌈
k+1
2

⌉
starting from

any vertex in an edge colored graph.

Lemma 2.1. Let G be an edge colored graph and dc(v) > k, for every v ∈ V (G). Then,
given any vertex x in G there exists a rainbow path of length at least

⌈
k+1
2

⌉
starting from

x.

Proof. Let P be a rainbow path in G of maximum length, say t. Thus P contains t + 1
vertices, t edges and hence t distinct colors. Let P = {x = u0, u1, . . . , ut = y}, U =
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{color(ui, ui+1), 0 6 i 6 t − 1) and U c = C \ U . Select a subset E(x) of edges incident
on x as follows: Let (x, u1) ∈ E(x). Now, select k − 1 more edges incident on x and add
to E(x) so that all the k edges in E(x) have different colors. Clearly it is possible to do
this, since dc(x) > k.

Let NP (x) = {ui : 1 6 i 6 t and (x, ui) ∈ E(x)}, NP c(x) = {a ∈ V (G) \ V (P ) :
(x, a) ∈ E(x)}.
Claim. If z ∈ NP c(x), then color(x, z) ∈ U − {color(x, u1)}.

Suppose that color(x, z) ∈ U c. As z /∈ V (P ), P ′ = {z, x = u0, u1, . . . , ut = y} is a
path. Moreover, P ′ is a rainbow path as color(x, z) ∈ U c. Now P ′ is a rainbow path in
G of length t+ 1. This is a contradiction to the fact that t is the length of the maximum
length rainbow path in G. Also it is obvious that color(x, z) 6= color(x, u1). Hence the
claim is true.

From the above claim we infer that NPC (x)| 6 |U |−1 = t−1. So, |NP (x)| > k−(t−1).
But, number of vertices in P excluding x is t. So, k − (t− 1) 6 t. Hence, t > k+1

2
. Since

t is an integer, we have t >
⌈
k+1
2

⌉
.

The following lemma ensures that if the maximum length of a rainbow path is small
enough, then we can convert the maximum rainbow path into a rainbow cycle by some
simple modifications.

Lemma 2.2. Let G be an edge colored graph and dc(v) > k, for every v ∈ V (G). Let t
be the length of the maximum length rainbow path in G. If t <

⌈
3
5
k
⌉
, then G contains a

rainbow cycle of length (t + 1).

Proof. Assume for contradiction that there is no rainbow cycle of length t + 1 in G.
Let P = {u0(= x), u1, u2, . . . , ut(= y)} be a rainbow path of length t in G. Let U =
{color(ui, ui+1), 0 6 i 6 t − 1} and U c = C \ U , where C is the set of colors used to
color the edges of G. Clearly |U | = t. Let Tx = {ui : 0 6 i 6 t, (x, ui) ∈ E(G) and
color(x, ui) ∈ U c} and let Ty = {ui : 0 6 i 6 t, (y, ui) ∈ E(G) and color(y, ui) ∈ U c}.

First note that, |{(x, z) ∈ E(G) : color(x, z) ∈ U c}| > k−t. Moreover, if (x, z) ∈ E(G)
with color(x, z) ∈ U c, then z ∈ V (P ), i.e., z = ui for some 1 6 i 6 t, since otherwise we
would have a rainbow path of length t+ 1 in G. It follows that |Tx| > k− t. By a similar
argument, we get |Ty| > k − t. Note that u0, u1 /∈ Tx since u0 = x and color(x, u1) ∈ U .
Also, ut /∈ Tx, since if (x, ut) is an edge and is colored using a color from U c, then we
already have a t + 1 length rainbow cycle, contrary to the assumption. So, we can write
Tx = {ui : 2 6 i 6 t − 1 and color(x, ui) ∈ U c}. By similar reasoning, we can write,
Ty = {ui : 1 6 i 6 t− 2 and color(y, ui) ∈ U c}. Define Mx = {uj : uj+1 ∈ Tx}.
Observation 1. |Mx| = |Tx| > k − t.

Claim 1. Mx ∩ Ty 6= ∅.
If possible suppose Mx ∩ Ty = ∅. Now, |Mx| + |Ty| 6 t − 1, as both Mx ⊂ V (P ) and

Ty ⊂ V (P ) and number of vertices on P excluding x and y is t− 1. (Note that, x, y /∈Mx

and x, y /∈ Ty.) As |Mx| > k − t and |Ty| > k − t and Mx ∩ Ty = ∅ by assumption, we
have k − t + k − t 6 t− 1. That is, 2k 6 3t− 1. So, t > 2k+1

3
. This is a contradiction to

the fact that t <
⌈
3
5
k
⌉
. Hence Claim 1 is true.
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Claim 2. If ui ∈Mx ∩ Ty, then color(y, ui) = color(x, ui+1).
Suppose Claim 2 is false. That is, ∃ui ∈Mx∩Ty such that color(y, ui) 6= color(x, ui+1).

Now consider the cycle: CL = {x, u1, . . . , ui, y, ut, ut−1, . . . , ui+1, x}. Clearly CL is a
rainbow cycle, as color(y, ui) 6= color(x, ui+1), color(y, ui) ∈ U c and color(x, ui+1) ∈ U c.
Note that the length of CL is t + 1, as we removed exactly one edge, namely (ui, ui+1)
from P and added two new edges, namely (y, ui) and (x, ui+1) to CL. So, the length of
CL is t − 1 + 2 = t + 1, contradiction to the assumption. Hence, we can infer that if
ui ∈Mx ∩ Ty, then color(y, ui) = color(x, ui+1).

Let Sy = {v ∈ V (P )− (Mx ∪ {y, ut−1}) : color(y, v) ∈ U}}.
Observation 2. |Mx|+ |Ty|+ |Sy| − |Mx ∩ Ty| 6 t− 1.

Proof: This is because Sy is disjoint from Mx∪Ty and Sy∪Mx∪Ty ⊆ V (P )−{y, ut−1}.
(Note that y(= ut) and ut−1 do not appear in Mx, Ty or Sy.)

We partition the set Mx ∩ Ty as follows. Let ui ∈ Mx ∩ Ty. If color(ui, ui+1) appears
in one of the edges incident on y, then ui ∈ A otherwise ui ∈ B.

Observation 3. |Ty| > k − t + |B|.
Proof: To see this first note that there are at least k edges of different colors incident

on y (as by assumption, color degree of y is at least k)and at most t − |B| of them can
get the colors from U , since |B| colors in U do not appear on the edges incident on y, by
the definition of B. So, at least k − t + |B| of the edges incident on y have colors from
U c, and clearly any w, such that (y, w) is an edge, colored by a color in U c has to be on
P , since otherwise we have a longer rainbow path. It follows that |Ty| > k − t + |B|.
Claim 3. If ui ∈ A, then the edge incident on y with color color(ui, ui+1) has its other
end point on the rainbow path P . That is, if w is such that (y, w) is an edge and
color(ui, ui+1) = color(y, w), then w ∈ V (P ).

Suppose Claim 3 is false. Let (y, w) ∈ E(G) with color(y, w) = color(ui, ui+1) and
w /∈ V (P ). Now, consider the path: P ′ = {w, y, ut−1, ut−2, . . . , ui+1, x(= u0), u1, . . . , ui}.
Clearly P ′ is a rainbow path as color(ui, ui+1) = color(y, w), the edge (ui, ui+1) /∈ E(P ′)
and color(ui+1, x) ∈ U c, since ui ∈ Mx. Note that, the length of P ′ is t + 1. This is a
contradiction to the fact that t is the maximum length rainbow path in G. Hence Claim
3 is true.

Now, partition A as follows: if ui ∈ A, then by the above claim the edge incident on
y with the color color(ui, ui+1) has its other end point say w, on P . If w ∈ Mx, then let
ui ∈ A1, else ui ∈ A2.

Observation 4. |Mx ∩ Ty| = |A|+ |B| = |A1|+ |A2|+ |B|.
Observation 5. |Sy| > |A2|. To see this, recall that Sy = {v ∈ V (P )−(Mx∪{y, ut−1}) :
color(y, v) ∈ U}. By definition of A2, for each ui ∈ A2 there exists a unique vertex
w = w(ui) ∈ V (P )−Mx such that (y, w) is an edge and color(y, w) = color(ui, ui+1) ∈ U .
Since ui ∈ A2 ⊂Mx, we have i < t−1 and thus color(ui, ui+1) 6= color(y, ut−1). Therefore
w(ui) cannot be y or ut−1, for any ui ∈ A2. It follows that {w(ui) : ui ∈ A2} ⊆ Sy, and
therefore we have |Sy| > |A2|.

Claim 4. |A1| 6 |Mx|
2

.
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Recall that, for each ui ∈ A1, there is a unique vertex w = w(ui) such that (y, w) is an
edge with color(ui, ui+1) = color(y, w). Moreover, w ∈ Mx, by the definition of A1 and
A1∪{w(ui) : ui ∈ A1} ⊆Mx. Note that w(ui) is uniquely defined for ui since it is the end
point of the edge incident on y colored with the color of the edge (ui, ui+1). Moreover,
A1 ∩ {w(ui) : ui ∈ A1} = ∅, since A1 contains vertices which are end points of edges from
y, colored by the colors in U c whereas each w(ui) is the end point of some edge from y

which is colored by a color in U . It follows that 2|A1| 6 |Mx|. That is, |A1| 6 |Mx|
2

, as
required.

Now, substituting k− t+ |B| for |Ty| (by Observation 3), |A2| for |Sy| (by Observation
5), and |A1|+ |A2|+ |B| = |Mx ∩ Ty| (by Observation 4) in the inequality of Observation
2, and simplifying we get |Mx|+ k− t− |A1| 6 t− 1. Now using |A1| 6 |Mx|/2 (Claim 4)

and and simplifying we get |Mx|
2

+ k − t 6 t − 1. Recall that |Mx| > k − t (Observation
1). Substituting and simplifying we get, t > 3k+2

5
. It follows that t >

⌈
3
5
k
⌉
, contradicting

the initial assumption. Hence the Lemma is true.

Theorem 2.3. Let G be an edge colored graph and dc(v) > k, for every v ∈ V (G). If t
is the maximum length of a rainbow path in G, then t >

⌈
3k
5

⌉
.

Proof. If possible suppose t <
⌈
3k
5

⌉
. By Lemma 2.2, G contains a rainbow cycle of length

t + 1. Let CL be this cycle. Note that, CL contains (t + 1) vertices and (t + 1) edges.
Now, t + 1 6 d3k

5
e. Let CL = {u0, u1, . . . , ut, u0} and V (CLc) = V (G) \ V (CL). Let

U = {color(e) : e ∈ E(CL)} and U c = C \ U , where C is the set of colors used to color
the edges of G. Let Fi = {z ∈ V (CLc) : (ui, z) ∈ E(G)}.
Claim 1. |Fi| >

⌊
2k
5

⌋
. Moreover, for z ∈ Fi, color(ui, z) ∈ U .

First part follows from the fact that the color degree of ui is at least k as dc(ui) > k
and there are at most

⌈
3k
5

⌉
vertices in CL. If possible suppose color(ui, z) ∈ U c. Now

consider the path P ′ = {z, ui, ui+1, ui+2, . . . , ut, u0, . . . , ui−1}. Clearly, P ′ is a rainbow
path as color(ui, z) ∈ U c and {ui, ui+1, ui+2, . . . , ut, u0, . . . , ui−1} is already a rainbow
path being a part of the rainbow cycle CL. Note that, the length of P ′ is t+ 1. This is a
contradiction to the assumption that t is the maximum length rainbow path in G. Hence
Claim 1 is true.

Let G′ = (V ′, E ′), where V ′(G′) = V (G) and E ′(G′) = E(G) \ {e ∈ E(G) : color(e) ∈
U}. Clearly, in G′ there is no edge between V (CL) to V (CLc), since by Claim 1, every
such edge is colored by a color in U . Consider the induced subgraph on V (CLc) in G′.
Let G′′ = G′[V (CLc)]. Let dc(v) > k′ for every v ∈ V (G′′).

Observation 1. k′ >
⌊
2k
5

⌋
.

Proof: Clearly k′ > k − |U | = k − (t + 1) > k −
⌈
3k
5

⌉
>

⌊
2k
5

⌋
.

Consider the following subset U0 of U , defined by U0 = U1 ∪ U2, where

U1 =

{
color(ui, ui+1) : 0 6 i 6

⌈
k

5

⌉}
,

U2 =

{
color(ui, ui+1) : (t + 1)−

⌈
k

5

⌉
6 i 6 t− 1

}
∪ {color(ut, u0)}.
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Claim 2. {color(u0, z) : z ∈ F0} ∩ U0 = ∅.
Suppose not. Let z ∈ F0 be such that color(u0, z) ∈ U0. Without loss of generality

assume that color(u0, z) ∈ U1. Then consider the path P ∗ = (ub k5c, . . . , ut, u0, z), which

is clearly a rainbow path, since the edge of CL with its color equal to color(u0, z) is not
there in this path. Also the length of P ∗ is t+1−

⌊
k
5

⌋
. By Observation 1, G′′ has minimum

color degree at least
⌊
2k
5

⌋
, and therefore by Lemma 2.1, G′′ has a rainbow path of length

at least
⌈
k
5

⌉
starting from the vertex z, let us call this path P ′′. Clearly concatenating

the path P ′′ with P ∗ we get a rainbow path since colors used in P ∗ belong to U whereas
the colors used in P ′′ belong to U c. Moreover, the length of this rainbow path is at least
t + 1, a contradiction, to the assumption that t is the length of the maximum rainbow
path in G.

Now we complete the proof as follows: In view of Claim 2, and Claim 1, we know that
|F0| 6 |U − U0|. But |U − U0| 6

⌈
3k
5

⌉
− (

⌈
2k
5

⌉
+ 1) 6

⌈
k
5

⌉
<

⌈
2k
5

⌉
(since we can assume

k > 5: for smaller values of k, the Theorem is trivially true). This is a contradiction to
the first part of Claim 1.
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