The gap structure of a family of integer subsets

André Bernardino
Departamento de Matemática Universidade da Beira Interior Covilhã, Portugal
and_bernardino@hotmail.com

Rui Pacheco
Departamento de Matemática
Universidade da Beira Interior
Covilhã, Portugal
rpacheco@ubi.pt

Manuel Silva
Departamento de Matemática
Universidade Nova de Lisboa
Caparica, Portugal
mnas@fct.unl.pt

Submitted: Oct 15, 2013; Accepted: Feb 20, 2014; Published: Feb 28, 2014
Mathematics Subject Classifications: 11B25, 05D10

Abstract

In this paper we investigate the gap structure of a certain family of subsets of \mathbb{N} which produces counterexamples both to the "density version" and the "canonical version" of Brown's lemma. This family includes the members of all complementing pairs of \mathbb{N}. We will also relate the asymptotical gap structure of subsets of \mathbb{N} with their density and investigate the asymptotical gap structure of monochromatic and rainbow sets with respect to arbitrary infinite colorings of \mathbb{N}.

Keywords: piecewise syndetic; complementing pairs; Brown's lemma; Ramsey theory.

1 Introduction

Let \mathbb{N} be the set of all nonnegative integers. The gap of a finite subset $A=\left\{a_{1}, \ldots, a_{k}\right\}$ of \mathbb{N} is the number $\operatorname{gap}(A):=\max \left\{a_{i+1}-a_{i}: 1 \leqslant i \leqslant k-1\right\}$. An infinite subset X of \mathbb{N} is piecewise syndetic if it contains arbitrarily large subsets with uniformly bounded gaps. This means that the sequence in $k \in \mathbb{N}$ defined by

$$
\begin{equation*}
d_{k}(X):=\min \{\operatorname{gap}(A): A \subset X \text { and }|A|=k+1\}, \tag{1}
\end{equation*}
$$

is bounded. An induction argument in the number of colors shows [2, 3] that any finite coloring of \mathbb{N} admits a monochromatic piecewise syndetic set. This result is known as Brown's lemma.

Brown's lemma does not admit a density version analogous to Szemerédi's theorem [8], that is, there are subsets X of \mathbb{N} with positive density which are not piecewise syndetic. An example of such a subset is given in [1], Theorem 2.8.

Brown's lemma also does not admit a canonical version analogous to the ErdősGraham canonical version of van der Waerden's theorem [6]. In fact, T. Brown [4, 5] showed that there is an infinite coloring $\tau: \mathbb{N} \rightarrow \mathbb{N}$ for which the sequence in $k \in \mathbb{N}$ defined by

$$
\begin{equation*}
d_{k}(\tau):=\min \{\operatorname{gap}(A):|A|=k+1 \text { and either }|\tau(A)|=1 \text { or }|\tau(A)|=k+1\} \tag{2}
\end{equation*}
$$

is not bounded. The infinite coloring used by T. Brown consists of infinitely many translates of an infinite set, that is, it is a coloring associated to a certain complementing pair of \mathbb{N}. Two infinite subsets X_{1} and X_{2} of \mathbb{N} are a complementing pair of \mathbb{N}, and we write $\mathbb{N}=X_{1} \oplus X_{2}$, if for each $n \in \mathbb{N}$ there exist unique $n_{1} \in X_{1}$ and $n_{2} \in X_{2}$ such that $n=n_{1}+n_{2}$. In this case we can define an infinite coloring $\tau: \mathbb{N} \rightarrow \mathbb{N}$ by $\tau(n)=n_{2}$.

In this paper we will investigate the gap structure of a certain family of subsets of \mathbb{N} which produces counterexamples both to the "density version" and the "canonical version" of Brown's lemma. This family includes the members of all complementing pairs of \mathbb{N}. We will also investigate the asymptotical upper bounds of $d_{k}(X)$ and $d_{k}(\tau)$ when X is a subset of \mathbb{N} with positive upper density and τ is an infinite coloring of \mathbb{N}.

2 A familiy of non-piecewise syndetic sets with positive density

We will denote by $\bar{\sigma}(X)$ and $\underline{\sigma}(X)$, respectively, the upper density and the lower density of X :

$$
\bar{\sigma}(X):=\limsup _{n} \frac{|X \cap[0, n]|}{n}, \text { and } \underline{\sigma}(X):=\liminf _{n} \frac{|X \cap[0, n]|}{n} .
$$

If $\bar{\sigma}(X)=\underline{\sigma}(X)$, the density of X is equal to this common value and is denoted by $\sigma(X)$. Consider two infinite sequences a_{n} and d_{n} of positive integers, with $a_{0}=1$. Assume that a_{n} is strictly increasing, d_{n} is nondecreasing and $\frac{a_{n+1}}{a_{n}}$ is an integer for each $n \in \mathbb{N}$. Fix an integer $K>0$. We define recursively an increasing sequence of finite subsets $I_{n}:=I_{n}\left(a_{n}, d_{n}, K\right)$ of \mathbb{N}, with $\beta_{n}:=\max I_{n}$, as follows: $I_{0}=[0, K]$ and

$$
\begin{equation*}
I_{n}=I_{n-1} \cup\left\{\beta_{n-1}+d_{n}+I_{n-1}\right\} \cup \ldots \cup\left\{\left(\frac{a_{n}}{a_{n-1}}-1\right) \beta_{n-1}+\left(\frac{a_{n}}{a_{n-1}}-1\right) d_{n}+I_{n-1}\right\} \tag{3}
\end{equation*}
$$

Set $\mathcal{I}=\bigcup_{n \in \mathbb{N}} I_{n}$. Observe that $\left|I_{n}\right|=\frac{a_{n}}{a_{n-1}}\left|I_{n-1}\right|$ and

$$
\beta_{n}=\frac{a_{n}}{a_{n-1}} \beta_{n-1}+\left(\frac{a_{n}}{a_{n-1}}-1\right) d_{n}
$$

Hence

$$
\begin{equation*}
\left|I_{n}\right|=a_{n}(K+1) \quad \text { and } \quad \beta_{n}=a_{n} K+a_{n} \sum_{i=1}^{n}\left(\frac{1}{a_{i-1}}-\frac{1}{a_{i}}\right) d_{i} . \tag{4}
\end{equation*}
$$

Example 1. If $a_{n}=2^{n}$, then $I_{0}=[0, K], I_{1}=I_{0} \cup\left\{d_{1}+K+I_{0}\right\}, I_{2}=I_{1} \cup\left\{d_{2}+d_{1}+\right.$ $\left.2 K+I_{1}\right\}$, and the structure of I_{3} is illustrated by the following figure.

Lemma 2. The subset $\mathcal{I}\left(a_{n}, d_{n}, K\right):=\mathcal{I}=\bigcup_{n \in \mathbb{N}} I_{n}$ of \mathbb{N} has positive upper density if and only if the positive series

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left(\frac{1}{a_{i-1}}-\frac{1}{a_{i}}\right) d_{i} \tag{5}
\end{equation*}
$$

converges. Moreover, $\bar{\sigma}(\mathcal{I})=\underline{\sigma}(\mathcal{I})$.
Proof. Taking into account (4) we have

$$
x_{n}:=\frac{\left|I_{n}\right|}{\beta_{n}}=\frac{K+1}{K+\sum_{i=1}^{n}\left(\frac{1}{a_{i-1}}-\frac{1}{a_{i}}\right) d_{i}} .
$$

This sequence is always convergent and

$$
x_{n}=\sup \left\{\frac{|\mathcal{I} \cap[0, N]|}{N}: N \geqslant \beta_{n}\right\} .
$$

This means that the largest limit of subsequences of $\frac{\mid\lceil\cap[0, n] \mid}{n}$ is attained by x_{n}. Hence

$$
\bar{\sigma}(\mathcal{I})=\lim _{n} \frac{K+1}{K+\sum_{i=1}^{n}\left(\frac{1}{a_{i-1}}-\frac{1}{a_{i}}\right) d_{i}},
$$

which means that $\bar{\sigma}(\mathcal{I})>0$ if and only if the series (5) converges. If the series (5) diverges, then it is clear that $\bar{\sigma}(\mathcal{I})=\underline{\sigma}(\mathcal{I})=0$.

Assume now that the series (5) converges. In this case

$$
0=\lim _{n}\left(\frac{1}{a_{n-1}}-\frac{1}{a_{n}}\right) d_{n}=\lim _{n} \frac{1}{a_{n}}\left(\frac{a_{n}}{a_{n-1}}-1\right) d_{n} \geqslant \lim _{n} \frac{d_{n}}{a_{n}},
$$

that is $\lim _{n} \frac{d_{n}}{a_{n}}=0$. On the other hand,

$$
y_{n}:=\frac{\left|I_{n}\right|}{\beta_{n}+d_{n}-1}=\min \left\{\frac{|\mathcal{I} \cap[0, N]|}{N}: N \leqslant \beta_{n}+d_{n}-1\right\} .
$$

Since $\lim _{n} \frac{d_{n}}{a_{n}}=0$, we have $\lim x_{n}=\lim y_{n}$, that is the smallest limit of subsequences of $\frac{\| \mathcal{I} n[0, n] \mid}{n}$ is attained by y_{n} and it is equal to $\bar{\sigma}(\mathcal{I})$.

Remark 3. Given sequences a_{n} and d_{n} for which (5) converges, we can make $\bar{\sigma}(\mathcal{I})$ arbitrarily close to 1 by taking $K \rightarrow \infty$.
Remark 4. Taking into account its construction, if $\lim d_{n}=\infty$ the subset \mathcal{I} is not piecewise syndetic. For example, if $a_{n}=2^{n}$ and $d_{n}=n, \mathcal{I}$ is not piecewise syndetic but it has positive density $\frac{K+1}{K+2}$.

This family of subsets is optimal in the following sense.
Lemma 5. For each $n \in \mathbb{N}$, we have $d_{a_{n}(K+1)}(\mathcal{I})=d_{n+1}$. Moreover, given $X \subset \mathbb{N}$, then $\bar{\sigma}(X) \leqslant \sigma(\mathcal{I})$ if $d_{a_{n}(K+1)}(X) \geqslant d_{n+1}$ for each $n \in \mathbb{N}$.

Proof. The first assertion follows directly from the definitions of \mathcal{I} and $d_{k}(\mathcal{I})$. With the respect to the second assertion, observe that, for each $k \in \mathbb{N}$, we have $d_{k}(\mathcal{I})=$ $d_{a_{n_{k}}(K+1)}(\mathcal{I})$, where

$$
n_{k}=\max \left\{n: a_{n}(K+1) \leqslant k\right\} .
$$

This means that, if $d_{a_{n}(K+1)}(X) \geqslant d_{n+1}$, then $d_{k}(X) \geqslant d_{k}(\mathcal{I})$ for all k, and consequently $\bar{\sigma}(X) \leqslant \bar{\sigma}(\mathcal{I})=\sigma(\mathcal{I})$.

3 Complementing pairs of \mathbb{N}

Complementing pairs of \mathbb{N} admit the following characterization (see [9] and the references therein). Given two infinite subsets X_{1} and X_{2} of \mathbb{N}, we have $\mathbb{N}=X_{1} \oplus X_{2}$ if and only if there exists a sequence m_{i}, with $m_{i} \geqslant 2$ for all $i \in \mathbb{N}$, such that X_{1} is the set of all finite sums $\sum_{i \geqslant 0} x_{2 i} M_{2 i}$ and X_{2} is the set of all finite sums $\sum_{i \geqslant 0} x_{2 i+1} M_{2 i+1}$, where $M_{0}=1$, $M_{i}=\prod_{j=1}^{i} m_{j}$ and $0 \leqslant x_{i}<m_{i+1}$. Let

$$
M_{i}^{+}=\prod_{j=1, j \text { even }}^{i} m_{j}, \quad M_{i}^{-}=\prod_{j=1, j \text { odd }}^{i} m_{j}
$$

so that $M_{i}=M_{i}^{+} M_{i}^{-}$.
Example 6. Take $m_{i}=2$ for all $i \in \mathbb{N}$. Set $I_{n}=\left\{\sum_{i=0}^{2 n} x_{2 i} M_{2 i}: 0 \leqslant x_{i} \leqslant 1\right\}$, with $M_{i}=2^{i}$:

$$
I_{0}=[0,1], I_{1}=[0,1] \cup[4,5], I_{2}=\{[0,1] \cup[4,5]\} \cup\{[16,17] \cup[20,21]\}, \ldots
$$

For $K=1, a_{n}=2^{n}$, and $d_{n}=\frac{2^{2 n+1}+1}{3}$, we have $X_{1}=\mathcal{I}\left(a_{n}, d_{n}, K\right)$.
More generally, given a complementing pair $\mathbb{N}=X_{1} \oplus X_{2}$, take $K=m_{1}-1, a_{n}=\frac{M_{2 n+1}^{-}}{m_{1}}$ and

$$
\begin{equation*}
d_{n}=M_{2 n}-\left\{\left(m_{2 n-1}-1\right) M_{2 n-2}+\left(m_{2 n-3}-1\right) M_{2 n-4}+\ldots+\left(m_{3}-1\right) M_{2}+\left(m_{1}-1\right)\right\} . \tag{6}
\end{equation*}
$$

With respect to these choices, the sets I_{n} in (3) are given by $I_{0}=\left\{x_{0}: 0 \leqslant x_{0}<m_{1}\right\}$ and

$$
I_{n}=\left\{\sum_{i=0}^{2 n} x_{2 i} M_{2 i}: 0 \leqslant x_{i}<m_{i+1}\right\} .
$$

Hence $X_{1}=\mathcal{I}\left(a_{n}, d_{n}, K\right)$.
Proposition 7. If $\mathbb{N}=X_{1} \oplus X_{2}$, then X_{1} is not piecewise syndetic and $\sigma\left(X_{1}\right)=0$.
Proof. To see that X_{1} is not piecewise syndetic we only have to check that $\lim d_{n}=\infty$. We can rewrite (6) as

$$
d_{n}=\left(M_{2 n}-M_{2 n-1}\right)+\left(M_{2 n-2}-M_{2 n-3}\right)+\ldots+\left(M_{2}-M_{1}\right)+1 .
$$

Since $m_{i} \geqslant 2$ for all $i \geqslant 1$, we have $M_{2 i}-M_{2 i-1} \geqslant 1$, which means that d_{n} is strictly increasing.

We say that $A \subset \mathbb{N}$ is a rainbow set with respect to a coloring $\tau: \mathbb{N} \rightarrow \mathbb{N}$ if $|\tau(A)|=|A|$.
Theorem 8. Given a complementing pair $\mathbb{N}=X_{1} \oplus X_{2}$, consider the associated infinite coloring τ, as defined in the Introduction section. If

$$
\begin{equation*}
\lim _{n} \frac{m_{2 n}}{M_{2(n-1)}^{-}}=0 \tag{7}
\end{equation*}
$$

then there does not exist $d \in \mathbb{N}$ and arbitrarily large sets A such that $\operatorname{gap}(A) \leqslant d$ and A is either monochromatic or rainbow..

Proof. Observe that the number of colors in each interval of the form $J_{i}^{k}=\left[k M_{2 i},(k+\right.$ 1) $\left.M_{2 i}\right]$ is precisely the cardinality of the set $\left\{\sum_{j=0}^{2 i-1} x_{2 j+1} M_{2 j+1}: 0 \leqslant x_{j}<m_{j+1}\right\}$. Hence, each interval $J_{i}^{k}=\left[k M_{2 i},(k+1) M_{2 i}\right]$ has exactly $M_{2 i}^{+}$colors and each color appears exactly $M_{2 i}^{-}$times. Let $A=\left\{b_{1}, \ldots, b_{n}\right\}$ be a finite subset of \mathbb{N} and choose s minimal so that $A \subseteq J_{s}^{k-1} \cup J_{s}^{k}$. We have $2 M_{2(s-1)} \leqslant b_{n}-b_{1} \leqslant \operatorname{gap}(A) n$. On the other hand, $|\tau(A)| \leqslant 2 M_{2 s}^{+}$. Then

$$
\begin{equation*}
|\tau(A)| \leqslant \frac{\operatorname{gap}(A)|A| m_{2 s}}{M_{2(s-1)}^{-}} . \tag{8}
\end{equation*}
$$

Hence, if $\operatorname{gap}(A) \leqslant d$ for some fixed d and $|A|$ is large enough, from condition (7) we get $|\tau(A)|<|A|$, that is, we can not have arbitrarily large rainbow sequences with bounded gaps.

On the other hand, τ does not admit arbitrarily large monochromatic sequences with uniformly bounded gaps because X_{1} is not piecewise syndetic and, for each color n_{0}, the monochromatic subset $\tau^{-1}\left(n_{0}\right)$ is just the translation copy of X_{1} by n_{0}.

Remark 9. The infinite coloring used in [5] is the one defined by the complementing pair $\mathbb{N}=X_{1} \oplus X_{2}$ with X_{1} the set of all finite sums $\sum_{i \text { even }} 2^{i}$ and X_{2} the set of all finite sums $\sum_{i \text { odd }} 2^{i}$. In this case, $m_{i}=2$ for all $i \geqslant 1$, and condition (7) certainly holds.

4 Asymptotical gap structure of positive density sets

Not surprisingly, the sequence $d_{k}(X)$ defined by (1) grows at most linearly with k for sets X with positive density.

Proposition 10. Let X be a subset of \mathbb{N} with positive lower density $\underline{\sigma}:=\underline{\sigma}(X)$. Then $d_{k}(X)=O(k)$ as $k \rightarrow \infty$.

Proof. Given $0<\epsilon<\underline{\sigma}$, for all sufficiently large n, we must have $(\underline{\sigma}-\epsilon) n+1<|[1, n] \cap X|$. Then the gap of $[1, n] \cap X$ is at most $n-(\underline{\sigma}-\epsilon) n$. Hence $d_{\lceil(\underline{\sigma}-\epsilon) n\rceil+1}(X) \leqslant n-(\underline{\sigma}-\epsilon) n$. Taking $k=\lceil(\underline{\sigma}-\epsilon) n\rceil+1$, we conclude that $d_{k}(X)=O(k)$ as $k \rightarrow \infty$.

As the following theorem shows, this asymptotical bound is not optimal.
Theorem 11. Let $\varpi:\left[0,+\infty\left[\rightarrow \mathbb{R}\right.\right.$ be a continuous increasing function so that $\varpi(x) / x^{2}$ decreases with x. Then, if the integral

$$
\begin{equation*}
\int_{1}^{+\infty} \frac{\varpi(x)}{x^{2}} d x \tag{9}
\end{equation*}
$$

diverges, any subset X of \mathbb{N} with $\varpi(k)=O\left(d_{k}(X)\right)$ as $k \rightarrow \infty$ has upper density zero.
Proof. Let X be a subset of \mathbb{N} with $\varpi(k)=O\left(d_{k}(X)\right)$ and consider the increasing sequences a_{n} and d_{n} defined by $a_{n}=2^{n}$ and $d_{n}=d_{2^{n}}(X)$. Consider the subset $\mathcal{I}=$ $\mathcal{I}\left(a_{n}, d_{n}, 1\right)$. By Lemma $5, \bar{\sigma}(X) \leqslant \sigma(\mathcal{I})$.

Since $\varpi(k)=O\left(d_{k}(X)\right)$, the series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{a_{n-1}}-\frac{1}{a_{n}}\right) d_{n}=\sum_{n=1}^{\infty} \frac{d_{2^{n}}(X)}{2^{n}}
$$

diverges if $\sum_{n=1}^{\infty} \frac{\varpi\left(2^{n}\right)}{2^{n}}$ diverges. But, taking the substitution $x=2^{y}$, we get

$$
\int_{0}^{\infty} \frac{\varpi\left(2^{y}\right)}{2^{y}} d y=\frac{1}{\ln 2} \int_{1}^{\infty} \frac{\varpi(x)}{x^{2}} d x
$$

Hence, by the integral convergence test, $\sum_{n=1}^{\infty} \frac{\varpi\left(2^{n}\right)}{2^{n}}$ diverges. By Lemma 2, we conclude that $\sigma(\mathcal{I})=0$, and consequently $\bar{\sigma}(X)=0$.

Conversely,
Theorem 12. Let $\varpi:\left[0,+\infty\left[\rightarrow \mathbb{R}\right.\right.$ be a continuous increasing function so that $\varpi(x) / x^{2}$ decreases with x. Then, if the integral (9) converges, there exists a subset X of \mathbb{N} with $\varpi(k)=O\left(d_{k}(X)\right)$ as $k \rightarrow \infty$ and positive upper density.

Proof. Set $a_{n}=2^{n}, d_{n}=\left\lceil\varpi\left(2^{n}\right)\right\rceil$, and consider the subset $\mathcal{I}=\mathcal{I}\left(a_{n}, d_{n}, 1\right)$. If the integral (9) converges, we can apply the integral convergence test, as in the proof of Theorem 11, to conclude that the series (5) converge, and consequently $\sigma(\mathcal{I})>0$. Since ϖ is increasing and, for $2^{n}<k<2^{n+1}$, we have $d_{k}(\mathcal{I})=d_{2^{n+1}}(\mathcal{I})=d_{n+1}$, it is clear that $\varpi(k)=O\left(d_{k}(\mathcal{I})\right)$. Set $X=\mathcal{I}$, and we are done.

Remark 13. In [7], R. Salem and D.C. Spencer studied the influence of gaps in the density of integer subsets. However, a different notion of gap structure is considered there. More precisely, given an positive increasing function ω of the real nonnegative variable x, they were concerned with subsets X of \mathbb{N} satisfying the following property: for any closed interval $[a, a+l]$, with $a \geqslant 0$ and $l>0$, there exists an open interval not less than $\omega(l)$ which contains no points of X. For that purpose, they used sequences $u(n)$ defined by

$$
u(n)=g_{0} n+g_{1}\left[\frac{n}{2}\right]+g_{2}\left[\frac{n}{2^{2}}\right]+\ldots+g_{p}\left[\frac{n}{2^{p}}\right]+\ldots,
$$

where g_{p} is a given sequence of positive integers. For $g_{0}=1$ and $g_{p} \geqslant 1$, these sequences are of the form $\mathcal{I}\left(a_{n}, d_{n}, 1\right)$, with $a_{n}=2^{n}$ and $d_{n}=g_{0}+g_{1}+\ldots+g_{n}$. In spite of the different notions of gap structure, the asymptotical bounds given by Theorems 11 and 12 are the same as those given by Theorems I and II in [7].

5 Asymptotical gap structure and infinite colorings

Next we investigate the asymptotical growth with k of the sequence $d_{k}(\tau)$ defined by (2).
Theorem 14. Given an infinite coloring $\tau: \mathbb{N} \rightarrow \mathbb{N}$, we have $d_{k}(\tau)=O\left(k^{2}\right)$.
Proof. Set $\theta(n)=|\tau([1, n])|$ (the number of distinct colors occurring in the interval [1, n]) and define $\alpha_{n}=\left\lceil\frac{n}{\theta(n)}\right\rceil$. By the pigeonhole principle, there always exists a monochromatic subset $A_{\alpha_{n}}$ of $[1, n]$ with α_{n} elements. For each n, consider also a rainbow subset $B_{\theta(n)}$ of $[1, n]$ with $\theta(n)$ elements and $\theta(n)$ distinct colors.

Suppose first that α_{n} is bounded: there exists $C>1$ such that $1 \leqslant \frac{n}{\theta(n)} \leqslant C$ for all $n \in \mathbb{N}$. In this case,

$$
\operatorname{gap}\left(B_{\theta(n)}\right) \leqslant n-(\theta(n)-1) \leqslant(C-1) \theta(n)+1,
$$

which means that $d_{k}(\tau)=O(k)$.
If α_{n} is not bounded, then we can assume, by taking a subsequence if necessary, that $\alpha_{n} \rightarrow \infty$. We have

$$
\operatorname{gap}\left(A_{\alpha_{n}}\right) \leqslant n-\left(\alpha_{n}-1\right) \leqslant\lceil n / \theta(n)\rceil \theta(n)-\lceil n / \theta(n)\rceil+1 .
$$

Suppose that there exists $\xi>0$ such that $\xi \leqslant\lceil n / \theta(n)\rceil / \theta(n)$ for all n. In this case,

$$
\operatorname{gap}\left(A_{\alpha_{n}}\right) \leqslant 1 / \xi\lceil n / \theta(n)\rceil^{2}-\lceil n / \theta(n)\rceil+1,
$$

and $d_{k}(X)=O\left(k^{2}\right)$. Finally, if $\lceil n / \theta(n)\rceil / \theta(n) \rightarrow 0$ (or some of its subsequences), then, for some $\eta>0$ and n sufficiently large, we have $\operatorname{gap}\left(B_{\theta(n)}\right) \leqslant \eta \theta^{2}(n)-\theta(n)+1$, and consequently $d_{k}(X)=O\left(k^{2}\right)$.

Example 15. When τ is the infinite coloring of \mathbb{N} associated to the complementing pair $\mathbb{N}=X_{1} \oplus X_{2}$, where X_{1} is the set of all finite sums $\sum x_{2 i} M_{2 i}$, with $0 \leqslant x_{i}<m_{i+1}$, we can give the following asymptotical bounds for $d_{k}(\tau)$. To simplify the discussion, assume further that, for some $m \geqslant 2$, we have $m_{i}=m$ for all $i \geqslant 1$. In this case, from (6) we can check that

$$
d_{n}=\frac{m^{2 n+1}+1}{m+1} .
$$

On the other hand, $\left|X_{1} \cap\left[0, M_{2 n}\right]\right|=m^{n}+1$ and for any other interval $[\alpha, \beta]$ with $\left|X_{1} \cap[\alpha, \beta]\right|=m^{n}+1$ we have

$$
\operatorname{gap}\left(\left|X_{1} \cap[\alpha, \beta]\right|\right) \geqslant \operatorname{gap}\left(\left|X_{1} \cap\left[0, M_{2 n}\right]\right|\right)=d_{n} .
$$

This means that $\operatorname{gap}(A)$ grows asymptotically as fast as $|A|^{2}$ for monochromatic subsets A. From (8) we see that $\operatorname{gap}(A)$ is asymptotically bounded below by $|A|$ for rainbow sets A.

References

[1] V. Bergelson, N. Hindman, R. McCutcheon, Notions of size and combinatorial properties of quotient sets in semigroups., Topology Proc., 23, 23-60, 1998.
[2] T. Brown, Locally finite semigroups., (Russian) Ukrain. Mat. Ž., 20, 732-738, 1968.
[3] T. Brown, An interesting combinatorial method in the theory of locally finite semigroups., Pacific J. Math., 36, 285-289, 1971.
[4] T. Brown, On the canonical version of a theorem in Ramsey theory, Combin. Probab. Comput., 12, 513-514, 2003.
[5] T. Brown, A Partition of the Non-Negative Integers, with Applications, Integers 5.2, Paper A02, 2005.
[6] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory., Monographies de L'Enseignement Mathématique, 28. Université de Genève, 1980.
[7] R. Salem and D. C. Spencer, The influence of gaps on density of integers, Duke Math. J., Volume 9, Number 4, 855-872, 1942.
[8] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith., 27, 199- 245, 1975.
[9] R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, Number theory (Paris, 1992-1993), London Math. Soc. Lecture Note Ser. 215 (1995), Cambridge Univ. Press, 261-276.

