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Abstract

In this paper we investigate the gap structure of a certain family of subsets of N

which produces counterexamples both to the “density version” and the “canonical

version” of Brown’s lemma. This family includes the members of all complementing

pairs of N. We will also relate the asymptotical gap structure of subsets of N with

their density and investigate the asymptotical gap structure of monochromatic and

rainbow sets with respect to arbitrary infinite colorings of N.

Keywords: piecewise syndetic; complementing pairs; Brown’s lemma; Ramsey

theory.

1 Introduction

Let N be the set of all nonnegative integers. The gap of a finite subset A = {a1, . . . , ak}
of N is the number gap(A) := max{ai+1 − ai : 1 6 i 6 k − 1}. An infinite subset X of N
is piecewise syndetic if it contains arbitrarily large subsets with uniformly bounded gaps.
This means that the sequence in k ∈ N defined by

dk(X) := min{gap(A) : A ⊂ X and |A| = k + 1}, (1)
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is bounded. An induction argument in the number of colors shows [2, 3] that any finite
coloring of N admits a monochromatic piecewise syndetic set. This result is known as
Brown’s lemma.

Brown’s lemma does not admit a density version analogous to Szemerédi’s theorem [8],
that is, there are subsets X of N with positive density which are not piecewise syndetic.
An example of such a subset is given in [1], Theorem 2.8.

Brown’s lemma also does not admit a canonical version analogous to the Erdős-
Graham canonical version of van der Waerden’s theorem [6]. In fact, T. Brown [4, 5]
showed that there is an infinite coloring τ : N → N for which the sequence in k ∈ N

defined by

dk(τ) := min{gap(A) : |A| = k + 1 and either |τ(A)| = 1 or |τ(A)| = k + 1} (2)

is not bounded. The infinite coloring used by T. Brown consists of infinitely many trans-
lates of an infinite set, that is, it is a coloring associated to a certain complementing pair
of N. Two infinite subsets X1 and X2 of N are a complementing pair of N, and we write
N = X1 ⊕ X2, if for each n ∈ N there exist unique n1 ∈ X1 and n2 ∈ X2 such that
n = n1 + n2. In this case we can define an infinite coloring τ : N → N by τ(n) = n2.

In this paper we will investigate the gap structure of a certain family of subsets of
N which produces counterexamples both to the “density version” and the “canonical
version” of Brown’s lemma. This family includes the members of all complementing pairs
of N. We will also investigate the asymptotical upper bounds of dk(X) and dk(τ) when
X is a subset of N with positive upper density and τ is an infinite coloring of N.

2 A familiy of non-piecewise syndetic sets with pos-

itive density

We will denote by σ(X) and σ(X), respectively, the upper density and the lower density
of X:

σ(X) := lim sup
n

|X ∩ [0, n]|

n
, and σ(X) := lim inf

n

|X ∩ [0, n]|

n
.

If σ(X) = σ(X), the density of X is equal to this common value and is denoted by σ(X).
Consider two infinite sequences an and dn of positive integers, with a0 = 1. Assume
that an is strictly increasing, dn is nondecreasing and an+1

an
is an integer for each n ∈ N.

Fix an integer K > 0. We define recursively an increasing sequence of finite subsets
In := In(an, dn, K) of N, with βn := max In, as follows: I0 = [0, K] and

In = In−1 ∪ {βn−1 + dn + In−1} ∪ . . . ∪
{

( an
an−1

− 1
)

βn−1 +
( an
an−1

− 1
)

dn + In−1

}

. (3)

Set I =
⋃

n∈N In. Observe that |In| =
an

an−1
|In−1| and

βn =
an
an−1

βn−1 +
( an
an−1

− 1
)

dn.
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Hence

|In| = an(K + 1) and βn = anK + an

n
∑

i=1

( 1

ai−1

−
1

ai

)

di. (4)

Example 1. If an = 2n, then I0 = [0, K], I1 = I0 ∪ {d1 +K + I0}, I2 = I1 ∪ {d2 + d1 +
2K + I1}, and the structure of I3 is illustrated by the following figure.

I0

d2
d1d1

d3

d1
d2

d1

Lemma 2. The subset I(an, dn, K) := I =
⋃

n∈N In of N has positive upper density if
and only if the positive series

∞
∑

i=1

( 1

ai−1

−
1

ai

)

di (5)

converges. Moreover, σ(I) = σ(I).

Proof. Taking into account (4) we have

xn :=
|In|

βn

=
K + 1

K +
∑n

i=1

(

1
ai−1

− 1
ai

)

di
.

This sequence is always convergent and

xn = sup
{ |I ∩ [0, N ]|

N
: N > βn

}

.

This means that the largest limit of subsequences of |I∩[0,n]|
n

is attained by xn. Hence

σ(I) = lim
n

K + 1

K +
∑n

i=1

(

1
ai−1

− 1
ai

)

di
,

which means that σ(I) > 0 if and only if the series (5) converges. If the series (5) diverges,
then it is clear that σ(I) = σ(I) = 0.

Assume now that the series (5) converges. In this case

0 = lim
n
(

1

an−1

−
1

an
)dn = lim

n

1

an

( an
an−1

− 1
)

dn > lim
n

dn
an

,

that is limn
dn
an

= 0. On the other hand,

yn :=
|In|

βn + dn − 1
= min

{ |I ∩ [0, N ]|

N
: N 6 βn + dn − 1

}

.

Since limn
dn
an

= 0, we have lim xn = lim yn, that is the smallest limit of subsequences of
|I∩[0,n]|

n
is attained by yn and it is equal to σ(I).
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Remark 3. Given sequences an and dn for which (5) converges, we can make σ(I) arbi-
trarily close to 1 by taking K → ∞.

Remark 4. Taking into account its construction, if lim dn = ∞ the subset I is not piecewise
syndetic. For example, if an = 2n and dn = n, I is not piecewise syndetic but it has
positive density K+1

K+2
.

This family of subsets is optimal in the following sense.

Lemma 5. For each n ∈ N, we have dan(K+1)(I) = dn+1. Moreover, given X ⊂ N, then
σ(X) 6 σ(I) if dan(K+1)(X) > dn+1 for each n ∈ N.

Proof. The first assertion follows directly from the definitions of I and dk(I). With
the respect to the second assertion, observe that, for each k ∈ N, we have dk(I) =
dank

(K+1)(I), where
nk = max{n : an(K + 1) 6 k}.

This means that, if dan(K+1)(X) > dn+1, then dk(X) > dk(I) for all k, and consequently
σ(X) 6 σ(I) = σ(I).

3 Complementing pairs of N

Complementing pairs of N admit the following characterization (see [9] and the references
therein). Given two infinite subsets X1 and X2 of N, we have N = X1 ⊕X2 if and only if
there exists a sequence mi, with mi > 2 for all i ∈ N, such that X1 is the set of all finite
sums

∑

i>0 x2iM2i and X2 is the set of all finite sums
∑

i>0 x2i+1M2i+1, where M0 = 1,

Mi =
∏i

j=1 mj and 0 6 xi < mi+1. Let

M+
i =

i
∏

j=1, j even

mj, M−
i =

i
∏

j=1, j odd

mj,

so that Mi = M+
i M

−
i .

Example 6. Take mi = 2 for all i ∈ N. Set In =
{
∑2n

i=0 x2iM2i : 0 6 xi 6 1
}

, with
Mi = 2i:

I0 = [0, 1], I1 = [0, 1] ∪ [4, 5], I2 = {[0, 1] ∪ [4, 5]} ∪ {[16, 17] ∪ [20, 21]}, . . .

For K = 1, an = 2n, and dn = 22n+1+1
3

, we have X1 = I(an, dn, K).

More generally, given a complementing pair N = X1⊕X2, takeK = m1−1, an =
M−

2n+1

m1

and

dn = M2n−{(m2n−1− 1)M2n−2+(m2n−3− 1)M2n−4+ . . .+(m3− 1)M2+(m1− 1)}. (6)
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With respect to these choices, the sets In in (3) are given by I0 = {x0 : 0 6 x0 < m1}
and

In =
{

2n
∑

i=0

x2iM2i : 0 6 xi < mi+1

}

.

Hence X1 = I(an, dn, K).

Proposition 7. If N = X1 ⊕X2, then X1 is not piecewise syndetic and σ(X1) = 0.

Proof. To see that X1 is not piecewise syndetic we only have to check that lim dn = ∞.
We can rewrite (6) as

dn = (M2n −M2n−1) + (M2n−2 −M2n−3) + . . .+ (M2 −M1) + 1.

Since mi > 2 for all i > 1, we have M2i − M2i−1 > 1, which means that dn is strictly
increasing.

We say that A ⊂ N is a rainbow set with respect to a coloring τ : N → N if |τ(A)| = |A|.

Theorem 8. Given a complementing pair N = X1 ⊕X2, consider the associated infinite
coloring τ , as defined in the Introduction section. If

lim
n

m2n

M−
2(n−1)

= 0, (7)

then there does not exist d ∈ N and arbitrarily large sets A such that gap(A) 6 d and A
is either monochromatic or rainbow..

Proof. Observe that the number of colors in each interval of the form Jk
i = [kM2i, (k +

1)M2i] is precisely the cardinality of the set
{
∑2i−1

j=0 x2j+1M2j+1 : 0 6 xj < mj+1

}

. Hence,

each interval Jk
i = [kM2i, (k+1)M2i] has exactlyM+

2i colors and each color appears exactly
M−

2i times. Let A = {b1, . . . , bn} be a finite subset of N and choose s minimal so that
A ⊆ Jk−1

s ∪Jk
s . We have 2M2(s−1) 6 bn−b1 6 gap(A)n. On the other hand, |τ(A)| 6 2M+

2s.
Then

|τ(A)| 6
gap(A)|A|m2s

M−
2(s−1)

. (8)

Hence, if gap(A) 6 d for some fixed d and |A| is large enough, from condition (7) we get
|τ(A)| < |A|, that is, we can not have arbitrarily large rainbow sequences with bounded
gaps.

On the other hand, τ does not admit arbitrarily large monochromatic sequences with
uniformly bounded gaps because X1 is not piecewise syndetic and, for each color n0, the
monochromatic subset τ−1(n0) is just the translation copy of X1 by n0.

Remark 9. The infinite coloring used in [5] is the one defined by the complementing pair
N = X1 ⊕X2 with X1 the set of all finite sums

∑

i even 2
i and X2 the set of all finite sums

∑

i odd 2
i. In this case, mi = 2 for all i > 1, and condition (7) certainly holds.
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4 Asymptotical gap structure of positive density sets

Not surprisingly, the sequence dk(X) defined by (1) grows at most linearly with k for sets
X with positive density.

Proposition 10. Let X be a subset of N with positive lower density σ := σ(X). Then
dk(X) = O(k) as k → ∞.

Proof. Given 0 < ǫ < σ, for all sufficiently large n, we must have (σ−ǫ)n+1 < |[1, n]∩X|.
Then the gap of [1, n] ∩X is at most n− (σ − ǫ)n. Hence d⌈(σ−ǫ)n⌉+1(X) 6 n− (σ − ǫ)n.
Taking k = ⌈(σ − ǫ)n⌉+ 1, we conclude that dk(X) = O(k) as k → ∞.

As the following theorem shows, this asymptotical bound is not optimal.

Theorem 11. Let ̟ : [0,+∞[→ R be a continuous increasing function so that ̟(x)/x2

decreases with x. Then, if the integral
∫ +∞

1

̟(x)

x2
dx (9)

diverges, any subset X of N with ̟(k) = O(dk(X)) as k → ∞ has upper density zero.

Proof. Let X be a subset of N with ̟(k) = O(dk(X)) and consider the increasing se-
quences an and dn defined by an = 2n and dn = d2n(X). Consider the subset I =
I(an, dn, 1). By Lemma 5, σ(X) 6 σ(I).

Since ̟(k) = O(dk(X)), the series

∞
∑

n=1

( 1

an−1

−
1

an

)

dn =
∞
∑

n=1

d2n(X)

2n
,

diverges if
∑∞

n=1
̟(2n)
2n

diverges. But, taking the substitution x = 2y, we get

∫ ∞

0

̟(2y)

2y
dy =

1

ln 2

∫ ∞

1

̟(x)

x2
dx.

Hence, by the integral convergence test,
∑∞

n=1
̟(2n)
2n

diverges. By Lemma 2, we conclude
that σ(I) = 0, and consequently σ(X) = 0.

Conversely,

Theorem 12. Let ̟ : [0,+∞[→ R be a continuous increasing function so that ̟(x)/x2

decreases with x. Then, if the integral (9) converges, there exists a subset X of N with
̟(k) = O(dk(X)) as k → ∞ and positive upper density.

Proof. Set an = 2n, dn = ⌈̟(2n)⌉, and consider the subset I = I(an, dn, 1). If the
integral (9) converges, we can apply the integral convergence test, as in the proof of
Theorem 11, to conclude that the series (5) converge, and consequently σ(I) > 0. Since
̟ is increasing and, for 2n < k < 2n+1, we have dk(I) = d2n+1(I) = dn+1, it is clear that
̟(k) = O(dk(I)). Set X = I, and we are done.
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Remark 13. In [7], R. Salem and D.C. Spencer studied the influence of gaps in the density
of integer subsets. However, a different notion of gap structure is considered there. More
precisely, given an positive increasing function ω of the real nonnegative variable x, they
were concerned with subsets X of N satisfying the following property: for any closed
interval [a, a + l], with a > 0 and l > 0, there exists an open interval not less than ω(l)
which contains no points of X. For that purpose, they used sequences u(n) defined by

u(n) = g0n+ g1

[n

2

]

+ g2

[ n

22

]

+ . . .+ gp

[ n

2p

]

+ . . . ,

where gp is a given sequence of positive integers. For g0 = 1 and gp > 1, these sequences
are of the form I(an, dn, 1), with an = 2n and dn = g0 + g1 + . . . + gn. In spite of the
different notions of gap structure, the asymptotical bounds given by Theorems 11 and 12
are the same as those given by Theorems I and II in [7].

5 Asymptotical gap structure and infinite colorings

Next we investigate the asymptotical growth with k of the sequence dk(τ) defined by (2).

Theorem 14. Given an infinite coloring τ : N → N, we have dk(τ) = O(k2).

Proof. Set θ(n) = |τ([1, n])| (the number of distinct colors occurring in the interval [1, n])
and define αn = ⌈ n

θ(n)
⌉. By the pigeonhole principle, there always exists a monochromatic

subset Aαn
of [1, n] with αn elements. For each n, consider also a rainbow subset Bθ(n) of

[1, n] with θ(n) elements and θ(n) distinct colors.
Suppose first that αn is bounded: there exists C > 1 such that 1 6

n
θ(n)

6 C for all
n ∈ N. In this case,

gap(Bθ(n)) 6 n− (θ(n)− 1) 6 (C − 1)θ(n) + 1,

which means that dk(τ) = O(k).
If αn is not bounded, then we can assume, by taking a subsequence if necessary, that

αn → ∞. We have

gap(Aαn
) 6 n− (αn − 1) 6 ⌈n/θ(n)⌉θ(n)− ⌈n/θ(n)⌉+ 1.

Suppose that there exists ξ > 0 such that ξ 6 ⌈n/θ(n)⌉/θ(n) for all n. In this case,

gap(Aαn
) 6 1/ξ⌈n/θ(n)⌉2 − ⌈n/θ(n)⌉+ 1,

and dk(X) = O(k2). Finally, if ⌈n/θ(n)⌉/θ(n) → 0 (or some of its subsequences), then,
for some η > 0 and n sufficiently large, we have gap(Bθ(n)) 6 ηθ2(n) − θ(n) + 1, and
consequently dk(X) = O(k2).
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Example 15. When τ is the infinite coloring of N associated to the complementing pair
N = X1 ⊕ X2, where X1 is the set of all finite sums

∑

x2iM2i, with 0 6 xi < mi+1, we
can give the following asymptotical bounds for dk(τ). To simplify the discussion, assume
further that, for some m > 2, we have mi = m for all i > 1. In this case, from (6) we can
check that

dn =
m2n+1 + 1

m+ 1
.

On the other hand, |X1 ∩ [0,M2n]| = mn + 1 and for any other interval [α, β] with
|X1 ∩ [α, β]| = mn + 1 we have

gap(|X1 ∩ [α, β]|) > gap(|X1 ∩ [0,M2n]|) = dn.

This means that gap(A) grows asymptotically as fast as |A|2 for monochromatic subsets
A. From (8) we see that gap(A) is asymptotically bounded below by |A| for rainbow sets
A.
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de Genève, 1980.

[7] R. Salem and D. C. Spencer, The influence of gaps on density of integers, Duke
Math. J., Volume 9, Number 4, 855-872, 1942.
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