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Abstract

Treewidth is an important and well-known graph parameter that measures the
complexity of a graph. The Kneser graph Kneser(n, k) is the graph with vertex set
([Z]), such that two vertices are adjacent if they are disjoint. We determine, for
large values of n with respect to k, the exact treewidth of the Kneser graph. In the
process of doing so, we also prove a strengthening of the Erdés-Ko-Rado Theorem
(for large n with respect to k) when a number of disjoint pairs of k-sets are allowed.
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1 Introduction

A tree decomposition of a graph G is a pair (T, (B, C V(G) : x € V(T'))) where T is a
tree and (B, C V(G) : x € V(T)) is a collection of sets, called bags, indexed by the nodes
of T'. The following properties must also hold:

e for each v € V(G), the nodes of T' that index the bags containing v induce a non-
empty connected subtree of T,

e for each vw € E(G), there exists some bag containing both v and w.
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The width of a tree decomposition is the size of the largest bag, minus 1. The treewidth
of a graph G, denoted tw(G), is the minimum width of a tree decomposition of G.

Treewidth is an important concept in modern graph theory. Treewidth was initially
defined by Halin [6] (with different nomenclature to the modern standard) and then later
by Robertson and Seymour [16], who used it in their famous series of papers proving the
Graph Minor Theorem [15]. The treewidth of a graph essentially describes how “tree-like”
it is, where lower treewidth implies a more “tree-like” structure. (A forest has treewidth at
most 1, for example.) Treewidth is also of key interest in the field of algorithm design—for
example, treewidth is a key parameter in fixed-parameter tractability [1].

Let [n] = {1,...,n}. For any set S C [n], a subset of S of size k is called a k-set,
or occasionally a k-set in S. Let (‘Z) denote the set of all k-sets in S. We say two sets
intersect when they have non-empty intersection.

The Kneser graph Kneser(n, k) is the graph with vertex set ([
are adjacent if they are disjoint.

Kneser graphs were first investigated by Kneser [9]. The chromatic number of the
graph Kneser(n, k) was shown to be n — 2k + 2 by Lovéasz [11], as Kneser originally
conjectured. This was an important proof due to the development of the topological
methods involved. Many other proofs of this result have been found, for example consider
[19], which gives a more combinatorial version. The Kneser graph is also of interest with
regards to fractional chromatic number [17]. The famous Erdés-Ko-Rado Theorem [2]
has a well-known relationship to the Kneser graph, as does the generalisation to cross-
intersecting families by Pyber [14]. We discuss these in more detail in Section 2, and shall
use both of these results to prove the following two theorems about the treewidth of the
Kneser graph.

n]

, ), such that two vertices

Theorem 1. Let G be a Kneser graph with n > 4k* — 4k + 3 and k > 3. Then

tw(G) = (n; 1) —1.

This theorem is our main result, giving an exact answer for the treewidth of the Kneser
graph when n is sufficiently large. In order to prove this, we show that (";1) — 1 is both
an upper bound and lower bound on the treewidth. We construct a tree decomposition
directly in Section 3 to prove an upper bound. In Section 4 we prove the lower bound
by using the relationship between treewidth and separators. In Section 6, we further
conjecture that Theorem 1 extends to lower values of n.

We also prove the following more precise result when k& = 2.

Theorem 2. Let G be a Kneser graph with k = 2. Then

0 ifn<3
1 ifn=4
4 ifn=>5
(", -1 ifn>6.

tw(G) =
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The upper bounds for Theorem 2 are proved in Section 3, and the lower bounds in
Section 5.

Finally, in the process of proving Theorem 1, we prove the following generalisation of
the Erdés-Ko-Rado Theorem (Theorem 6 in Section 2), which says that if n > 2k and H
is a complete subgraph in the complement of Kneser(n, k) then |H| < (Z:i) We prove
the same bound for balanced complete multipartite graphs.

Theorem 3. Sayp € [2,1) and n > max(4k* —4k+3, 1%p(/<:2—1)+2). If H is a complete
multipartite subgraph of the complement of Kneser(n, k) such that no colour class contains

more than p|H| vertices, then |H| < (7).

Note that similar, but incomparable, generalisations of the Erdds-Ko-Rado Theorem
have recently been explored in [5, 4, 18]. Theorem 3 is proven in Section 4, since it follows
almost directly from our proof of the lower bound on the treewidth of a Kneser graph.

2 Basic Definitions and Preliminaries

From now on, we refer to the graph Kneser(n, k) as G, with n and k implicit.

Let A(H) be the maximum degree of a graph H and 6(H) be the minimum degree
of a graph H. Also let a(H) be the size of the largest independent set of H, where an
independent set is a set of pairwise non-adjacent vertices. If £ = 1, then G is the complete
graph. If n < 2k then G contains no edges. If n = 2k then G is an induced matching.
From now on, we shall assume that n > 2k + 1 and k£ > 2, since the treewidth is trivial
in the other cases.

In order to prove a lower bound on the treewidth of the Kneser graph, we use a known
result about the relationship between treewidth and separators.

Definition Given a constant p € [2,1), a p-separator (of order k) is a set X C V(G)

such that | X| < k and no component of G — X contains more than p|G — X| vertices.

Theorem 4. [16] For eachp € [2,1), every graph G has a p-separator of order tw(G)+1.

It can easily be shown that we can partition the components of G — X into two parts,
such that the components in a part contain, in total, at most p|G — X| vertices. This
gives the following lemma.

Lemma 5. Let X be a p-separator. Then V(G — X)) can be partitioned into two parts A
and B, with no edge between A and B, such that

o (1-p)IG - X[ <A <35|G - X],
e 1|G— X| < |B| <plG-X]|.

We use a few important well known combinatorial results.
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Theorem 6 (Erdds-Ko-Rado [2, 7]). Let G be Kneser(n, k) for some n > 2k. Then
al(G) = (Zj) If n > 2k + 1 and A is an independent set such that |A| = (Zj), then
A = {v|i € v} for a fized element i € [n].

The original Erdés-Ko-Rado Theorem defines A as a set of k-sets in [n], such that the
k-sets of A pairwise intersect. Our formulation in terms of vertices in the Kneser graph is
clearly equivalent. We will use Theorem 6 when determining an upper bound for tw(G).

The second major result is by Pyber [14]. Let A and B be sets of vertices of the Kneser
graph G, such that for all v € A and w € B the pair vw is not an edge. Then we say the
pair (A, B) are cross-intersecting families.

Theorem 7 (Erdds-Ko-Rado for Cross-Intersecting Families [14, 13]). Let n > 2k and

let (A, B) be cross-intersecting families in the Kneser graph G. Then |A||B| < (2:1)2

If n > 2k + 1 and (A, B) are cross-intersecting families such that |A||B| = (2:1)2, then
A =B = {v|i € v} for a fized element i € |n].

As with Theorem 6, the original formulation by Pyber of Theorem 7 is more general.
We have given the result in an equivalent form that is sufficient for our requirements.

Let X be a %—separator and A,B the parts of the vertex partition of G — X as in
Lemma 5. Now for all v € A and w € B, v and w are in different components and as
such are non-adjacent. So (A, B) are cross-intersecting families. We know |A| = ¢|G — X|

where : < ¢ < 3. By Theorem 7, it follows that ¢(1 — ¢)|G — X|* < (2:1)2 It follows

that |G — X| < \%(Zj) (We leave the precise calculation to the reader.) This gives a
lower bound on | X|, and as such a lower bound on the treewidth (by Theorem 4). Hence
() = (7) = 5G2) — 1

However, note that the parts A and B of V(G — X) are vertex disjoint, but that the
definition of a pair of cross-intersecting families does not require this. In fact, Theorem 7
shows that in the case where | A||B] is maximised, A = B. We show we can do better
than the above naive lower bound on tw(G) when A and B are disjoint.

Before considering our final preliminary, we provide the following definitions. Consider
all of the a-sets in [b]. Define the colexicographic or colex ordering on the a-sets as follows:
if z and y are distinct a-sets, then x < y when max(z — y) < max(y — z). This is a strict
total order. A set X of a-sets in [b] is first if X consists of the first | X| a-sets in the colex
ordering of all the a-sets in [b].

Now consider the colex ordering of a-sets in [b]. All of the a-sets in [i] (where i < b)
come before any a-set containing an element greater than or equal to ¢ + 1. To see
this, note if z is an a-set in [i] and y is an a-set with j € y such that j > i + 1, then
max(z —y) < max(z) < ¢, and max(y —z) > j > i+ 1 since j € y — . We will use this
when determining the make-up of first sets in Section 4.

Let X be a set of a-sets in [b]. For ¢ < a, the c-shadow of X is the set {x : |x| = ¢, and
Jy € X such that  C y}. That is, the c-shadow contains all c-sets that are contained
within a-sets of X. If x is an a-set in [b], let the complement of = be the (b — a)-set
y = [b] — 2. If X is a set of a-sets on [b], then the complement of X is X := {y : y is the
complement of some x € X}. Note | X| = |X].
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Lemma 8 (A first set minimises the shadow [10, 8] (see [3] for a short proof)). Let X be
a set of a-sets on [b], ¢ < a and S be the c-shadow of X. Suppose |X| is fived but X is
not. Then |S| is minimised when X is first.

This idea is also used by Pyber [14] and Matsumoto and Tokushige [13]. Intuitively,
the shadow S should be minimised whenever the a-sets of X “overlap” as much as possible,
so that each c-set in S is a subset of as many a-sets as possible.

3 Upper Bound for Treewidth

This section proves the upper bounds on tw(G) in Theorems 1 and 2.

In both Theorem 1 and 2, the upper bound is almost always (";1) — 1. The only
exceptions are the trivial cases (when n < 2k), and the case when k = 2 and n = 5, which
is the Petersen graph. The Petersen graph is well-known to have treewidth 4 ([12], for
example). What follows is a general upper bound on the treewidth of any graph, which

is sufficient to prove the remaining cases.
Lemma 9. If H is any graph, then tw(H) < max{A(H),|V(H)| — a(H) — 1}.

Proof. Let o := «(H). We shall construct a tree decomposition with underlying tree T,
where T is a star with o(H) leaves. Let R be the bag indexed by the central node of T,
and label the other bags By,..., B,. Let X := {x1,...x,} be a maximum independent
set in H. Let R :=V(H)— X and B; := N(z;) U{x;} for alli € {1,...,a}. We now
show this is a tree decomposition:

Any vertex not in X is contained in R. Given the structure of the star, any induced
subgraph containing the central node is connected. Alternatively, if a vertex is in X, then
it appears only in bags indexed by leaves. However, since X is an independent set, z; € X
appears only in B;, not in any other bag B;. A single node is obviously connected. If vw
is an edge of H, then at most one of v and w is in X. Say v = x; € X. Then v, w both
appear in the bag B;. Otherwise neither vertex is in X, and both vertices appear in R.

So this is a tree decomposition. The size of R is |V (H)| — a(H). The size of B; is the
degree of z;, plus one, which is at most A(H) + 1. From here our lemma is proven. [

We now consider this result for the Kneser graph itself.

Lemma 10. If G is a Kneser graph with k > 2 and n > 2k + 1, then tw(G) < (kfl) —1.

Proof. By Lemma 9 and Theorem 6, and since n > 2k + 1,

tw(G) < max {A(G), [V(G)] — a(G) — 1} = max { (" . k") (Z) - (Z: D _ 1} |

Since k > 2, tw(G) < (";1) — 1, as required. ]
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4 Separators in the Kneser Graph

To complete the proof of Theorem 1, it is sufficient to prove a lower bound on the
treewidth. The following lemma, together with Theorem 4, provides this. It is the heart
of the proof of Theorem 3.

Lemma 11. Let X be a p-separator of the Kneser graph G. If n > max(4k* — 4k +
3, 2= (k* — 1)+ 2), then |X| = (".").

’ 1—p

Proof. Assume, for the sake of a contradiction, that |X| < (*.'). Then |G — X| > (}7)).
By Lemma 5, G — X has two parts A and B such that (1 —p)|G — X| < |4] < 5|G — X|
and |G — X| < |B| < p|G — X| and no edge has an endpoint in both A and B.

For a given element i € [n], let A;:={v e A:i€v}. Alsodefine A_;:={veAd:i¢
v}. So A; and A_; partition the set A, for any choice of i. Define analogous sets for B.

Claim 1. There exists some i such that |B;| > | B|.

Proof. Since |A| > (1—p)|G—X]| > 0, there is a vertex v € A. Without loss of generality,

v=A{1,...,k}. Each w € B is not adjacent to v, and so w and v intersect. Thus each w

must contain at least one of 1,..., k. Hence at least one of these elements appears in at

least +|B| of the vertices of B, as required. O
Without loss of generality, |B,| > 1|B|.

Claim 2. |B.| > (375) + (175).

Proof. |B| > |G — X| > £(77]). Then by Claim 1 and our subsequent assumption,
|B,| > 1|B| > %|G — X| > i(gj) Assume for the sake of a contradiction that
[Bal < (i) + (i23)- So

1 /n—1 n—3 n—2
— < + )
Qk(k—l) (l{;—?) (k—Z)

(n— 1)1 < 2k(k — 1)((n — k)(n — 3)! + (n — 2)1).

Thus

Hence
n?>—3n+2=(n—-1)(n—2)<2k(k—1)(2n — k —2) = 4k>n — 4kn — 2k — 2k* + 4k.

So n? + (4k — 4k* — 3)n + 2k3 + 2k* — 4k + 2 < 0. Since n > 4k? — 4k + 3, it follows
2k3 + 2k? — 4k 4+ 2 < 0. Given that k& > 1, this provides our desired contradiction. O

Consider the set A_,,, that is, the complements of the vertices in A that do not contain
n. So every set in A_, contains n. Let A_, := {v—n:v€ A_,}. That is, remove n
from each set in A_,. There is clearly a one-to-one correspondence between (n — k)-sets
in A, and (n —k — 1)-sets in A_,".

Similarly, define B} := {v —n :v € B,}. That is, remove from each vertex of B, the
element n, which they all contain. The resultant sets are (k — 1)-sets in [n — 1].
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Claim 3. If v* € B* and w* € A_,", then v* € W*.

Proof. Assume, for the sake of a contradiction, that v* C w*. Then it follows that v C w,
by re-adding n to both sets. Thus v and w are adjacent. However, v € B, C B and
w € A,, C A, which is a contradiction. H

Let S be the (k — 1)-shadow of A", Hence if v € B, then v ¢ S, by Claim 3. So,

it follows that | N
n —
B* C - S.
» < (k 1 ) °

Hence we have an upper bound for |B}| when we take |S| to be minimised. By
Lemma 8, | S| is minimised when A_," is first.

Claim 4. |A_,| < (723).

Proof. |A_,| = |[A_,| = |A,"|, so it is sufficient to show that [A_,"| < (7~3). Assume
for the sake of contradiction that [A_,"| > = =("2).

k—2 n—k—1
Firstly, we show that |S| > (Z:il)’) It is sufficient to prove this lower bound when
|S| is minimised. Hence we can assume that A" is first, and contains the first (n:il)

(n — k — 1)-sets in the colexicographic ordering. That is, it contains all (n — k — 1)-sets
on [n — 3]. This is because there are (nfgil) such sets, and they come before all other
sets in the ordering. In that case, S contains all (k — 1)-sets in [n — 3]. Since all of the
(k — 1)-sets in [n — 3] are in S, it follows that |S| > (1), as required.

Then it follows that [B:| < (-1) — (723) = (373) + (}=2). However, |B}| = |B,| >

(Z:;’) + (Z:g) by Claim 2. This provides our desired contradiction. ]

Claim 5. |A,| > k_i1|A|

Proof. First we show that |A,| > k|A_,|. Suppose otherwise, for the sake of a con-
tradiction. By Claim 4, |A] = |A,| + [A_,] < (k+ 1)[A_.| < (k+1)(}73). But
|Al > (1 - p)|G — X|. Hence (1 —p)(?-}) < (k+1)(}73). Thus (n — 1)(n —2) <
1%p(k +1)(k—1)(n—k) < ﬁ(/{: +1)(k—=1)(n—2). Thus n < 1%})(/{:2 — 1) + 1, which
contradicts our lower bound on n.

Then |A,| = k|A_,| = k(J4]| — |A.]). So (k+ 1)|A,| > k|A| as required. O
Clatm 6. B, = B.

Proof. Suppose, for the sake of a contradiction, that there exists some vertex v € B such
that n ¢ v. So each w € A,, contains n (by definition) and some element of v (which is
not n), since vw is not an edge. Any vertex of A, can be constructed as follows—take
element n, choose one of the k elements of v, and choose the remaining £ — 2 elements
from the remaining n — 2 elements of [n]. Thus

n—2
Al <1k .
A, (k_Z)
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Note this is actually a weak upper bound, since we have counted some of the vertices of
A, more than once. Recall |A| > (1 —p)|G — X| > (1 —p) (Zj) So by Claim 5,

n—1 n—2
Al <k .
k:+1 ( ) k+1| | (k:—2)

Thus 7= < l%p(k + 1) and n < %p(k — 1) + 1, which contradicts our lower bound on

n. ]
Claim 7. A, = A.

Proof. This follows by essentially the same argument as Claim 6. Assume our claim does
not hold and there exists v € A such that n ¢ v. By Claim 6, |B,| = |B| > % (};). There
is an upper bound on |B,| equal to the upper bound on |A,| in the previous proof. Then

1/n—1 n—2
Z < = <
2(k—1)\‘B’ |B"|\k<k—2>’

and so n < 2k(k — 1) + 1. This contradicts our lower bound on n. O
Claims 6 and 7 show that every vertex in G — X = AU B contains n. Thus |G — X| <
(7~}) and |X| > ("."), our desired contradiction. O

By Lemma 11, if X is a ——separator of the Kneser graph G and n > 4k? — 4k + 3, then
|X| > (""). Hence by Theorem 4, tw(G) > (") — 1. This proves Theorem 1.
Also, Lemma 11 allows us to prove Theorem 3.

Proof of Theorem 3. Let C1,...,C, be the colour classes of H. Recall G = Kneser(n, k).
Let X := V(G) — V(H), so that X,C},...,C, is a partition of the vertex set of G (and
also G). In G there are no edges between any pair C;, C;, and |C;| < p|H| = p|G — X| for
each i. So X is a p-separator of G, and | X| > (".') by Lemma 11. Hence |H| < (}_}). O

5 Lower Bound for Treewidth in Theorem 2

To complete our proof of Theorem 2, we need to obtain a lower bound on the treewidth
when k£ = 2. If n < 4, then Theorem 2 is trivial. When n = 5, then G is the Petersen
graph, which contains a Ks-minor forcing tw(G) > 4. Hence we may assume that n > 6.

Assume, for the sake of a contradiction that tw(G) < (",') — 1. Let (T, (B, : z €
V(T))) be a minimum width tree decomposition for G, and normalise the tree decompo-
sition such that if xy € E(T), then B, € B, and B, € B,. By Theorem 4, there exists
a %—separator X such that | X| < (”;1) In fact, by the original proof in [16], we can go
further and assert that X is a subset of a bag of (B, : x € V(7).

Now |G — X| = (}) — |X| > ("11) =n — 1. By Lemma 5, V(G — X) has two parts A
and B such that |G — X| < |Al, |B] < 2|G — X| and there is no edge with an endpoint in
A and B. (Note that this bound on |A| and |B| is slightly weaker than in Lemma 5, but
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has the benefit of being the same on both parts.) Since n > 6, it follows that |A|, |B| > 2.
By Theorem 6, V(G — X) is too large to be an independent set, and so it contains an
edge, with both endpoints in A or both endpoints in B.

Without loss of generality this edge is {1,2}{3,4} € A. Then B C {{1,3},{1,4},
{2,3},{2,4}}. If B contains an edge, then V(G — X) C {{1,2},{1,3},{1,4},{2,3},
{2,4},{3,4}} and has maximum order 6. Otherwise, without loss of generality, B =
{{1,3},{1,4}} and A = {{3,4},{1,i}|i ¢ {1,3,4}}, so |G — X| = n. (Note A must be
exactly that set, or |G — X| is too small.)

If n > 7, then |G — X| > 7 and the first case cannot occur. However in the second
case, |[B| =2 < % -7 < %n So neither case can occur, and we have forced a contradiction
on either |G — X| or |B|. This completes the proof when n > 7. Hence, let n = 6, and
note |G — X| = 6 in either case.

Now we use the fact that X is a subset of some bag B,. Now for all x € V(T),
|B,| < () —1=09. Since |G — X| = 6, it follows |X| = 9. Hence X is exactly a bag
of maximum order. For either choice of G — X, note that A is a connected component.
So there is some subtree of T'— x that contains all vertices of A. Let y be the node of
this subtree adjacent to x. Also note, for either choice of G — X, that each vertex of
X has a neighbour in A. So every vertex of B, is also in bag B,, which contradicts our
normalisation.

Thus, if n > 6, then tw(G) > (”51) — 1. This completes the proof of Theorem 2.

6 Open Questions

We conjecture that Theorem 1 should also hold for smaller values of n.

Conjecture 12. Let G be a Kneser graph with n > 3k and k > 2. Then tw(G) =
(") -1

This conjecture follows directly from Theorem 2 when £ = 2. The Petersen graph also
shows that n > 3k is a tight bound when k£ = 2.

In general, we can determine a slightly better tree decomposition when n < 3k — 1.
Let X = {v € V(G) : 1 € v}, and let W be an independent set in V(G) — X such that
no two vertices of W have a common neighbour in X. We define a tree decomposition
for G with underlying tree T as follows. Let r denote the root node of T, and let r have
one child node for each vertex in W and each vertex in X adjacent to no vertex in W.
Label each of these child nodes by their associated vertex of G. Let each node labeled by
a vertex w € W have one child node for each vertex of N(w) N X. Label each of those
child nodes by their associated vertex of (G, and note that since every vertex of X has at
most one neighbour in W, no vertex of GG labels more than one node of 7T'.

Define the bag indexed by r to be V(G) — W — X. Note this bag contains less than
(”_1) vertices when W # (). If a node is labeled by a vertex v € X, let the corresponding

k

bag be N(v)U{v}. These bags contain (";k) + 1 vertices. If a node is labeled by a vertex

w € W, let the corresponding bag be {w} U{u : uw € E(G),1 ¢ u} U{u : ux € E(G)
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where zw € E(G) and 1 € x}. These bags contain less than (" ') vertices whenever

|W| > 2, since they contain no vertex in X, and each contains only one vertex from W.
This is a valid tree decomposition, but we omit the proof. When |W| > 2, the width of
this tree decomposition is less than the width given by Lemma 9.

However, when |[W| < 1, this tree decomposition has the same width as given by
Lemma 9. We can construct W such that |[W| > 2 iff n < 3k — 1. For example, let
W={{2....,k+1)}L{(k+1),...,2k}}. If n < 3k — 2, then any vertex of X must be
non-adjacent to at least one vertex of W. Alternatively, if n > 3k — 1 and |W| > 2, then
there exists two vertices z,y € W such that |z Uy| < 2k — 1. Then X contains a vertex
adjacent to both z and y. Hence, for general n, we cannot improve the lower bound on n
in Theorem 1 to 3k — 2 or below. This does leave a question about what may occur for
n = 3k — 1. It is possible that Theorem 1 holds for n > 3k — 1, with the Petersen graph
as a single exception.
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