
Nested Recursions, Simultaneous
Parameters and Tree Superpositions

Abraham Isgura Vitaly Kuznetsovb∗ Mustazee Rahmana†

Stephen Tannya

aDepartment of Mathematics
University of Toronto

Toronto, Canada

umarovi@gmail.com {mustazee,tanny}@math.toronto.edu
bCourant Institute of Mathematical Sciences

New York University
New York, U.S.A.

vitaly@cims.nyu.edu

Submitted: Jan 12, 2013; Accepted: Feb 28, 2014; Published: Mar 10, 2014

Mathematics Subject Classifications: 11B37, 05C05, 05A15, 05A19

Abstract
We apply a tree-based methodology to solve new, very broadly defined families

of nested recursions of the general form R(n) =
∑k

t=1R(n− at −
∑p

i=1R(n− bti)),
where at are integers, bti are natural numbers, and k, p are natural numbers that we
use to denote “arity” and “order,” respectively, and with some specified initial condi-
tions. The key idea of the tree-based solution method is to associate such recursions
with infinite labelled trees in a natural way so that the solution to the recursions
solves a counting question relating to the corresponding trees. We characterize cer-
tain recursion families within R(n) by introducing “simultaneous parameters” that
appear both within the recursion itself and that also specify structural properties
of the corresponding tree. First, we extend and unify recently discovered results
concerning two families of arity k = 2, order p = 1 recursions. Next, we investigate
the solution of nested recursion families by taking linear combinations of solution
sequence frequencies for simpler nested recursions, which correspond to superposi-
tions of the associated trees; this leads us to identify and solve two new recursion
families for arity k = 2 and general order p. Finally, we extend these results to
general arity k > 2. We conclude with several related open problems.

Keywords: nested recursion; meta-Fibonacci sequence; (α, β)-Conolly sequence;
simultaneous parameter; slowly growing (or slow) sequence; frequency function;
tree superposition

∗V. Kuznetsov was supported by an Ontario Graduate Scholarship and a NSERC PGS grant.
†M. Rahman’s research was supported by a NSERC CGS grant.

the electronic journal of combinatorics 21(1) (2014), #P1.49 1

1 Introduction

In this paper, all values of the parameters and variables are integers.
Loosely speaking, a nested recurrence relation (also called a meta-Fibonacci recursion)

is any recursion where some argument contains a term of the recursion. In a series of recent
papers (see [1, 3, 9, 10, 11, 12]) infinite labelled trees are used to solve certain families of
nested recursions with the following general form:

R(n) =
k∑
t=1

R(n− at −
p∑
i=1

R(n− bti)), (1.1)

where at are integers, bti, k, and p are natural numbers, and with some specified initial
conditions. We call k and p the “arity” and “order,” respectively, of the recursion, and
refer to a recursion with arity k and order p as k-ary order p. Sometimes we refer to a
recursion of the form (1.1) as a generalized Conolly-Hofstadter (CH) recursion, for reasons
which will become clear below.

A solution to (1.1), if it exists, is the (unique) sequence that satisfies the recursion
together with its initial conditions. In what follows we often use R(n) or R to refer both
to the recursion and its solution, if one exists1.

We say that a solution sequence is slowly growing or slow if it has the property that
successive differences are either 0 or 1 and it tends to infinity. Any slowly growing sequence
A(n) can be described by its frequency sequence φA(v), which counts the number of times
that v > 0 occurs in A(n).

It is evident that the nesting structure of (1.1) makes it impossible to apply the
usual techniques used for solving (ordinary) difference equations, such as characteristic
polynomials and generating functions.2 Further, except in the simplest cases, there is no
explicit or closed form for the solution.

As in [1, 3, 9, 10, 11, 12], we solve the recursion using our “tree-based” methodology.
By this we mean that we show the existence of an infinite sequence that satisfies the
recursion together with its initial conditions, where the nth term of the solution sequence
has a counting interpretation in terms of a labelled infinite tree. In this combinatorial
interpretation, we have an infinite tree, labelled with integers in preorder, and the solution
sequence to the nested recursion counts labels (or some analogue) on the leaves of this
tree. It follows that this solution method will naturally identify a slow solution, which is
why we restrict ourselves to such solutions in this paper.3

1For example, we use Q(n) or Q to refer to Hofstadter’s nested recursion, which is defined in [4] by
Q(1) = Q(2) = 1 and Q(n) = Q(n − Q(n − 1)) + Q(n − Q(n − 2)) for n > 2. Q is a famous example
where it is not known whether or not a solution exists, although the first billion Q recursion values have
been computed.

2In some cases (see [3, 11] for examples) one can derive generating functions, difference sequences, and
frequency sequences for a solution to the nested recursion, but only as a result of prior analysis of the
nature of the solution sequence.

3See [7] where the tree-based methodology is modified to derive a combinatorial interpretation for a
solution sequence with successive differences that are either 0 or d > 1. Also, in [8] some nested recursions
with slow solutions are studied that do not have a combinatorial interpretation.

the electronic journal of combinatorics 21(1) (2014), #P1.49 2

A fundamental contribution of [10, 11] has been to locate what we call here “simul-
taneous parameters.”4 These are parameters that both appear in the recursion and that
also correspond to structural properties of the infinite tree used to derive and interpret
its solution. For example, in [10], it is shown that the parameters s > 0 and j > 1 can be
introduced into both the original Conolly recursion (see [2])

C(n) = C(n− C(n− 1)) + C(n− 1− C(n− 2)), C(1) = 1, C(2) = 2 (1.2)

and the original H recursion (see [1])

H(n) = H(n−H(n− 1)) +H(n− 2−H(n− 3)), H(1) = H(2) = 1, H(3) = 2 (1.3)

to create the more general recursion families

Rs,j(n) = Rs,j(n− s−Rs,j(n− j)) +Rs,j(n− s− j −Rs,j(n− 2j)) (1.4)

and
Hs,j(n) = Hs,j(n− s−Hs,j(n− j)) +Hs,j(n− s− 2j −Hs,j(n− 3j)). (1.5)

Further, and most importantly, it is shown how to alter the labelling of the infinite binary
trees corresponding to the solution sequence to C(n) and H(n) respectively, to create
new labelled infinite binary trees that correspond to the solution sequences for the more
general recursion families including the additional parameters s and j. For example, to
derive the solution for (1.4), s labels are inserted in the previously empty nodes along the
upper spine of the infinite binary tree, and j labels are inserted in each node rather than
1 label per node (see [10] for a detailed explanation). The other simultaneous parameters
k and p in (1.1) are discussed in [12] and [3].

Identifying simultaneous parameters has proven to be a very powerful way of expanding
the range of nested recursions that we can solve. For this reason there is significant interest
in finding more such parameters. Once one has been found, the tree methodology offers an
effective way to prove how the simultaneous parameter affects the solution to the nested
recursion.5

The search for new families of nested recursions that can be defined by identifying
simultaneous parameters is the starting point for this paper. In Section 2 we introduce
the new simultaneous parameter m into (1.4) and use the tree methodology to solve the
resulting order 1 recursion, namely,

Rs,j,m(n) = Rs,j,m(n−s−Rs,j,m(n− j))+Rs,j,m(n−s− j−m−Rs,j,m(n−2j−m)) (1.6)

with s a nonnegative integer, j a natural number, m an integer with 0 6 m 6 j, and with
appropriate initial conditions.

4In these earlier papers we referred to these parameters as “shift” parameters. Our new terminology
emphasizes the greater generality of these parameters and the dual role they play in both the nested
recursion and its corresponding infinite tree.

5Note that in this paper all the parameters we discuss are simultaneous.

the electronic journal of combinatorics 21(1) (2014), #P1.49 3

Observe that when m = 0 (1.6) is identical to (1.4) while when m = j we have (1.5).
Thus, the more general recursion family (1.6) contains the above two previously known
but seemingly unrelated recursion families as special cases, and also introduces all of
the intermediate families of recursions lying “between” these two previously unconnected
recursion families. Thus, by solving (1.6) we are able to unify and extend the results in
[10] in an important way.

In view of this beautiful and unexpected result, it is natural to ask if it is possible to
extend known results about families of nested recursions of higher order in some analogous
fashion. It turns out that this is indeed the case. Recall that in [3] the so-called (α, β)-
Conolly recursion of order p is defined as

R(n) = R(n−
p∑
i=1

R(n− 2i+ 1)) +R(n− α− β −
p∑
i=1

R(n− α− β − 2i+ 1)) (1.7)

with α even, β > 0, α + β > 1 and p = α/2 + β. With appropriate initial conditions
this recursion has a slow, Conolly-like solution sequence; that is, its frequency sequence
is of the form α+ βφC(m), where C is the Conolly sequence (1.2). Since it is known (see
[10]) that the frequency sequence of the H sequence (1.3) is the constant sequence 2, it
follows that the frequency sequence for the solution to the order p nested recursion (1.7)
can be written as a linear combination of the frequency sequences to the two simple order
1 nested recurrences H(n) and C(n) defined above. In that sense we can view (1.7) as an
order p extension of these two latter order 1 recursions.

In Section 3 we show how to introduce s, j and m into (1.7) in a natural way. Sub-
sequently, we use tree-based solution methods to solve the resulting nested recursion. In
this way we are able to derive a significant order p generalization of the above earlier re-
sults.6 We identify some interesting analogies between the solution to the extended order
p recursion and the order 1 recursion (1.6) that also contains these same simultaneous
parameters.

As it turns out, however, the solution to the more general order p nested recursion
defined in Section 3 is not entirely analogous to that for the original (α, β)-Conolly order
1 recursion. In particular, its frequency sequence fails to have the elegant property that
it is a linear combination of the frequency sequences of the solutions for (1.4) and (1.5),
which are the s, j extensions to the original C and H recursions.

We address this issue in Section 4, where we enhance the tree-based methodology via
the notion of tree superposition to derive a different 2-ary, order p nested recursion whose
solution does have the desired property that its frequency sequence is a linear combination
of the frequency sequences of the solutions for (1.4) and (1.5). In so doing we demonstrate
the power of the simultaneous parameter approach to solving nested recursions: we are led
to the discovery of the form of this alternate order p recursion through an understanding
of the structure of the labelled infinite tree that would be required to provide the desired

6Note that the higher order generalization in Section 3 includes the findings in Section 2. We retain
Section 2 because it motivates the more complicated results in Section 3 and provides a simpler, more
intuitive setting to introduce the detailed tree-related arguments that we apply.

the electronic journal of combinatorics 21(1) (2014), #P1.49 4

solution property. This approach is a sort of “reverse engineering” of the analytical process
we have followed to this point, where we have used the tree methodology only to solve
a given nested recursion. Once the new recursion is identified in this way, we apply the
tree methodology to derive its solution.

In Section 5 we continue our study of nested recursions via the lens of simultaneous
parameters by extending our approach to certain k-ary, order p recursion families. In
particular we introduce the simultaneous parameter k > 3 (for the arity of the recursion)
into (1.7), combining this with the parameter m already introduced in Section 4, to yield
a new k-ary order p family containing m. We show that for appropriate choices of m and
p the solution of this k-ary recursion has frequency sequence γk + δφCk

, where Ck is the
solution of the k-ary Conolly recursion studied in [12].

We conclude in Section 6 with some open questions and comments about future di-
rections for this work.

2 Unifying Two Seemingly Unrelated Recursions

This section concerns the process of finding and proving a combinatorial interpretation
for the recursion (1.6). In so doing we unify and extend the work in [10] where a tree-
based approach is used to solve what appear to be the two unrelated families of nested
recursions defined by (1.4) and (1.5). We show that in fact these are the natural extreme
points of a continuum of families of nested recursions defined by the introduction of the
parameter m.

Fix s > 0, j > 1, and m with 0 6 m 6 j. For m < 0 or m > j, the recursions
(1.6) seem to always be undefined; we will see some heuristic justification for this in the
combinatorial interpretation to come. In general, for fixed s, j,m and where there is no
confusion, we omit the subscripts and just write R(n).

Define T = Ts,j,m to be the following tree. First draw a skeleton of an infinite binary
tree (see Figure 2.1) which is growing upwards and to the right. We call the nodes on the
extreme left except for the very first node on the bottom left supernodes (see the bold
boxes in the diagram). Partition the tree into levels according to an equivalence relation
∼ on the nodes of the tree. Given tree nodes X and Y with the least common ancestor
Z, X ∼ Y if and only if the graph distance from X to Z is the same as the graph distance
from Y to Z. All the nodes on the bottom level (including the bottom leftmost node) are
called leaves, while all other nodes are regular nodes. By the left (right) subtree of a node
X we mean the left (right) child of X together with all descendants of that child. The
leaves that are left (right) children of their parent are called left (right) leaves. Nodes
on the second level of T are called penultimate nodes and are the parents of the leaves.
Finally, subdivide each leaf into j cells. Note that leaves are the only nodes of the tree
that have cells.

For each n > 1 let T (n) denote the infinite tree T with n labels, where these labels
are inserted in the nodes of T in preorder as follows: Insert s labels into each supernode,
j − m labels into each regular node, and j + m labels into each leaf, placing 1 label in
every leaf cell but the last, and 1 + m labels into the last cell of each leaf. Continue in

the electronic journal of combinatorics 21(1) (2014), #P1.49 5

Figure 2.1: Skeleton of an infinite binary tree with j = 3 cells in each leaf.

this way until we have placed n labels in total in preorder. See Figure 2.2 for our running
example in this section, the tree T1,3,1(31), with s = 1, j = 3,m = 1, and n = 31.

10

5

21

11,12

22,23

24,25

1 2 3,4 8,9 15,166 7 13 14 17 18 19,20 26 27 28,29 30 31

Figure 2.2: The tree T1,3,1(31), corresponding to the value of R1,3,1(31) = 17 in the solution
sequence to the recursion (1.6).

Define the leaf cell counting function CT (n) to be the number of nonempty cells (that is,
cells with at least one label) in the leaves of T (n). By definition CT (n) is a slow sequence.
In the running example, CT (16) = 9. We say that a recursion R with corresponding tree
T has initial conditions that follow the tree up to t if R(n) = CT (n) for 1 6 n 6 t. For
example, for the recursion R1,3,1(n) above, the initial conditions 1,2,3,3,3,4,5,6,6 follow
the tree T1,3,1(n) up to t = 9, which coincides with the last label in the second leaf.

The key result in this section is that the leaf cell counting function satisfies (1.6) with
sufficiently many initial conditions that follow the tree. More precisely:

Theorem 2.1. Suppose that the recursion (1.6) has initial conditions R(n) = CT (n) for
n 6 5j + 3m + 2s; that is, the initial conditions follow the tree until the right leaf of the
second penultimate level node. Then for all n, R(n) = CT (n), that is, CT (n) solves the
recursion.

the electronic journal of combinatorics 21(1) (2014), #P1.49 6

Notice that this combinatorial interpretation for the solution of (1.6) suggests why we
cannot allow m < 0 or m > j in recursion (1.6). A tree with m < 0 would have some
leaf cells with either no labels (m = −1) or a negative number of labels (m < −1), while
m > j would lead to negative numbers of labels in the regular nodes.

Lemma 2.2. For n > 4j + 2m+ 2s, the number of nonempty cells in the right leaves of
T (n) equals the number of nonempty cells in the left leaves of T (n− j −m).

Proof. Note that if l is a label on a left leaf other than the first leaf in T (n− j−m), then
l+m+ j is a label on a right leaf in T (n), and similarly if r is a label on a right leaf other
than the second leaf of T (n), then r − m − j is a label on a left leaf of T (n − j − m).
Thus, we have a one-to-one correspondence between nonempty cells in the left leaves of
T (n− j −m) and nonempty cells in the right leaves of T (n).

By definition, CT (n) is the sum of the number of nonempty cells in the left leaves of
T (n) and the number of nonempty cells in the right leaves of T (n). From Lemma 2.2
it follows that there is a one-to-one correspondence between nonempty cells in the left
leaves of T (n − j − m) and nonempty cells in the right leaves of T (n).7 Therefore, to
prove Theorem 2.1 it is enough to show that for n > 4j + 2m + 2s, the number of
nonempty cells in the left leaves of T (n) is CT (n − s − CT (n − j)). We can then apply
this result to the tree T (n− j −m) and use the preceding correspondence to deduce that
CT (n − s − j −m − CT (n − 2j −m)) counts the number of nonempty cells in the right
leaves of T (n), provided that n − j − m > 4j + 2m + 2s, that is, n > 5j + 3m + 2s.
Adding these cell counts together and combining with the given initial conditions yields
the desired solution to the recursion.

In order to prove that for n > 4j + 2m+ 2s the number of nonempty cells in the left
leaves of T (n) is CT (n − s − CT (n − j)) we define the pruning operation for T (n). Note
that when n > 4j+ 2m+ 2s, the left leaf of the second penultimate level node necessarily
is full.

See Figures 2.3, 2.4, 2.5, and 2.6 for an illustration of the pruning process for our
running example.

initial correction step : Delete the s labels in the first supernode (the leftmost penul-
timate node). Then take the j −m largest labels n− (j −m) + 1, . . . , n− 1, n and
move them into the now-empty first supernode.

deletion step : For every cell in T (n), if it has at least one label less than or equal to
n−j, delete the first label from that cell. This will delete precisely CT (n−j) labels,
by definition of the leaf cell counting function CT . At the end of the deletion step,
we have deleted s+ CT (n− j) labels in total.

7Since the initial conditions require that we are beyond the first two leaf nodes, which are full and
thus have the same number of labels, the fact that this correspondence doesn’t hold for the first leaf pair
doesn’t matter.

the electronic journal of combinatorics 21(1) (2014), #P1.49 7

10

5, 30,31

21

11,12

22,23

24,25

1 2 3,4 8,9 15,166 7 13 14 17 18 19,20 26 27 28,29

Figure 2.3: In the initial correction step for T1,3,1(31), the label 5 (in red) is removed from
the first supernode and labels 30 and 31 are moved into the first supernode.

10

5, 30,31

21

11,12

22,23

24,25

1 2 3,4 8,9 15,166 7 13 14 17 18 19,20 26 27 28,29

Figure 2.4: In the deletion step for T1,3,1(31), one label (indicated in red) is deleted from
every cell that has a label less than or equal to 28.

lifting step : In all nonempty leaves of our tree (except possibly the last), we will have
m labels in the last cell (the last nonempty leaf might have less than m labels in
the last cell); this is because we deleted one label from each cell, but the last cell of
each leaf had 1 +m labels, and will thus have m left. Move all remaining leaf labels
into the parent of the leaf node they started in.

At this point of the pruning operation, all penultimate nodes (including the first
supernode) other than (perhaps) the last nonempty penultimate node have exactly
j+m labels (the last nonempty penultimate node may have fewer labels). The first
supernode had all of its original s labels removed, j−m labels added from the end,
and m labels added from each of its two children. All the other penultimate nodes
(except possibly the last nonempty one) started with j − m labels and gained m
from each of its two children.

As the last part of the lifting step, convert all the penultimate level nodes into leaves
by dividing them into j cells, with one label in each cell but the last, and 1 + m

the electronic journal of combinatorics 21(1) (2014), #P1.49 8

labels in the last cell of each leaf. The last nonempty penultimate node may not
have the j +m labels needed to fill all of its cells, in which case simply fill as many
cells as the number of labels on it allows. Finally, delete the bottom level nodes
of the current tree (the original leaves), all of which are now empty. This process
results in a new tree, call it T ∗(n), with the same skeleton as T (n).

10

21

22,23

4 9 30,31 11 12 16,20 24 25 29

Figure 2.5: In the lifting step for T1,3,1(31), all the remaining leaf labels move up into
their parent nodes, respectively. The now empty leaves are deleted and the penultimate
nodes become the new leaves, with cell divisions introduced and labels inserted according
to the rules.

relabelling step : Renumber the labels of the new tree in preorder (so that 1 is the
first label, 2 the second, and so on). It is readily seen that the new tree so labelled,
which we denote by T ∗(n), is identical to T (n−s−CT (n− j)), since it has the same
skeleton structure and has n− s− CT (n− j) labels.

10

5 11,12

1 2 3,4 8,9 156 7 13 14

Figure 2.6: In the relabelling step for T1,3,1(31), the 15 remaining labels are replaced with
1 through 15, showing that T ∗1,3,1(31) = T1,3,1(15).

For convenience, we define CT ∗(n) to be the number of nonempty leaf cells of T ∗(n),
that is, we define CT ∗(n) = CT (n− s− CT (n− j)).

the electronic journal of combinatorics 21(1) (2014), #P1.49 9

We can think of every node in T ∗(n) as being part of T (n), that is, we can identify
each node in T ∗(n) with the node that it was in T (n). For example, we identify the
penultimate node with labels 24 and 25 in Figure 2.2 with the leaf node containing labels
13, 14 and 15 in Figure 2.6.

We proceed with a lemma that bijectively relates nonempty cells in the left leaves of
the original tree T (n) with nonempty cells in the leaves of the pruned tree T ∗(n). In this
way we prove that CT (n− s−CT (n− j)) counts the number of nonempty cells in the left
leaves of T (n), and hence completes the proof of Theorem 2.1.

Lemma 2.3. Suppose that P is a penultimate node of T (n) (and thus a leaf node in
T ∗(n)), and n > 4j+2m+2s. Then in T ∗(n), the number of nonempty cells of P is equal
to the number of nonempty cells of its left child in T (n).

Proof. We begin with the case where P is the first supernode. Note that this is the part of
the proof where we rely on the assumption that n > 4j+ 2m+ 2s: the label 4j+ 2m+ 2s
is the last label on the third leaf of T (n), which ensures that the left leaf child of P is full
in T (n). Also, we have n − j > 3j + 2m + 2s > 2j + 2m + s which is the last label on
the right child of P , so all of the cells of the two children of P will have 1 label removed
during the deletion step. Furthermore, note that the second penultimate node (the one
just to the right of P) has its full complement of j −m labels in T (n) since its last label
is 3j + m + 2s 6 4j + 2m + 2s. Thus, there are at least j −m labels on the tree after
the children of P , so the j −m labels moved from the end of the tree into P during the
initial correction step will not come from the children of P . This means that there remain
in place 2m labels on the children of P after the deletion step in the pruning process.
Therefore in the pruning process the node P will receive the j −m labels from the end
of the tree, plus 2m labels from its children, making P full in the pruned tree T ∗(n) just
like its left child is full in T (n). This establishes the required result in this special case.

We now assume that P is not the first supernode. We require several cases:
Case 1: The label n is on a node before (with respect to preorder) the left child of P

in T (n), that is, the left child of P has no labels in T (n). We want to show that P has no
labels in T ∗(n). In this case, observe that P has at most j −m labels before the pruning
operation, and during the initial correction step, the final j−m labels in T (n) are moved
into the first supernode. This means that any labels in P in T (n) are removed during the
pruning, so P will be empty in T ∗(n).

Case 2: The label n is one of the first j labels on the left child of P in T (n). Thus the
left child of P has d total labels in T (n), where 0 < d 6 j (observe that there are no labels
in the right leaf child of P). This means that between 1 and j of the cells of the left child
of P have one label each. We want to show that P will have d total labels in T ∗(n). Since
all of the labels on the left child of P are larger than n− j, none of them will be deleted
during the deletion step. During the initial correction step, we will move the last j −m
labels into the first supernode, and then during the lifting step, the labels remaining on
the left child of P (if any) will be moved up into P . Since P had j −m labels before the
pruning operation, and its children had d labels in total, and (the largest) j −m labels
were removed during the initial correction step, there will be d labels left on P after the

the electronic journal of combinatorics 21(1) (2014), #P1.49 10

lifting step of the pruning operation, as desired.
Case 3: The last remaining case is when the jth label on the left child of P in T (n)

is smaller than n. That is, the left child of P in T (n) has all j of its cells nonempty and
n is not the first entry in the last cell. We will show that in T ∗(n), the node P also has
all of its cells nonempty. To do so we make use of the result we have just proved for Case
2 with d = j.

Let xj be the jth label on the left child of P in T (n). By assumption, we have xj < n.
By Case 2, we know that T ∗(xj) has all of the cells of P nonempty. As discussed previously,
T ∗(xj) = T (xj − s−CT (xj − j)) and T ∗(n) = T (n− s−CT (n− j)). If we can prove that
xj − s−CT (xj − j) 6 n− s−CT (n− j), then we will have shown that T ∗(n) has at least
as many labels as T ∗(xj). Thus P will have at least as many labels in T ∗(n) as it does in
T ∗(xj), meaning P will have no nonempty cells in T ∗(n).

To show that xj−s−CT (xj−j) 6 n−s−CT (n−j) we will prove that n−s−CT (n−j)
is monotone nondecreasing. Since CT is slow, either CT (n+1−j) = CT (n−j) (if n+1−j is
not the first label of a leaf cell), or CT (n+1−j) = CT (n−j)+1 (if n+1−j is the first label
of a leaf cell). In the former case, we have n+1−s−CT (n+1−j) = n−s−CT (n−j)+1,
and in the latter case, we have n + 1 − s − CT (n + 1 − j) = n − s − CT (n − j). Either
way, this establishes that n + 1 − s − CT (n + 1 − j) > n − s − CT (n − j), proving the
desired inequality. This completes the proof of Case 3 and the lemma, so Theorem 2.1 is
established.

As we pointed out earlier, the introduction of the simultaneous parameter m in (1.4)
defines a new recursion family that unifies the results about (1.4) and (1.5) proved in [10]:
when m = 0 (1.6) is identical to (1.4) while when m = j we have (1.5). Thus, we have
solved these two previously known recursions and also all of the intermediate recursions
lying between them. In addition, the parameter m plays a key role in the structure of the
resulting tree used in solving (1.6); it is also noteworthy that through the generality that
m provides the derivation of the solution to (1.6) is even easier than the solutions to (1.4)
and (1.5) in [10].

We conclude this section by deriving the frequency sequence of the solution that we
have just determined to (1.6).

Theorem 2.4. The solution CT to the nested recursion (1.6) has frequency sequence

φCT
(v) =

{
1 if j - v
(j −m)ν2(v/j) +m+ 1 + s1[v

j
is a power of 2] otherwise

where ν2(x) is the 2-adic valuation of x and 1[E] = 1 if and only if proposition E holds
and 0 otherwise.

Proof. We begin by counting the number of regular nodes between the hth and (h + 1)st

leaves in T . We consider two cases.
Suppose h is a power of 2, say h = 2b. Then observe that the hth leaf comes right

before the (b + 1)st supernode. By the tree construction this supernode is the root of
a complete binary subtree of height (b + 1), so it is followed in turn in preorder by b

the electronic journal of combinatorics 21(1) (2014), #P1.49 11

regular nodes (the “leftmost” nodes of the complete binary subtree rooted at the (b+ 1)st

supernode), and then by the (h + 1)st leaf. Thus, the number of regular nodes between
hth and (h+ 1)st leaves is ν2(h).

Assume that h is not a power of 2, say h = a2b for some odd integer a > 1. Consider
the node N in T such that the hth leaf is the (2b+1 − 1)st node in preorder following N .
For example, in Figure 2.3, for h = 6 the node N contains the labels 22 and 23. Recall
that (2b+1 − 1) is the number of nodes in a complete rooted binary tree of height b. It
follows that the hth leaf is the rightmost node in the left subtree of N and the (h + 1)st

leaf is the leftmost node in the right subtree of N and there are ν2(h) = b regular nodes
in preorder between hth and (h+ 1)st leaves.8

Now we proceed with the proof of the theorem. If v is not a multiple of j, then the
vth nonempty cell is not the last cell on a leaf. Since cells other than the last cell on a
leaf have one label and are followed by another cell, we have φCT

(v) = 1 in this case. If v
is a multiple of j, then the vth nonempty cell is the last cell on the (v/j)th leaf. Thus, the
value v is assumed on all 1+m labels in that cell, plus the ν2(v/j) regular nodes following
it (each with j −m labels), plus another s labels on a supernode if v/j is a power of 2
(and hence the (v/j)th leaf comes right before a supernode). This establishes the stated
values for the frequency sequence for the solution to recursion (1.6).

The above argument is a general technique for deriving the frequency sequence for a
solution related to labelled trees of this type. This proof technique does not depend on
the labelling scheme, but only on the skeleton of the tree, so it can be adapted to other
situations such as the one we will discuss in the following section (see Section 3.4).

3 Simultaneous parameters in higher order nested

recursions

In this section we apply our tree-based approach to solve higher order recursions containing
simultaneous parameters. Our starting point is the 2-ary, order p recursion (1.7) that first
appears in [3]. As is discussed there, this recursion can be viewed as an order p extension
of both the order 1 Conolly recursion (1.2) (take α = 0 and β = 1) and the H recursion
(1.3) (take α = 2 and β = 0). Here we show how to construct and solve a natural extension
to this recursion that contains simultaneous parameters s, j and m that each play a role
analogous to the one they played in (1.6). In this way we derive a tree-based interpretation
for the solution to a higher order generalization of (1.6). We explore similarities in the
behaviour of this solution and those for (1.6) and (1.7), respectively.

8An alternate approach to counting the number of nodes between the hth and (h+ 1)st leaves in T is
as follows (see [5]): in [11] it is shown that the Conolly sequence is the label count on a binary tree with
empty supernodes. From this it follows that the frequency with which h occurs in the Conolly sequence
is precisely the number of regular nodes between the hth and (h+ 1)st leaves, plus one. Further, it is also
shown in [11] that the frequency of the Conolly sequence is ν2(v) + 1. Therefore, the number of regular
nodes between the hth and (h+ 1)st leaves of a binary tree is ν2(h).

the electronic journal of combinatorics 21(1) (2014), #P1.49 12

Fix simultaneous parameters s > 0, j > 1 and p > 1. For 0 6 m 6 (2p− 1)j consider
the nested recursion

R(n) = R(n−s−
p∑
i=1

R(n−(2i−1)j))+R(n−s−j−m−
p∑
i=1

R(n−j−m−(2i−1)j)). (3.1)

Note that (3.1) reduces to (1.6) when p = 1. Furthermore, by setting p = α/2 + β and
m = (α + β − 1)j for α even, β > 0 and α + β > 1, (3.1) introduces the simultaneous
parameter j into (1.7).

Computational evidence to date with (3.1) suggests that whenever this recursion gen-
erates an infinite solution sequence (for some set of initial conditions) then 0 6 m 6
(2p− 1)j. For this reason we restrict m to this range.9

3.1 Construction of the tree and statement of the main theorem

The skeleton of the tree T = Ts,j,m,p that we use here is the same infinite binary tree as in
Section 2, and we adopt the same terminology and a similar labelling scheme. For n > 1
let T (n) denote T with the first n labels inserted in preorder according to the following
rules: the supernodes of T contain s labels each, every leaf node of T contains j cells with
1 label in each of the first j−1 cells and 1 +m labels in the last cell, and all other regular
nodes contain x := (2p−1)j−m labels each. Continue in this way until we have placed n
labels. Figure 3.1 shows T (63) for our running example in this section with s = 0, j = 3
and m = p = 2. Note that in this case x = 7.

11,12,13
14,15,16,17

28,29,30
31,32,33,34

35,36,37
38,39,40,41

52,53,54
55,56,57,58

 1 2 3,4,5 6 7 8,9,10 18 19 20,21,22 25,26,27 24 23 42 43 44,45,46 47 48 49,50,51 59 60 61,62,63

Figure 3.1: The labeled tree T (63) for (s, j,m, p) = (0, 3, 2, 2);CT (63) = 21.

Define the leaf cell counting function CT (n) to be the number of nonempty cells in
T (n). The main result of this section is that CT (n) satisfies (3.1) with appropriate initial
conditions that follow the tree T .

9In fact, this is the range of m for which our tree-based proof holds. This suggests a heuristic reason
for our inability to locate any solutions for the recursion with m outside this range.

the electronic journal of combinatorics 21(1) (2014), #P1.49 13

Theorem 3.1. Suppose that the recursion (3.1) has initial conditions R(n) = CT (n) for
n 6 4(j +m) + x+ 2s, that is, the initial conditions follow the tree until the right leaf of
the second penultimate level node. Then for all n, R(n) = CT (n).

Before we prove Theorem 3.1 we examine the special endpoint cases m = 0 and
m = (2p − 1)j associated with the range of m. When m = 0 then (3.1) is an order p
analogue of (1.4), while if m = (2p − 1)j then (3.1) is an order p analogue of (1.5). In
particular, when s = 0 and j = 1 the first recursion with m = 0 is an order p analogue to
the Conolly recursion (1.2) while the second recursion with m = (2p − 1)j is an order p
analogue to the H recursion (1.3) with solution dn/2e (in both cases, the required initial
conditions are generated from the associated tree).

Even further, as in the case of (1.3), it will be evident from what follows that the
solution to (3.1) with m = (2p − 1)j, s = 0 and j = 1 is a ceiling function, in this case
dn/2pe. While a more general version of this result appears in [3], we provide here the
first tree-based derivation of a ceiling function solution for an order p nested recursion.10

3.2 Strategy of the proof : the pruning operation

We will follow a similar approach to that adopted in Section 2. To prove Theorem 3.1,
first we denote by CT,L(n) and CT,R(n) the number of nonempty cells in T (n) that are on
the left and right leaves, respectively. By definition

CT (n) = CT,L(n) + CT,R(n).

Since there are j +m labels in total in a full leaf, there is a natural bijection between
the nonempty cells of T (n) that are on right leaves and the nonempty cells of T (n−j−m)
that are on left leaves. Thus,

CT,R(n) = CT,L(n− j −m).

Hence, to prove Theorem 3.1 it suffices to show the following result:

Lemma 3.2. For n > 3(j +m) + x+ 2s, we have that

CT,L(n) = CT (n− s−
p∑
i=1

CT (n− (2i− 1)j)) .

As in Section 2, our proof relies on a pruning technique on T (n) that we now describe.
Once again we use T ∗(n) to denote the pruned tree that results from applying this tech-
nique. See Figures 3.2, 3.3, 3.4, 3.5 and 3.6 where we illustrate the pruning operation on
our running example.

initial correction step Remove the s labels from the first supernode of T (n) and replace
them with x labels. We do not identify these new labels until we reach the relabelling
step below.

10See [3], Theorem 5.2, where a very different methodology is used to characterize all recursions of
the form R(n) = R(n − s −

∑p
i=1R(n − ai)) + R(n − t −

∑p
i=1R(n − bi)) with solution dn/2pe. We

believe that our proof will work for any of the recursions stated in Theorem 5.2 of [3] provided that
s = 0, ai < 2p, t = 2p and bi = ai + 2p.

the electronic journal of combinatorics 21(1) (2014), #P1.49 14

X,X,X
X,X,X,X

11,12,13
14,15,16,17

28,29,30
31,32,33,34

35,36,37
38,39,40,41

52,53,54
55,56,57,58

 1 2 3,4,5 6 7 8,9,10 18 19 20,21,22 25,26,27 24 23 42 43 44,45,46 47 48 49,50,51 59 60 61,62,63

Figure 3.2: Initial correction step when pruning T (63) where (s, j,m, p) = (0, 3, 2, 2).

deletion step For each i = 1, . . . , p, consider the tree T (n−(2i−1)j) as a subtree of T (n).
For every nonempty cell in T (n− (2i− 1)j) remove a label from the corresponding
cell in T (n). If that cell in T (n) has already been emptied by an earlier application
of this process then remove a label from the last cell of the corresponding leaf
containing the empty cell (so long as a label is available). If both the cell and the
last cell of the leaf containing said cell already have been emptied by this process,
then remove a label from the corresponding parent node at the penultimate level.

X,X,X
X,X,X,X

11,12,13
14,15,16,17

28,29,30
31,32,33,34

35,36,37
38,39,40,41

52,53,54
55,56,57,58

 1 2 3,4,5 6 7 8,9,10 18 19 20,21,22 25,26,27 24 23 42 43 44,45,46 47 48 49,50,51 59 60 61,62,63

Figure 3.3: Deletion step when pruning T (63) where (s, j,m, p) = (0, 3, 2, 2).

We pause to confirm that there are enough labels to apply the instructions in this
step. Note that each leaf has j cells and there are p subtrees so the maximum
number of labels that can be attempted to be deleted from a pair of sibling leaves
is 2pj. But the total number of labels within such a pair of sibling leaves and their
parent is 2(j +m) + x = m+ (2p+ 1)j > 2pj so there are enough labels.

lifting step Lift any remaining labels in a leaf into the corresponding parent at the
penultimate level. Note that any leaf with the first j of its labels all less than

the electronic journal of combinatorics 21(1) (2014), #P1.49 15

n − (2p − 1)j will be left with m − (p − 1)j labels to lift so long as m > (p − 1)j,
and 0 labels otherwise.

X,X,X
X,X

11,12,13
14,15

28,29,30
31,32,33,34

35,36,37
38,39

52,53,54
55,56,57,58,

61,62,63

 25,26,27 24 23 42 43 44,45,46 47 48 49,50,51 59 60

Figure 3.4: Lifting step when pruning T (63) where (s, j,m, p) = (0, 3, 2, 2).

end correction step Remove the x largest labels in preorder of T (n) that remain after
the lifting step. Note that this removal fully offsets the insertion of x labels in the
first supernode during the initial correction step.

X,X,X
X,X

11,12,13
14,15

28,29,30
31,32,33,34

35,36,37
38,39

52,53,54
55,56,57,58,

61,62,63

 25,26,27 24 23 42 43 44,45,46 47 48 49,50,51 59 60

Figure 3.5: End correction when pruning T (63) where (s, j,m, p) = (0, 3, 2, 2).

relabelling step Remove the leaves of T (n) (which are now empty) and relabel the new
tree in preorder. The former penultimate level nodes are now the leaves of the new
tree. Make j cells for every leaf and assign 1 label in each of the first j− 1 cells and
the remaining entries in the last cell. If some leaf has less than j + m labels then
fill in its cells as just described, recognizing that some cells may remain empty or,
in the case of the last cell, only partially filled.

In pruning T (n) we have removed s+
∑p

i=1CT (n− (2i− 1)j) labels. Thus T ∗(n) is a
tree with the same skeleton structure as T (n) and with n − s −

∑p
i=1CT (n − (2i − 1)j)

labels.

the electronic journal of combinatorics 21(1) (2014), #P1.49 16

11,12,13
14,15,16,17

28,29,30
31,32,33,34

35,36,37
38,39,40,41

52,53,54
55,56,57,58

 1 2 3,4,5 6 7 8,9,10 18 19 20,21,22 25 24 23 42 43 44,45,46 47 48 49,50,51 59 60 61,62,63

Figure 3.6: Relabelling step when pruning T (63) where (s, j,m, p) = (0, 3, 2, 2).

The strategy behind our proof of Lemma 3.2 is to show first that the pruning operation
on T (n) creates a tree T ∗(n) that conforms to the labelling rules that we described above.
Together with what we have just observed about the skeleton of the tree T ∗(n), this will
imply that T ∗(n) is identical to T (n− s−

∑p
i=1CT (n− (2i− 1)j)), so that the number of

nonempty cells in T ∗(n) is CT (n− s−
∑p

i=1CT (n− (2i−1)j)). Then we will demonstrate
a bijection between the nonempty cells of T ∗(n) and the nonempty cells of T (n) that are
on left leaves. Together these two assertions imply Lemma 3.2. Thus, to prove Lemma
3.2 we will establish the following two lemmas:

Lemma 3.3. The pruned tree T ∗(n) is identical to T (n− s−
∑p

i=1CT (n− (2i− 1)j).

Lemma 3.4. Let P be a penultimate node of T (n). Then P becomes a leaf node of T ∗(n)
and the number of nonempty cells of P in T ∗(n) is equal to the number of nonempty cells
of the left child of P in T (n).

3.3 Proof of Lemmas 3.3 and 3.4.

We prove both lemmas simultaneously. We begin with a preliminary discussion of each.
As noted above, to prove Lemma 3.3 we need only show that the labelling of T ∗(n)

is in accordance with the rules that we have laid out above. That is, except for the last
nonempty node in T ∗(n), all super nodes of T ∗(n) have s labels, the leaves have j + m
labels and the regular nodes have x labels each. Finally, the last nonempty node of T ∗(n)
cannot contain more than s, j +m or x labels respectively, depending on its type.

As in Section 2, we can think of every node in T ∗(n) as being part of T (n). By the
design of the pruning operation on T (n), all nodes in T ∗(n), except for the leaves of T ∗(n)
(which are the former penultimate nodes of T (n)) and the last nonempty node (which
may or may not be a leaf of T ∗(n)), contain the same number of labels as they do in T (n).
So to prove Lemma 3.3 we need only focus on the leaves of T ∗(n) and its last nonempty
node. First, we make a simple yet important observation that is used several times in the
argument.

the electronic journal of combinatorics 21(1) (2014), #P1.49 17

Lemma 3.5. Let P be a penultimate level node of T (n) with left child L and right child
R. Suppose that T (n) contains at least one completely filled regular node following R.
Then as a leaf of T ∗(n), the node P contains j +m labels.

Proof. The node R has j + m labels on itself in T (n). By assumption, the first regular
node in T (n) that follows R, say Q, is full with x labels on it (note that it cannot be
a leaf). Therefore, there are at least j + m + x = 2pj labels on or after R in T (n).
Consequently, R has at least j labels (and thus all j nonempty cells) in each of the
subtrees T (n− j), . . . , T (n− (2p− 1)j), and thus so does L. We conclude that the total
number of labels removed from P, L, and R during the deletion step is the maximum
amount, namely 2pj. Note that since Q has x labels, and comes after R, none of the
labels removed for the end correction step will come from P, L, or R. Thus, after the
lifting step moves all remaining labels from L and R to P, and pruning is completed, P
will have x+ 2(j +m)− 2pj = j +m labels.

Going back to the discussion about Lemma 3.3, consider first the last nonempty node
of T ∗(n). Suppose that it is not a leaf of T ∗(n). Then in T (n) this node is neither a
leaf nor a penultimate node. Therefore the pruning operation on T (n) doesn’t add any
labels to this node (the end correction step of the pruning may remove some labels). After
pruning, this last nonempty node in T ∗(n) has at most the same number of labels that it
has in T (n), which is what we require.

Next we turn to the leaves of T ∗(n). First consider a leaf P of T ∗(n) that is not one of
the last two nonempty penultimate nodes in T (n). Then, in T (n), P is a penultimate level
node with its full complement of x labels, both its children must contain a full complement
of j+m labels, and there must be a full penultimate node with two full leaf children that
follow P . We can thus apply Lemma 3.5 to conclude that the number of labels in P in
T ∗(n) is j +m, as required.

Finally we consider the two leaves Pa and Pb of T ∗(n) that are the last two nonempty
penultimate nodes in T (n), where Pb is to the right of Pa. To establish the required result
for these two nodes we have to show: (1) if Pb is not the last nonempty node of T ∗(n)
then both Pa and Pb contain the full complement of j + m labels in T ∗(n); (2) if Pb is
the last nonempty node in T ∗(n), then Pa contains j +m labels and Pb contains at most
j + m labels in T ∗(n); and (3) if Pb is empty in T ∗(n) then Pa contains at most j + m
labels in T ∗(n).

Consider the requirement in case (1). Here we observe that we can apply Lemma 3.5
to both Pa and Pb. Indeed, we can apply it to Pa since Pb will be full in T (n). But we
can also apply it to Pb because there is a nonempty node Q in T ∗(n) following Pb. Q
is not a leaf of T ∗(n) by definition of Pb. So Q must be located above the penultimate
level in T (n). It will also contain x labels in T (n), for otherwise, it would become the
last nonempty node in T (n) and all its labels would be deleted during the end correction
step. However, this would make Pb the last nonempty node of T ∗(n). Therefore we have
verified Lemma 3.3 for Pa and Pb in case (1).

To verify cases (2) and (3) it suffices to show the following. Let P be the last penul-
timate node of T (n) that has at least one nonempty child in T (n). Then P has between

the electronic journal of combinatorics 21(1) (2014), #P1.49 18

0 to j +m labels in T ∗(n). Indeed, if Pb has a nonempty child in T (n) (so P = Pb) then
we can apply Lemma 3.5 to Pa in T (n) due to Pb being full. Hence, Pa contains j + m
labels as a leaf of T ∗(n), and to establish (2) we need to show that Pb contains between
0 to j + m labels in T ∗(n). On the other hand, if both children of Pb are empty in T (n)
(so P = Pa) then during the end correction step all labels from Pb are removed. This
makes Pb empty in T ∗(n) and to show (3) we need to worry about the number of labels
in Pa. Note that in both cases (2) and (3) node P is the last non leaf node of T (n) that
is completely filled. So we have to show that if T (n) is such that it contains a node P
which is its last penultimate node with a nonempty child and also its last filled non leaf
node, then P has between 0 to j +m labels in T ∗(n).

Before we conclude the proof of Lemma 3.3 we examine in a similar way what must be
shown to prove Lemma 3.4. The first part of the lemma has already been covered in the
above discussion, so what remains is to show that the number of nonempty cells of any
leaf P in T ∗(n) is equal to the number of nonempty cells of the left child of P in T (n).

Suppose the node P is the last nonempty penultimate node of T (n) and that its left
child is empty in T (n). Then as a result of the end correction step in the pruning process
P will be empty in T ∗(n), as required by Lemma 3.4. If P is not the last nonempty
penultimate node of T (n) then it is followed by a non leaf node Q that is also nonempty
in T (n). Also, the left child of P contains j + m labels in T (n). If Q is completely filled
in T (n) then by Lemma 3.5 the node P will contain j +m labels as a leaf of T ∗(n), and
hence j cells as required by Lemma 3.4. Thus, we are left to consider only one case: P
is the last penultimate node of T (n) with a nonempty left child and where the first non
leaf node Q following P contains less than x labels in T (n) (Q could possibly be empty).
We must show that in this case P contains the same number of cells in T ∗ (n) as its left
child does in T (n).

Therefore, in order to complete the proofs of both Lemma 3.3 and 3.4 we must consider
the following. Suppose the tree T (n) contains a penultimate node P with the property
that it is the last penultimate node with a nonempty left child in T (n) and that it is also
the last completely filled non leaf node of T (n). Then, we must show that as a leaf of
T ∗(n) the node P contains at most j + m labels, and also that it has same number of
nonempty cells as its left child does in T (n). Until the end of this section let P denote such
a penultimate node, and denote by L and R the left and right child leaf of P respectively
(R may be empty in T (n)). Our two requirements can be expressed as upper and lower
bounds on the net number of labels being removed from and lifted into P during the
pruning operation.

In our proof we will establish these bounds on a case by case basis, where the cases
(and subcases) are determined by the position of the label n in T (n). In doing so we will
make frequent use of the following technical lemma:

Lemma 3.6. Let Y be a nonempty leaf in T (n) and suppose that there are µ labels in
T (n) that are situated at or after node Y (so the smallest label in Y is n − µ + 1). If
µ 6 j then the number of labels removed from Y during the pruning operation is 0. If
µ > j then write µ − j = q(2j) + r with 0 6 r < 2j. In this case the number of labels
removed from Y and possibly its parent in T (n) is jq+ min{r, j} provided that q 6 p− 1;

the electronic journal of combinatorics 21(1) (2014), #P1.49 19

otherwise, the number of labels removed from Y and possibly its parent in T (n) is pj.

Proof. If µ 6 j then Y is empty in all of the subtrees T (n− j), . . . , T (n− (2p− 1)j), so
the number of labels removed from Y during the pruning operation is 0.

If µ > j and µ− j = q(2j) + r with q > p− 1 then all cells of Y are nonempty in the
aforementioned p subtrees. In this case we have already seen earlier that the number of
labels removed from Y and possibly its parent is pj.

Finally, suppose µ > j and µ − j = q(2j) + r with 0 6 r < 2j and q 6 p − 1. Then
the q subtrees T (n− j), . . . , T (n− (2q− 1)j) contain all cells of Y as being nonempty (if
q = 0 then none do). The subtree T (n− (2q + 1)j) contains only the first min{r, j} cells
of Y as being nonempty, and for i > q each of the remaining subtrees T (n − (2i + 1)j)
contains Y as an empty leaf. Therefore, the net number of labels deleted from Y and its
parent in T (n) during the pruning operation is jq + min{r, j}.

Now we proceed with the case by case analysis promised above.

Case 1 Suppose label n is situated in node L.
Subcase 1a: Label n is the lth label in L with 1 6 l 6 j. Thus L is the last nonempty

node in T (n) and it contains l 6 j labels. The deletion step does not affect any labels in
L since L is empty in all the subtrees T (n − j), . . . , T (n − (2p − 1)j). Therefore, in the
lifting step the l labels from L are inserted into P and in the end correction step the x
largest labels are removed from P . This leaves P with l labels in T ∗(n), as required.

Subcase 1b: Label n is the (j + l)th label in L with 1 6 l 6 m (if m = 0 then this
case is not needed). By using Lemma 3.6 the number of labels removed from L and its
parent is qj + min{r, j}, where l = q(2j) + r. Thus, in the lifting step of the pruning
operation l + j − qj −min{r, j} labels are lifted into P , while in the end correction step
the x labels with the largest labels are removed from P . We need to verify that

j 6 l + j − qj −min{r, j} 6 m+ j (3.2)

to establish Lemmas 3.3 and 3.4. The first inequality follows from l = q(2j) + r >
qj + min{r, j} and the second follows from m > l.

Case 2: Suppose label n is situated in node R. To establish Lemmas 3.3 and 3.4 we
must show that P contains at least j labels and at most m+ j labels after pruning T (n).

Subcase 2a: Label n is the lth label in R with l 6 j. Here no labels are removed
from R during the deletion step.

If l > (2p− 1)j −m then L loses pj labels during the deletion step by Lemma 3.6. In
this case the number of labels in P after pruning T (n) is m+ l− (p− 1)j and we need to
establish that

j 6 m+ l − (p− 1)j 6 m+ j . (3.3)

Both of these are clear because l +m > (2p− 1)j > pj and l 6 j 6 pj.

the electronic journal of combinatorics 21(1) (2014), #P1.49 20

In the case l < (2p − 1)j −m, by Lemma 3.6 the number of labels removed from L
after the deletion step is qj + min{r, j} with m + l = q(2j) + r. Then we need to verify
that

j 6 m+ j + l − qj −min{r, j} 6 m+ j . (3.4)

The first inequality follows from m + l = q(2j) + r > qj + min{r, j}. The second one
follows because l 6 qj + min{r, j} if either q > 0 or r > j due to l 6 j. Otherwise,
m+ l = r and so l 6 r = min{r, j}, which is the required inequality.

Subcase 2b: Label n is the (j + l)th label in R with 1 6 l < (2p − 2)j −m (if the
rightmost term is non positive then this case is not needed). In this case both children
of P may lose less than pj labels. To account for the number of labels lost by L and
R during the deletion step, we write m + j + l = qL(2j) + rL and l = qR(2j) + rR with
0 6 rL, rR < 2j. Then by Lemma 3.6, the number of labels removed from nodes L and
R are qLj + min{rL, j} and qRj + min{rR, j}, respectively. Note that qR 6 qL. To prove
Lemmas 3.3 and 3.4 we need to show that

j 6 m+ j + l + j − (qLj + min{rL, j}+ qRj + min{rR, j}) 6 m+ j . (3.5)

For the first inequality we use the fact that m + j + l = qL(2j) + rL to reduce the
inequality to min{rL, j}+min{rR, j} 6 (qL−qR)j+rL. If qL > qR then the latter inequality
follows easily. Otherwise, qL = qR and so l = qR(2j) + rR implies that m + j + rR = rL.
Thus, rL > j and the latter inequality becomes j + min{rR, j} 6 rL = m+ j + rR; this is
clearly true.

Now we consider the second inequality in (3.5). Here we substitute qLj and qRj with
the equivalent values m+l+j−rL

2
and l−rR

2
respectively. Then after some simplification the

inequality becomes

j + rR + rL 6 m+ 2 min{rL, j}+ 2 min{rR, j}. (3.6)

If both the minimums on the right are j then we get rR + rL 6 m+ 3j, which is true due
to rL < 2j and rR 6 m + j. If the minimums are rL and rR (both less than j) then the
inequality holds unless m < j. But when m < j we have qR = 0 and qL ∈ {0, 1} because
l + j < 2j and m + l + 2j < 4j. If qL = 0 then rL = m + l + j > j, contradicting that
rL < j. Thus, qL = 1 and the second inequality in (3.5) becomes rL > 0.

Finally, if one of the minimums is rL or rR and the other is j then the inequality in
(3.6) is trivial.

Subcase 2c: Label n is the (j+ l)th label in R with l > (2p− 2)j−m. By the choice
of l, this case treats the situation where node L loses pj labels. By Lemma 3.6 node R
loses qj + min{r, j} labels where l = q(2j) + r. After pruning T (n) the number of labels
in P is

m− (p− 1)j + l + j − qj −min{r, j} .

To prove Lemma 3.4 to need to establish that j 6 m− (p−1)j+ l+ j−qj−min{r, j}.
Using the assumption (2p − 2)j − m 6 l and the fact that l 6 m, we deduce that
m > (p − 1)j. Also, we have that l = q(2j) + r > qj + min{r, j}. Together, these two

the electronic journal of combinatorics 21(1) (2014), #P1.49 21

observations imply that m+ l > (p− 1)j + qj + min{r, j}. This is the desired inequality
above after simplification.

Now we verify the upper bound m − (p − 1)j + l + j − qj −min{r, j} 6 m + j that
is required for Lemma 3.3. This is equivalent to l 6 (p − 1)j + qj + min{r, j} . Using
l = q(2j) + r our upper bound is equivalent to

l + r 6 (2p− 2)j + 2 min{r, j} .

If this inequality fails and min{r, j} = r then we have l > (2p − 2)j + r. But since
l 6 m 6 (2p− 1)j this contradicts l ≡ r (mod 2j). On the other hand if the inequality
fails with min{r, j} = j < r, then since r < 2j we have that (2p − 2)j < l 6 (2p − 1)j.
This contradicts min{r, j} = j < r since then the remainder r is less than or equal to j.

Case 3: Suppose label n is located after node R and is the lth label after the final label
in R (thus, we have the understanding that l > 1). Since P is the last non leaf node in
T (n) we have l < x. Also, as l < x, the node R does not lose a full set of pj labels. To
establish Lemmas 3.3 and 3.4 we must show that P contains between j and j +m labels
after pruning.

Subcase 3a: 1 6 l < 2((p − 1)j − m) 6 x (note that for this to happen we need
m < (p− 1)j). In this case both children of P may lose less than pj labels. Note that if
this case does occur then subcase 2c will not because that requires m > (p− 1)j.

By Lemma 3.6, if 2m+l+j = qL(2j)+rL with 0 6 rL < 2j then L loses qLj+min{rL, j}
labels. Also, if m+ l = qR(2j)+rR with 0 6 rR < 2j then R loses qRj+min{rR, j} labels.
After the end correction step we remove x− l labels from P . So the number of labels in
P after pruning is 2(m+ j)− (qLj+ min{rL, j}+ qRj+ min{rR, j}) + l. We need to show
that

j 6 2(m+ j)− (qLj + min{rL, j}+ qRj + min{rR, j}) + l 6 m+ j . (3.7)

The first inequality is (qL + qR)j + min{rL, j} + min{rR, j} 6 2m + j + l = qL(2j) + rL.
We are done if qL > qR. Otherwise, since qL > qR we must have qL = qR and this implies
rL = m+ j + rR > j. Then the inequality reduces to j + min{rR, j} 6 rL = m+ j + rR,
which is true.

Now we consider the second inequality in (3.7). It reduces to m+ j+ l 6 (qL + qR)j+
min{rL, j}+ min{rR, j}, which in turn is the same as

(qR + 1)j + rR 6 qLj + min{rL, j}+ min{rR, j} .

If qR < qL − 1 then we are done by trivial considerations. Suppose that qR = qL − 1.
We also get the inequality above easily if either min{rR, j} = rR, or min{rR, j} = j and
min{rL, j} = j. So we can assume that min{rR, j} = j and min{rL, j} = rL. Then using
m+ l = (qL− 1)(2j) + rR and 2m+ j + l = qL(2j) + rL, we deduce that m = j + rL− rR.
However, as m > 0 we conclude that rR 6 j + rL as required by the inequality above.

If qR = qL then we need to show that j+rR 6 min{rL, j}+min{rR, j}. Once again we
have rL = m+ j + rR, and so min{rL, j} = j. The above then becomes rR 6 min{rR, j},
but we do have rR 6 j for otherwise rL > 2j.

the electronic journal of combinatorics 21(1) (2014), #P1.49 22

Subcase 3b: 2((p − 1)j −m) 6 l < x. In this case L loses all pj labels, and R, by
Lemma 3.6, loses qj + min{r, j} labels where m + l = q(2j) + r. The total number of
labels in P after pruning is (m− (p− 1)j) + (m+ j − qj −min{r, j}) + l . Hence we need
to show

j 6 2m+ j + l − (p− 1)j − qj −min{r, j} 6 m+ j . (3.8)

We consider the first inequality of (3.8). After substituting m + l = q(2j) + r and
simplifying, the lower bound in (3.8) becomes (p−1−q)j+min{r, j} 6 m+r. If q = p−1
then the latter inequality is obvious. Suppose that q < p− 1.

We know that l > (2p−2)j−2m, which implies that q(2j)+r = m+ l > (2p−2)j−m.
Thus, m+r > 2(p−1−q)j. Since p−1−q > 1, we conclude that m+r > (p−1−q)j+j >
(p− 1− q)j + min{r, j} as needed.

Now consider the second inequality in (3.8). Substituting m + l = q(2j) + r we get
that

qj + r 6 (p− 1)j + min{r, j} .

As q 6 p− 1 we are done if q < p− 1 or r 6 j. If q = p− 1 and r > j, then it follows that
all j cells in R are nonempty in T (n− (2p− 1)j); a contradiction since m+ l < (2p− 1)j.

With this we have considered all cases and the proofs of Lemma 3.3 and Lemma 3.4
are now complete. We conclude this section by considering the frequency sequence φCT

of the cell counting function of a fixed tree T = Ts,j,m,p.

3.4 The frequency sequence

From [3] we know that the tree-based solution sequence of the (α, β) Conolly recursion
(1.7) has frequency sequence α+ βφC where φC is the frequency sequence of the Conolly
sequence (1.2). Since φH ≡ 2, this is the linear combination α

2
φH + βφC of the frequency

sequences of the H sequence (1.3) and the Conolly sequence. Now the function CT with
the choice of simultaneous parameters (s, j,m, p) = (0, j, (α+β−1)j, α/2 +β) gives (1.7)
with the simultaneous parameter j. So it is natural to wonder whether the frequency
sequence of CT with the aforementioned choice of parameters is α

2
φHj

+ βφCj
where Hj

and Cj are the tree-based solutions of (1.5) and (1.4) respectively for s = 0.
Using the results about the frequency sequences of (1.5) and (1.4) from Theorems 5.1

and 5.5 of [10] we can easily compute α
2
φHj

+ βφCj
. If ν2(v) is the 2-adic valuation of v

then φC(v) = ν2(v) + 1 and

α

2
φHj

(v) + βφCj
(v) =

{
α
2

+ β if j - v
βj · ν2(vj) + α

2
(j + 1) + β otherwise

On the other hand, we can derive φCT
using an argument most similar to that of

Theorem 2.4. The difference is that the non leaf regular nodes now contain x labels
instead of j −m. For fixed (s, j,m, p)

φCT
(v) =

{
1 if j - v
((2p− 1)j −m) · ν2(vj) + 1 +m+ s1[v

j
is a power of 2] otherwise

the electronic journal of combinatorics 21(1) (2014), #P1.49 23

From this it is easy to see that φCT
6= α

2
φHj

+ βφCj
when (s, j,m, p) = (0, j, (α +

β − 1)j, α/2 + β). In the next section we derive a 2-ary order p recursion whose solution
sequence does indeed have the frequency sequence α

2
φHj

+ βφCj
and we give a tree-based

proof of the derivation.

4 Linear combinations of frequency sequences

via tree superpositions

In this section we use the tree-based methodology to derive a nested recursion whose
solution has a frequency sequence that is a linear combination of the frequency sequences
of H0,j(n) and R0,j(n) from (1.5) and (1.4) respectively for s = 0. Our strategy is to
construct a labelled infinite binary tree whose cell counting function has the desired
property and then use the tree along with a pruning operation to derive a nested recursion
with the same frequency function.

To motivate our construction we recall the trees whose cell counting functions satisfy
recursions R0,j(n) and H0,j(n). The first tree, say T1 with cell counting function R0,j(n),
is T0,j,0 from Section 2, that is, the binary tree corresponding to m = 0. Similarly, the
tree with cell counting function H0,j(n) is T2 = T0,j,j from Section 2. To obtain a tree
T whose cell counting function has a frequency sequence α

2
φH0,j

+ βφR0,j
we form the

“superposition” of the two trees T1 and T2. That is, we place α/2 copies of T2 and β
copies of T1 on top of each other. Note that since T1 and T2 have the same skeleton, this
superposition creates another infinite binary tree T with the same skeleton (see Figure
2.1). When we superpose multiple copies of T1 and T2 we initially treat the labels in each
tree as placeholders; as a result, at first the labels in the superposed tree T do not appear
in preorder and T has multiple occurrences of the same label (see Figure 4.1, where for
simplicity we illustrate the superposition of a single copy of each tree). Once we relabel
the tree T in preorder it is evident that we obtain a tree whose cell counting function
has frequency sequence that is the desired linear combination α

2
φH0,j

+ βφR0,j
of the cell

counting functions for the individual trees. Note that in principle α can be negative; in
this case the tree T is well-defined so long as (α/2)(j + 1) + β > 1 (that is, we require at
least one label in the last cell in each leaf of T).

4.1 The tree and the pruning operation

We now give a direct, more general construction of a tree T whose cell counting function
is, under certain conditions, the desired linear combination. This will allow us to solve
not only a nested recursion whose solution has the desired frequency function, but also a
wide spectrum of related recursions.

Fix simultaneous parameters s, j,m, p. The natural range of these parameters is dis-
cussed below. The desired tree T = Ts,j,m,p has the skeleton of the infinite binary tree
from Figure 2.1 with j cells in each leaf. For n > 1 let T (n) denote T with n labels
inserted in preorder as follows: each of the first j − 1 cells of each leaf receives p labels,

the electronic journal of combinatorics 21(1) (2014), #P1.49 24

7,8,9

16,17,18

19,20,21 28,29,30

1
1

2
2

3,4,5,6
3

9,10,11,12
6

15,16,17,18
12

7
4

8
5

13
10

14
11

19
13

20
14

21,22,23,24
15

25
22

26
23

27,28,29,30
24

31
25

32
26

33,34,35,36
27

37
31

38
32

39,40,41,42
33

43
34

44
35

45,46,47,48
36

Figure 4.1: Superposition of T0,3,0 and T0,3,3 prior to relabelling.

while the last cell receives p + m labels. All remaining regular nodes in T get pj − m
labels each, and the supernodes receive s labels each. See Figure 4.2, where we use the
case s = 0, j = m = 3, p = 2 as our running example.

19,20,21

40,41,42

43,44,45 64,65,66

1
2

3
4

5,6,7
8,9

14,15,16
17,18

26,27,28
29,30

10
11

12
13

22
23

24
25

31
32

33
34

35,36,37
38,39

46
47

48
49

50,51,52
53,54

55
56

57
58

59,60,61
62,63

67
68

69
70

71,72,73
74,75

76
77

78
79

80,81,82
83,84

Figure 4.2: The labelled infinite tree T0,3,3,2(84); CT (84) = 24.

To ensure that each leaf has at least one cell and that cells have a positive number of
labels, we require p, j > 1. Likewise, to force regular nodes and supernodes to contain a
non-negative number of labels, we need s > 0 and 0 6 m 6 pj. Note that for negative
values of m such that m > −p, the tree T is still well-defined. However, our proof here
only works for non-negative m, so we restrict the range of this parameter accordingly. See
Section 6 for further discussion.

We let CT (n) denote the number of nonempty cells in T (n). Since each cell has p
labels and each regular nodes contains pj −m labels, the same argument as in the proof
of Theorem 2.4 yields that

φCT
(v) =

{
p if j - v
(pj −m) · ν2(vj) + p+m+ s1[v

j
is a power of 2] otherwise

the electronic journal of combinatorics 21(1) (2014), #P1.49 25

Observe that when s = 0 and m = bj for some integer b > 0, the frequency sequence
φCT

= bφH0,j
+ (p − b)φR0,j

. That is, for m a multiple of j, the resulting tree T is a
superposition of trees T1 and T2 as discussed above. Note that the restriction m > 0
allows us to only produce the frequency functions which are linear combinations of φH0,j

and φR0,j
with non-negative coefficients. If m is not a multiple of j then the resulting tree

is not a superposition of trees T1 and T2.
Let α, β > 0, and set j = 1, p = α/2 + β and m = α/2. Then φCT

is exactly
α
2
φH + βφC , that is, φCT

is the frequency function of the solution for the recursion (1.7).
We now generalize this result by deriving a recursion whose solution has a frequency
function that is a linear combination of the frequency functions for the solutions to R0,j

and H0,j.
In Section 2 and 3 we have used pruning operations to show that a cell counting

function is the solution to a nested recursion. Here we reverse our approach and use a
pruning operation to derive a recursion whose solution is given by CT (n).

The two major requirements we place on the pruning operation is that the resulting
tree T ∗(n) has the same skeleton as T and that it conforms to the labelling rules described
earlier. In particular, we would like our pruning operation to be defined in such a way
that a “typical” nonempty leaf of T (n) loses pj labels in the deletion step. In that case,
2m labels are lifted to its parent to bring the total count of labels in it to pj + m after
pruning (exactly the number of labels in a “typical” nonempty leaf). Using this heuristic,
and examples of pruning operations in Section 2 and Section 3, we define the following
pruning operation on T (n), n > 5pj + 3m + 2s (the first seven nodes of T are full). See
Figures 4.3, 4.4, 4.5, 4.6 and 4.7.

Initial correction Remove the s labels from the first supernode and insert pj−m labels
in the first supernode (these labels are currently placeholders only; we do not relabel
the tree until the relabelling step).

X,X,X 19,20,21

40,41,42

43,44,45 64,65,66

1
2

3
4

5,6,7
8,9

14,15,16
17,18

26,27,28
29,30

10
11

12
13

22
23

24
25

31
32

33
34

35,36,37
38,39

46
47

48
49

50,51,52
53,54

55
56

57
58

59,60,61
62,63

67
68

69
70

71,72,73
74,75

76
77

78
79

80,81,82
83,84

Figure 4.3: Initial correction step when pruning T0,3,3,2(84).

Deletion step For each i, 1 6 i 6 p, consider the subtrees T (n− (2i−1)−p(j−1)). For
each nonempty cell in the subtree T (n− (2i− 1)− p(j− 1)), delete a label from the

the electronic journal of combinatorics 21(1) (2014), #P1.49 26

corresponding cell in T (n) (to be specific, we remove the largest label in the cell).
Note that this is always possible because every nonempty cell has at least p labels.

X,X,X 19,20,21

40,41,42

43,44,45 64,65,66

1
2

3
4

5,6,7
8,9

14,15,16
17,18

26,27,28
29,30

10
11

12
13

22
23

24
25

31
32

33
34

35,36,37
38,39

46
47

48
49

50,51,52
53,54

55
56

57
58

59,60,61
62,63

67
68

69
70

71,72,73
74,75

76
77

78
79

80,81,82
83,84

Figure 4.4: Deletion step when pruning T0,3,3,2(84).

Lifting step Lift all the remaining labels from every nonempty cell of T (n) into the
parent of the leaf containing that cell. After this step all bottom level leaves of T (n)
become empty.

X,X,X
5,6,7

14,15,16

19,20,21
26,27,28
35,36,37

40,41,42

42,43,44
49,50,51
59,60,61

64,65,66,71,
72,73,78,80
81,82,83,84

Figure 4.5: Lifting step when pruning T0,3,3,2(84).

End correction Remove the largest pj −m labels that remain in T (n).

Relabelling step Remove all the leaves of T (n) and relabel the new tree in preorder.
Partition the new leaf labels into j cells in the same manner as was done for the
leaves of T and denote this tree by T ∗(n).

The number of labels removed from T (n) after the pruning operation is s+
∑p

i=1CT (n−
2i+ 1− p(j− 1)). Thus, T ∗(n) contains n− s−

∑p
i=1CT (n− 2i+ 1− p(j− 1)) labels and

it has the same skeleton as T , but it is not immediately obvious that T ∗(n) follows the
labelling scheme defined earlier. In other words, we would like to establish the following
lemma:

the electronic journal of combinatorics 21(1) (2014), #P1.49 27

X,X,X
5,6,7

14,15,16

19,20,21
26,27,28
35,36,37

40,41,42

43,44,45
50,51,52
59,60,61

64,65,66,71,
72,73,78,80
81,82,83,84

Figure 4.6: End correction when pruning T0,3,3,2(84).

Lemma 4.1. The pruning of T (n) results in a tree T ∗(n) = T (n− s−
∑p

i=1CT (n− (2i−
1)− p(j − 1))).

19,20,21

1
2

3
4

5,6,7
8,9

14,15,16
17,18

26,27,28
29,30

10
11

12
13

22
23

24
25

31
32

32
33

34,35,36
37,38

Figure 4.7: Relabelling step when pruning T0,3,3,2(84).

To derive a recursion satisfied by CT (n) we will also need to establish a bijective
correspondence between the cells of T ∗(n) and the cells of left leaves of T (n):

Lemma 4.2. Let P be a nonempty leaf in T ∗(n) (so that P is a penultimate level node
in T (n)). Then the number of nonempty cells of T ∗(n) in P is equal to the number of
nonempty cells of the left child of P in T (n).

4.2 The main theorem

Once we establish Lemmas 4.1 and 4.2 we can derive a nested recursion as follows. Let
CT,L(n) and CT,R(n) be the number of nonempty cells in T (n) that are located in the left
and right leaves respectively. Thus CT (n) = CT,L(n) +CT,R(n). Since there is a bijection
between nonempty cells in the right leaves of T (n) and nonempty cells in the left leaves

the electronic journal of combinatorics 21(1) (2014), #P1.49 28

of T (n − pj −m), we have that CT,R(n) = CT,L(n − pj −m). Therefore, by Lemma 4.1
and 4.2

CT (n) = CT

(
n− s−

p∑
i=1

CT (n− (2i− 1)− p(j − 1))

)

+ CT

(
n− s− pj −m−

p∑
i=1

CT (n− (2i− 1)−m− p(2j − 1))

)

for n > 5pj+3m+2s. That is, Lemma 4.1 and 4.2 together establish the following result:

Theorem 4.3. The cell counting function CT (n) satisfies the 2-term order p nested re-
cursion:

R(n) = R

(
n− s−

p∑
i=1

R(n− (2i− 1)− p(j − 1))

)
(4.1)

+ R

(
n− s− pj −m−

p∑
i=1

R(n− (2i− 1)−m− p(2j − 1)

)
.

In particular, recursion (4.1) generates the cell counting function CT (n) if it is given
5pj + 3m+ 2s initial conditions (every node until the right child of the first regular node
is full) that agree with the cell counting function.

4.3 Proof of Theorem 4.3

We now proceed with the proof of Lemmas 4.1 and 4.2. The trees T ∗(n) and T (n− s−∑p
i=1R(n − 2i + 1 − p(j − 1)) contain the same number of labels and have the same

skeleton. Therefore, to establish the desired results we need to show that the nodes of
T ∗(n) contain the “correct” number of labels.

As in Sections 2 and 3, we can think of every node in T ∗(n) as being part of T (n).
By the design of the pruning operation on T (n), all nodes in T ∗(n), except for the leaves
of T ∗(n) (which are the former penultimate nodes of T (n)) and the last nonempty node
(which may or may not be a leaf of T ∗(n)), contain the same number of labels as they do
in T (n). So to prove Lemma 4.1 we need only focus on the leaves of T ∗(n) and its last
nonempty node.

Consider first the last nonempty node of T ∗(n). Suppose that it is not a leaf of T ∗(n).
Then in T (n) this node is neither a leaf nor a penultimate node. Therefore the pruning
operation on T (n) doesn’t add any labels to this node (the end correction step of the
pruning may remove some labels). After pruning, this last nonempty node in T ∗(n) has
at most the same number of labels that it has in T (n), which is what we require.

To count the number of labels that remain in leaves of T ∗(n), we have the following
lemma.

the electronic journal of combinatorics 21(1) (2014), #P1.49 29

Lemma 4.4. Let P be a nonempty penultimate level node in T (n) and let lP be the number
of labels in nodes of T (n) after P (in preorder).

1. If lP = 0 then P is empty in T ∗(n).

2. If 1 6 lP 6 3pj +m then P contains

lP−
p∑
i=1

min

(
j,

⌈
lP − p(j − 1)− 2i+ 1

p

⌉
· 1[lP−p(j−1)−2i+1>0]

)

−
p∑
i=1

min

(
j,

⌈
lP − p(2j − 1)−m− 2i+ 1

p

⌉
· 1[lP−p(2j−1)−m−2i+1>0]

)
labels in T ∗(n).

3. If lP > 3pj +m then P contains pj +m labels in T ∗(n).

To simplify the notation, let h(k, x) = k − p(j − 1) + 1− x and

d(l) =

p∑
i=1

min

(
j,

⌈
h(l, 2i)

p

⌉
· 1[h(l,2i)>0]

)
Also, when there is no confusion we write l instead of lP . Note that the expression in (2)
above reduces to l−d(l)−d(l−pj−m). Further, the deletion step of the pruning operation
can now be rephrased in terms of the subtrees T (h(n, 2)), T (h(n, 4)), . . . , T (h(n, 2p)).

Proof. To prove (1), we note that if all the nodes of T (n) after P are empty and P is not,
then P contains the largest label in T (n). During the end correction step of the pruning
the pj − m largest labels are removed from the tree. Since P contains at most pj − m
labels, it is emptied by the pruning operation.

Next we prove (3). Let a = n− l. Then

n− p(j − 1)− (2p− 1) = (l − p(j − 1)− (2p− 1)) + a = h(l, 2p) + a

> h(3pj +m, 2p) + a = pj +m+ p(j − 1) + 1 + a

since l > 3pj + m. Thus the label n − p(j − 1) − (2p − 1) is no further back in the tree
then the last label of the right child of P . In other words, every cell of left and right child
of P is nonempty in each of

T (h(n, 2)), T (h(n, 4)), . . . , T (h(n, 2p))

Therefore, each cell in the children of P will lose exactly p labels and 2m labels will be
lifted to P on the lifting step. Note that none of the labels are removed from P in the end
correction step of the pruning operation since there are at least pj −m labels in nodes of
T (n) after the children of P . Thus, P has pj −m+ 2m labels after pruning.

the electronic journal of combinatorics 21(1) (2014), #P1.49 30

Now we prove (2). Let L and R be the left and right child of P respectively. Recall
that we assume here that 1 6 l 6 3pj + m. Note that if h(l, 2i) 6 0 for some i with
1 6 i 6 p, then L has no nonempty cells in T (h(n, 2i) and thus no labels in L are pruned
when we consider T (h(n, 2i). On the other hand, if 0 < h(l, 2i) 6 pj, then T (h(l, 2i)

will have dh(l,2i)
p
e nonempty cells in L and which is exactly the number of labels removed

from L when considering T (h(n, 2i)). Similarly, if h(l, 2i) > pj, then all j cells of L are
nonempty in T (h(n, 2i) and j labels are removed from L when considering this subtree.
Therefore, it follows that d(l) is the number of labels that are removed from L during
pruning. Since there are l − pj −m labels in nodes of T (n) after R, we may repeat this
argument to obtain that d(l − pj − m) is the number of labels removed from R during
pruning.

Let l = l1 + l2 where l1 is the total number of labels in L and R before pruning,
and l2 6 pj − m is the number of labels in nodes of T (n) after R. Then there will be
pj −m+ l1− d(l)− d(l− pj −m) labels on P before the end correction step. During the
end correction step we remove pj −m largest labels from the tree. Namely, l2 labels will
be removed from the nodes that follow R in preorder and the remaining l2 − pj +m will
be taken from P , leaving exactly l − d(l)− d(l − pj −m) labels in it.

If P is not one of the two last nonempty penultimate nodes in T (n), then there are
at least 3pj + m labels in the nodes that follow it. Thus, from the lemma, after pruning
P will contain pj + m labels. Now, if P and Q are the last and second last nonempty
penultimate nodes, respectively, and all children of P are empty, then P will be empty
in T ∗(n). If lQ > 3pj + m then Q contains pj + m labels; otherwise there are only
lQ − d(lQ) − d(lQ − pj −m) labels in Q. If P has a nonempty child then lQ > 3pj + m
and Q will have pj + m labels in T ∗(n). If lP > 3pj + m then P contains pj + m labels;
otherwise there are only lP − d(lP) − d(lP − pj − m) labels in P . Therefore, to prove
Lemma 4.1 it remains to verify that if P is a penultimate node and lP 6 3pj + m, then
lP − d(lP)− d(lP − pj −m) 6 pj +m.

Furthermore, observe that if lP 6 p(j−1)+1 then d(lP) = d(lP −pj−m) = 0, i.e. the
number of labels in P after pruning is lP and in that case both Lemma (4.1) and Lemma
(4.2) hold. Therefore, to complete the proof of these lemmas it suffices to check that the
following result holds.

Lemma 4.5. For p(j − 1) + 1 < l 6 3pj + m, p(j − 1) + 1 6 f(l) 6 pj + m where
f(l) = l − d(l)− d(l − pj −m).

First we restrict our attention to d(l). The following Lemma completely determines
behaviour of d(l) for the specified range of l.

Lemma 4.6. For p(j − 1) + 2 6 l 6 3pj + m, d(l) is a non-decreasing function. In
particular, as l changes from p(j − 1) + 2 to p(j − 1) + p the function d grows from
d(p(j − 1) + 2) = 1 to d(p(j − 1) + p) = bp

2
c. For 2pj > l > p(j − 1) + p, if p is odd then

d(l + 1)− d(l) = 1 and if p is even then d(l + 1)− d(l) alternates between 0 and 2 if p is
even. For l > 2pj, d(l) = pj.

the electronic journal of combinatorics 21(1) (2014), #P1.49 31

Proof. Note that when l increases by 1, each summand in d(l) either increases by 1 or
stays the same. It follows, that d(l) is a non-decreasing function. To prove the rest of
the Lemma we need to understand how many summands in d(l) can increase at the same
time. That is, we need find how many of the h(l, 2), h(l, 4), . . . h(l, 2p) can be multiples of
p at the same time.

Consider two intervals S1 = [h(l, 1), h(l, p)] and S2 = [h(l, p+1), h(l, 2p)]. The integers
in S1 ∪ S2 of the form h(l, 2i) correspond to the summands in d(l). Also, note that each
of these intervals contain exactly one multiple of p.

If p is odd and h(l, x) and h(l, y) are multiples of p from the first and second list
respectively then it follows that y = x+ p and hence one of x, y is even and the other one
is odd. We also note that if l is increased by 1 then the roles of x and y are interchanged,
i.e. if x was even and y was odd, then after l is increased x is odd and y is even. Therefore,
if p is odd there is always exactly one multiple of p among h(l, 2), h(l, 4), . . . h(l, 2p), i.e.

each time l is increased by 1 exactly one of dh(l,2)
p
e, . . . , dh(l,2p)

p
e increases by 1 as well. We

also note that the increasing terms alternate between the Si: if an increase in l by 1 leads
to an increase in dh(l,2u1)

p
e and h(l, 2u1) belongs to S1 then increasing l again leads to an

increase in dh(l,2u2)
p
e with some h(l, 2u2) in S2. The analysis in this paragraph is also valid

for p = 1.
Similarly, if p is even then x and y have the same parity. Moreover, if x, y are even

then once l is increased by 1, they both become odd and vice versa. Therefore, if p is
even either none or exactly two of dh(l,2)

p
e, . . . , dh(l,2p)

p
e grow by 1 when l increases by 1.

Thus, the difference sequence d(l + 1)− d(l) alternates between 0 and 2.
Finally, we are ready to fully describe the behaviour of d(l). We observe that when

p(j − 1) + 1 < l 6 p(j − 1) + p the function d grows from d(p(j − 1) + 2) = 1 to
d(p(j−1)+p) = bp

2
c. This is because each summand of d(l) corresponding to indices in S1

increases by 1 and each summand corresponding to indices in S2 remains zero because the
indicator function 1[h(l,2i)>0] will be zero for those summands. For 2pj > l > p(j − 1) + p,
d(l) either satisfies d(l + 1)− d(l) = 1 if p is odd, or d(l + 1)− d(l) alternates between 0
and 2 if p is even. As we have noted earlier, d(l) = pj for l > 2pj.

It follows from the Lemma 4.6 that a similar result holds for d(l − pj − m). As l
increases from pj +m+ p(j − 1) + 2 to pj +m+ p(j − 1) + p, the function d grows from
1 to bp

2
c. After that d(l − pj −m) is either a slowly growing sequence or has successive

differences that alternate between 0 and 2. Once d reaches pj, it remains constant.
Now we are ready to prove Lemma 4.5.

Proof. Recall that we would like to establish that for p(j − 1) + 1 < l 6 3pj + m,
p(j − 1) + 1 6 f(l) 6 pj + m. It follows from Lemma 4.6 that f(l) grows from p(j −
1) + 1 at l = p(j − 1) + 2 to p(j − 1) + dp

2
e at l = p(j − 1) + p. For p(j − 1) + p 6

lmin(pj +m+ p(j − 1) + 1, 2pj), f(l) remains constant if p is odd or alternates between
p(j − 1) + dp

2
e + 1 and p(j − 1) + dp

2
e if p is even. Thus, f(l) lies within the required

bounds for p(j − 1) + 1 < l 6 min(pj +m+ p(j − 1) + 1, 2pj).
Now we consider two cases: 2pj 6 pj+m+p(j−1)+1 and pj+m+p(j−1)+1 < 2pj.

If 2pj 6 pj +m+ p(j− 1) + 1 then f(l) is a increasing for l in [2pj, pj+m+ p(j− 1) + 1]

the electronic journal of combinatorics 21(1) (2014), #P1.49 32

with f(pj + m + p(j − 1) + 1) = p(j − 1) + 1 + m < pj + m since d(l) = pj for l > 2pj.
Also, since f(l) is increasing in this case, we still have f(l) > p(j − 1) + 1 for l in the
given range.

If pj + m + p(j − 1) + 1 < 2pj then both d(l) and d(l − pj − m) grow at the same
time and f(l) can potentially fall below p(j − 1) + 1. However, note that d(l − pj −m)
grows only up to bp

2
c between pj +m+ p(j − 1) + 1 and pj +m+ p(j − 1) + p = 2pj +m

by Lemma 4.6. Therefore, f(l) can only decrease to p(j − 1) + 1 on this interval. From
the previous case it follows that the upper bound f(l) 6 pj +m still holds in this case as
well.

Therefore, f(l) lies within the required bounds for min(pj +m+ p(j − 1) + 1, 2pj) <
l 6 max(pj +m+ p(j − 1) + 1, 2pj).

For max(pj+m+p(j−1)+1, 2pj) 6 l 6 p(j−1)+p+pj+m, f(l) is a non-decreasing
function with f(p(j− 1) + p+ pj +m) = p(j− 1) +m+ dp

2
e 6 pj +m. Thus, for l in this

range f(l) also lies within the required bounds.
Finally, for l in [p(j − 1) + p + pj + m, 3pj + m], f(l) is either p(j − 1) + m + dp

2
e (p

is odd) or alternates between p(j − 1) +m+ dp
2
e and p(j − 1) +m+ dp

2
e+ 1 (p is even).

Therefore, f(l) is within the required range for these values of l as well and the proof is
complete.

5 Nested k-ary order p recursions

In this section we continue our study of nested recursions via the lens of simultaneous
parameters by extending our earlier approach to solve certain k-ary, order p recursion
families. We begin our discussion by reviewing previous work on k-ary nested recursions
of type (1.1).

The k-ary Conolly recursion

Ck(n) =
k∑
t=1

Ck(n− t+ 1− Ck(n− t)) . (5.1)

is studied in [12]. There it is shown that the solution to (5.1), with appropriate initial
conditions, counts leaves on the infinite, labelled, k-ary tree which is the natural extension
of the infinite binary tree associated with the solution to the usual Conolly recursion (1.2).
Further, it is shown that the frequency sequence of this solution is φCk

(v) = νk(v) + 1,
where νk(v) is the k-adic valuation of v.

As it will be required in what follows, we describe the infinite, labelled k-ary tree
used above, which reduces to the binary tree we described earlier when k = 2. There
are supernodes along the leftmost spine and regular nodes. The leftmost supernode has
k leaf children; every other supernode has k − 1 regular nodes plus a supernode for their
k children. Apart from the leaves, all regular nodes also have k children. See Figure 5.1
for the skeleton of the tree for k = 3. The nodes are labelled in preorder, with s labels
in each supernode and one label in each regular node. For (5.1), s = 0 and Ck(n) counts
the number of leaves up to the nth label.

the electronic journal of combinatorics 21(1) (2014), #P1.49 33

Figure 5.1: The skeleton of the infinite k-ary tree for k = 3.

Recall that the ceiling function dn
2
e is the solution to the H recursion (1.3) (see, for

example, [1, 3]. This result is generalized in [5], where it is shown that dn
k
e is the solution

to the following k-ary, order k − 1 recursion with appropriate initial conditions:

Hk(n) =
k∑
t=1

Hk(n− (t− 1)k −
k−1∑
i=1

Hk(n− (t− 1)k − i)) . (5.2)

Once again a tree-based methodology is used to prove this result. The infinite k-ary tree
associated with (5.2) has the same skeleton as the k-ary tree described in the previous
paragraph, but with a different labelling. This tree contains k labels in each leaf and no
labels in any other node. Because the labels are enumerated in preorder, it follows that
this is just a sequential labelling as one traverses the leaves from left to right. Note that
the resulting solution sequence dn

k
c has the frequency sequence φHk

(v) = k.
In what follows we use our tree-based methodology to derive and solve a new family

of k-ary, order p recursions that includes the above two families. This family of recursions
extends the arity two, (α, β)-Conolly recursion (3.1) to arity k. Further, we show that
this family includes certain recursions whose solution sequence has frequency sequence
γφHk

+ δφCk
= γk + δφCk

. The trees associated with these latter recursions result from
the superposition of the appropriate number of copies of the trees associated with Ck and
Hk.

5.1 The main theorem

We extend the arity 2, (α, β)-Conolly recursion (3.1) to arity k by extending the construc-
tion of the arity two tree from Section 3. Recall from Section 3 that the tree constructed
there relied on four parameters s, j,m and p. For ease of exposition we limit our discussion
here to the case s = 0 and j = 1. The extension to general s and j is the same as is done
in Section 3. Namely, we insert s labels in each supernode, divide each leaf into j cells
with 1 label in the first j − 1 cells and j +m labels in the last cell and proceed as before.

Fix parameters k > 3, p > 1 and m satisfying p − 1 6 m 6 kp
k−1 − 1; the infinite tree

we now construct will be denoted T = Tm,p,k. The tree T has the same skeleton as the

the electronic journal of combinatorics 21(1) (2014), #P1.49 34

infinite k-ary tree described above. The labelling of T is as follows: the leaves of T each
contain 1+m labels. All other regular nodes each contain x := pk− (k−1)(1+m) labels.
The range of m ensures that x > 0. The labels of the resulting tree are then enumerated
in preorder. Note that for k = 2 we get the construction of Section 3, except that the
range of m is more constrained. Refer to Section 5.2, where we talk further about what
goes wrong with our proof for m < p− 1.

As before, let T (n) be the subtree of T with n labels in preorder. If a leaf of T (n)
is the tth child of its parent at the penultimate level, then we will abbreviate it as a tth

leaf. Define CT (n) to be the function that counts the number of nonempty leaves of T (n).
Then our main result is that CT (n) satisfies a k-ary, order p nested recursion.

Theorem 5.1. With T as defined above let CT (n) be the number of nonempty leaves of
T (n). For n > 2k(p + m) + p− (k − 1)m (all labels up to and including the last child of
the second penultimate level node must be filled), CT (n) satisfies the recursion

R(n) =
k∑
t=1

R

(
n− (t− 1)(1 +m)−

p∑
i=1

R (n− (t− 1)(1 +m)− i)

)
. (5.3)

Remark 5.2. For k = 2 the recursion in Theorem 5.1 does not reduce to (3.1). Nonetheless
we will show in Section 5.2 that for any α > 0 there exist values of m and p such that the
tree-based solution of (5.3) is the same as that for (3.1). For α < 0 we cannot derive the
corresponding solution sequence obtained through (3.1) in Section 3 because we require
m > p− 1. See Section 5.2 for additional details.

The proof of Theorem 5.1 follows from the definition of CT (n) once we establish the
following lemma.

Lemma 5.3. For each 1 6 t 6 k the term

CT

(
n− (t− 1)(p+m)−

p∑
i=1

CT (n− (t− 1)(p+m)− i)

)

counts the number of nonempty tth leaves of T (n).

To prove Lemma 5.3 we introduce a pruning operation on T (n) for n > k(p + m) +
p− (k− 1)m (all labels up to the first child of the second penultimate node level must be
filled). The pruned tree will be denoted T ∗(n).

initial correction step Insert x = pk − (k − 1)(1 + m) labels in the first supernode of
T (n).

deletion step Consider the subtrees T (n− i) for 1 6 i 6 p. For each leaf of T (n), delete
a label from it for every subtree T (n− i) in which it is nonempty.

lifting step Lift any remaining labels from the leaves of T (n) to their corresponding
parent at the penultimate level. After this step all leaves of T (n) become empty.

the electronic journal of combinatorics 21(1) (2014), #P1.49 35

end correction step Delete the largest x = pk− (k− 1)(1 +m) labels that are present
in T (n) after the last step. This deletion of labels offsets the insertion of x labels
into the first supernode during the initial correction step.

relabelling step Delete all the (empty) leaves of T (n) and relabel all remaining labels
in preorder. The previous penultimate level nodes of T (n) become the new leaves.

The total number of labels in the pruned tree T ∗(n) is n−
∑p

i=1CT (n− i). The key
lemma follows.

Lemma 5.4. The pruned tree T ∗(n) is identical to the tree T (n −
∑p

i=1CT (n − i)).
Furthermore, if P is a nonempty leaf of T ∗(n) then the first child of P in T is a nonempty
leaf of T (n).

It follows from Lemma 5.4 that the number of nonempty first leaves of T (n) is equal
to the number of nonempty leaves of T ∗(n). However, the latter number is CT (n −∑p

i=1CT (n − i)) by the first assertion of Lemma 5.4. So the assertion in Lemma 5.3
follows for t = 1. The assertion for general t follows due to the usual bijection between t-
th leaves of T (n) and the first leaves of T (n−(t−1)(1+m)). With Lemma 5.3 established
it follows trivially that

CT (n) =
k∑
t=1

CT

(
n− (t− 1)(1 +m)−

p∑
i=1

CT (n− (t− 1)(1 +m)− i)

)
.

We now prove Lemma 5.4. As before, we need only consider the penultimate level
node P that is the last penultimate level node of T (n) with a nonempty child in T (n).
We need to show that P has between 1 to 1 +m labels as a leaf of the pruned tree T ∗(n).
All other penultimate level nodes of T (n) either contain a full set of 1 + m labels or no
labels in T ∗(n) according to whether they have a nonempty child in T (n) or not. So
suppose that P is such a node and condition on the location of label n in T (n).

For ease of notation in the proof we let µ = m− p + 1. Since p− 1 6 m 6 k
k−1p− 1,

we have that 0 6 µ 6 p/(k− 1). With this notation we observe that a leaf in the infinite
tree T contains p + µ labels and all other regular nodes contain x = p− (k − 1)µ labels.
We need to show that after pruning T (n) the node P contains between 1 to p+ µ labels
in T ∗(n).

Case 1: Label n is located in the tth child of P with 1 6 t 6 k. Suppose that n is the
lth label in the tth child. If l 6 p then the tth child loses l − 1 labels during the deletion
step and the first t − 1 children lose p labels each. If p < l 6 p + µ (assuming µ > 1),
then all t children of P lose p labels in the deletion step. Therefore, the number of labels
in P after the end correction step is (t− 1)µ + 1 if l 6 p and (t− 1)µ + l − p otherwise.
Notice that

min
t,l

{
[(t− 1)µ+ 1] · 1[l6p] + [(t− 1)µ+ l − p] · 1[l>p]

}
> 1 .

the electronic journal of combinatorics 21(1) (2014), #P1.49 36

This implies the second assertion of Lemma 5.4 for this case. Also, using p > 1 and
0 6 µ 6 p/(k − 1) it follows that

max
t,l

{
[(t− 1)µ+ 1] · 1[l6p] + [(t− 1)µ+ l − p] · 1[l>p]

}
6 p+ µ .

Thus, the first assertion of Lemma 5.4 follows as well.

Case 2: Label n is the lth label following the final label in the last child of P and l > 1.
In this case, each child of P loses p labels during the deletion step, and during the end
correction step the number of labels removed from P is p−(k−1)µ−min{ l, p−(k−1)µ }.
The total number of labels in P after the relabelling step is kµ + min{ l, p − (k − 1)µ }.
However, 1 6 kµ+min{ l, p−(k−1)µ } 6 p+µ due to l, p > 1 and µ > 0. This establishes
both assertions of Lemma 5.4 for this case.

The two cases above are exhaustive and Lemma 5.4 is thus proved.

5.2 Consequences of Theorem 5.1

We now relate our k-ary (α, β)-Conolly generalization to our tree superposition method-
ology. Fix k > 3. If (m, p) = (0, 1) then the solution sequence CT (n) is the k-ary Conolly
sequence (5.1). On the other hand, with (m, p) = (k − 1, k − 1) the solution sequence
CT (n) = Hk(n) because the resulting tree T contains k labels per leaf and 0 labels every-
where else. We can take the trees resulting from these two choices of (m, p) and superpose
them as discussed in Section 4. To do so we fix coefficients γ, δ > 0 such that at least
one of them is positive, and then set m = kγ + δ − 1 and p = (k − 1)γ + δ. With these
choices it is easily verified that p > 1 (since at least one of γ and δ is positive), and that
p − 1 6 m 6 kp

k−1 − 1. The resulting tree Tm,p,k contains γk + δ labels in each leaf and
δ labels in each of the remaining regular nodes. It is the superposition of γ copies of
Tk−1,k−1,k and δ copies of T0,1,k. Therefore, the frequency sequence φCT

of the solution
sequence CT (n) is γφHk(n) + δφCk

= γk + δφCk
.

Finally, because we require m > p−1 in the setup for Theorem 5.1, it follows from the
above assignments form and p that we implicitly restrict γ to positive values. Observe that
in the above k-ary generalization, γ corresponds to α/2 and δ corresponds to β from the
2-ary case. In the latter, negative values of α are permitted under appropriate constraints.
This leads naturally to the question whether frequency sequences with negative values of
γ can also be obtained. We comment further on this open question in the next section.

6 Future directions

In the course of our investigation of nested recursions in this paper we have identified
several areas where there are questions about the possibility of extending our results. In
this concluding section we collect and further discuss these open problems, which provide
possible directions for future research in this area.

the electronic journal of combinatorics 21(1) (2014), #P1.49 37

6.1 Tree Superposition

Recall that in Section 4, Ts,j,m,p is defined to be the tree with the skeleton of the infinite
binary tree from Figure 2.1 with j cells in each leaf and labelling scheme as follows: each
of the first j−1 cells of each leaf receives p labels, while the last cell receives p+m labels.
All remaining regular nodes in Ts,j,m,p get pj −m labels each, and the supernodes receive
s labels each. To ensure that each leaf has at least one cell and that cells have a positive
number of labels, we require p, j > 1. Likewise, to force regular nodes and supernodes to
contain a non-negative number of labels, we need s > 0 and 0 6 m 6 pj.

For such s, j,m, p, Theorem 4.3 states that the cell counting sequence for Ts,j,m,p
solves nested recursion (4.1) with sufficient number of initial conditions that follow the
tree. In Section 4, we observed that Ts,j,m,p remains well-defined for negative m as long
as m > −p. However, for −p < m < 0, the pruning operation on Ts,j,m,p(n) defined in
Section 4 does not produce a tree T ∗s,j,m,p(n) that conforms to the labelling rules described
earlier, so this pruning operation can not be used to derive a nested recursion whose
solution sequence is the cell counting sequence for this tree (for a specific example consider
pruning T0,4,−2,9(168)). However, this does not exclude the possibility that there exists
an alternative pruning operation that does lead to suitable nested recursions in case
−p < m < 0. This leads to our first question:

Open Problem 6.1. Fix s, j,m, p such that p, j > 1, s > 0, −p < m < 0. Does there
exist a 2-ary order p recursion of the form (1.1) that has a solution sequence given by the
cell counting sequence of Ts,j,m,p?

For s = 0 and m = bj for some b, Ts,j,m,p is a superposition of T0,j,j and T0,j,0 from
Section 2 and its frequency function is a linear combination bφH0,j

+(p−b)φR0,j
. Therefore,

the answer to the above question would determine whether there exists a 2-ary, order p
recursion of the form (1.1) whose frequency sequence is a linear combination of φH0,j

and
φR0,j

with negative coefficients.

6.2 Linear Combinations of Frequency Sequences with Negative
Coefficients

In order to consider this possibility, we begin by investigating the possibility of k-ary,
order p recursions R(n) with slow solutions that have frequency sequences of the form
λ + δφCk

, where λ and δ are constants. In this case, some necessary conditions must be
met by λ and δ.

As R(n) is slow we require that λ + δφCk
(v) > 1 for all n. Since φCk

is unbounded it
must be the case that δ > 0, and since φCk

(v) = 1 for many values of v, it must be that
λ+ δ > 1.

There is another key condition that must be met due to the asymptotic behaviour of the
sequence. Let hv be the last occurrence of v in the sequence R(n). Since R(n) is slow we
have that hv =

∑v
i=1 (λ+ δφCk

(i)). It can be easily verified that limv→∞
1
v

∑v
n=1 φCk

(i) =
k/(k − 1) because Ck(n)/n converges to (k − 1)/k (see [12]). Therefore, limv→∞ hv/v =
λ+ δ k

k−1 . But note that R(hv) = v, and so we have that limv→∞R(hv)/hv = k−1
(k−1)λ+kδ .

the electronic journal of combinatorics 21(1) (2014), #P1.49 38

It is not hard to see that R(n)/n must have a limit (since it is slow with frequency
sequence λ+δφC). On the other hand, as R(n) is a solution to a k-ary order p recursion of
the form (1.1), its recursive structure implies that any limit of R(n)/n must be either zero
or k−1

kp
(see, for example, [3] Theorem 2.1). In our case, the limit can not be zero since the

subsequential limit k−1
(k−1)λ+kδ is nonzero for k > 2. Thus, the limit of R(n)/n must be k−1

kp
,

and equating this to the subsequential limit k−1
(k−1)λ+kδ implies that (k − 1)λ = k(p − δ).

So k divides λ since k is relatively prime to k − 1. Therefore, λ = γk with γk + δ > 1
and δ > 0. This explains why in the previous section we limited our consideration to
frequency sequences of the form γφHk

+ δφCk
= γk+ δφCk

, as well as the close connection
of this material to tree superpositions of the trees associated with Hk and Ck.

The conditions γk + δ > 1 and δ > 0 does not exclude negative values of γ. In fact,
if the frequency sequence of R(n) is γk + δφC with γ < 0 then R(n) is the leaf counting
function CT (n) of the tree Tm,p,k with p = (k − 1)γ + δ > 1 and m = p− 1 + γ < p− 1.
Our proof of Theorem 5.1 does not work for m < p − 1 although the corresponding tree
Tm,p,k is well defined. This leads to the following open problem of finding a k-ary, order
p recursion that is satisfied by CT (n) for such T .

Open Problem 6.2. Fix γ < 0 and δ > 0 such that γk + δ > 1. Does there exits a
k-ary order p recursion of the form (1.1) that has a slow solution with frequency sequence
γk + δφCk

?

In fact, for fixed choices of γ and δ, there can be a multitude of recursions whose
solution sequences have the common frequency sequence γk + δφCk

. Classifying all such
recursions is nontrivial. Initial empirical evidence suggests that the following recursion
may be a good candidate with p = (k − 1)γ + δ:

R(n) =
k∑
i=1

R(n−(i−1)(p+γ)−R(n−1)−
|γ|∑
t=1

R(n−1−tk)−
p−|γ|−1∑
t=1

R(n−1−|γ|k−2t)).

References

[1] B. Balamohan, Z. Li, and S. Tanny, A combinatorial interpretation for certain rela-
tives of the Conolly sequence, J. Integer Seq. 11 (2008), Article 08.2.1.

[2] B.W. Conolly, Fibonacci and meta-Fibonacci sequences, in: S. Vajda. ed., Fibonacci
& Lucas Numbers and the Golden Section: Theory and Applications, E. Horwood
Ltd., Chichester, 1989, 127–139.

[3] A. Erickson, A. Isgur, B.W. Jackson, F. Ruskey and S. Tanny, Nested Recurrence
Relations with Conolly-like Solutions, SIAM J. Discrete Math, 26(1) (2012), 206–238

[4] D.R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Random House,
1979.

[5] A. Isgur, Solving nested recursions with trees, Ph.D. thesis, 2012, University of
Toronto.

the electronic journal of combinatorics 21(1) (2014), #P1.49 39

[6] A. Isgur, V. Kuznetsov, and S. Tanny, Nested recursions with ceiling function so-
lutions, J. Difference Equations and Applications, J. of Difference Equations and
Applications, 2011, 1–10 doi:10.1080/10236198.2012.662967.

[7] A. Isgur, V. Kuznetsov, and S. Tanny, A combinatorial approach for solving certain
nested recursions with non-slow solutions, J. Difference Equations and Applications,
2012, 1–10 doi:10.1080/10236198.2012.662967.

[8] A. Isgur, M. Rahman, On variants of Conway and Conolly’s Meta-Fibonacci recur-
sions, Electron. J. Combin. 18(1) (2011), #P96.

[9] A. Isgur, M. Rahman, and S. Tanny, Solving non-homogeneous nested recursions
using trees, Annals of Combinatorics, 17(2) (2013), 695–710.

[10] A. Isgur, D. Reiss, and S. Tanny, Trees and meta-Fibonacci sequences, Electron. J.
Combin. 16(1) (2009), #R129.

[11] B. Jackson and F. Ruskey, Meta-Fibonacci sequences, binary trees and extremal
compact codes, Electron. J. Combin. 13 (2006), #R26.

[12] F. Ruskey and C. Deugau, The combinatorics of certain k-ary meta-Fibonacci se-
quences, J. Integer Seq. 12 (2009), Article 09.4.3.

the electronic journal of combinatorics 21(1) (2014), #P1.49 40

http://dx.doi.org/10.1080/10236198.2012.662967
http://dx.doi.org/10.1080/10236198.2012.662967

	Introduction
	Unifying Two Seemingly Unrelated Recursions
	Simultaneous parameters in higher order nested recursions
	Construction of the tree and statement of the main theorem
	Strategy of the proof : the pruning operation
	Proof of Lemmas 3.3 and 3.4.
	The frequency sequence

	Linear combinations of frequency sequences via tree superpositions
	The tree and the pruning operation
	The main theorem
	Proof of Theorem 4.3

	Nested k-ary order p recursions
	The main theorem
	Consequences of Theorem 5.1

	Future directions
	Tree Superposition
	Linear Combinations of Frequency Sequences with Negative Coefficients

