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Abstract
Based on the classic bijective algorithm for trees due to Chen, we present a

decomposition algorithm for noncrossing trees. This leads to a combinatorial inter-

pretation of a formula on noncrossing trees of size n with k descents. We also derive

the formula for noncrossing trees of size n with k descents and i leaves, which is a

refinement of the formula given by Flajolet and Noy. As an application of our algo-

rithm, we answer a question proposed by Hough, which asks for a bijection between

two classes of noncrossing trees with a given number of descents.

Keywords: noncrossing tree, descent, bijection

1 Introduction

A noncrossing tree (NC-tree for short) is a tree drawn on n points numbered in counter-
clockwise order on a circle in such a way that its edges are rectilinear and do not cross.
We always consider the points labeled counterclockwise from 1 to n and the root labeled
1. The size of a NC-tree is defined as the number of edges. It is well known that the num-
ber of NC-trees of size n equals 1

2n+1

(
3n

n

)
, the generalized Catalan number. Noncrossing

configurations have been extensively studied, see, for example, [1, 3, 5–11,13].
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Figure 1: The (l; r)-representation of a NC-tree.

In a NC-tree T , a vertex v is planted at u if (u, v) is an edge and u lies on the unique
path from the root to v. Moreover, (u, v) is a descent if u > v. Denote Nn,k the number
of NC-trees of size n with k descents. Using generating function, Hough [8] pointed out
the following formula

Theorem 1.1 (Theorem 2.2, [8]).

Nn,k =
1

n

(
n− 1 + k

n− 1

)(
2n− k

n+ 1

)
. (1.1)

Hough [8] also observed that N2k+1,k−1 = N2k+1,k, and proposed the following question.

Question 1.2 (Question 4.2, [8]). Find a bijection on NC-trees with 2k+1 edges between

those with k − 1 descents and those with k descents.

In this paper, we give a combinatorial interpretation of formula (1.1) by introducing a
decomposition algorithm for NC-trees. Moreover, we derive a refined formula on NC-trees
of size n with respect to the number of descents and the number of leaves. Notice that
this formula is also a refinement of a result given by Flajolet and Noy [6]. The second
result of this paper is to provide a bijective proof for Question 1.2.
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Figure 2: A labeled NC-tree.

Our combinatorial interpretation of formula (1.1) relies on the (l; r)-representation of
NC-trees introduced by Panholzer and Prodinger [11]. Represent a NC-tree T by a plane
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tree with each edge labeled by l or r using the following rules: Label an edge by l if it is a
descent; Otherwise, label it by r. See Figure 1 for the (l; r)-representation of a NC-tree.
Briefly, we call an edge labeled by l or r an l-edge or an r-edge respectively. It is obvious
that a plane tree obtained in this way has two properties: (i) the edges adjacent to the
root are always r-edges; (ii) for any internal vertex v, the vertices planted at v with l-edges
are always to the left of the vertices planted at v with r-edges. In addition, these two
properties provide a necessary and sufficient condition for a plane tree to become a NC-
tree. Note that each l-edge in such a plane tree corresponds to a descent. To construct the
decomposition algorithm, we still need the notion of labeled NC-trees. A labeled NC-tree

of size n is referred to the (l; r)-representation of a NC-tree of size n with the label set
[n + 1] := {1, 2, . . . , n + 1}. See Figure 2 for a labeled NC-tree. Clearly, the number of
labeled NC-trees of size n equals (n+ 1)! times the number of NC-trees of size n.

2 A decomposition algorithm for labeled NC-trees

The purpose of this section is to give a decomposition algorithm for labeled NC-trees that
leads to a combinatorial interpretation of formula (1.1). Our algorithm is a generalization
of the bijective algorithm for plane trees in [2]. It should be pointed out that Chen [2]
established a more general bijection for trees.

A planted tree is a rooted tree with root degree one, and a planted edge is the edge
adjacent to the root. Define a planted tree r-unique if the planted edge is an r-edge and
all the other edges are l-edges.

We begin to deal with a labeled NC-tree T of size n with k l-edges. Remind that the
label set of T is [n + 1]. The first procedure of our algorithm is to decompose T into a
forest F on [2n− k], where F is composed of n− k r-unique planted trees.
Decomposition algorithm:

Step 1. Find an r-unique planted subtree of T with planted edge (u, v) such that v is
the rightmost child of u and the original label i of u is the smallest. Then we may
obtain an r-unique planted subtree with planted edge (u, v).

Step 2. Remove the r-unique planted subtree and relabel the vertex u by n + 2 in T .
However, the original label i will be reused for later comparisons of vertices.

Step 3. Repeat the above steps for the remaining tree and subsequently supply n+3, n+
4, . . . , 2n− k to relabel the encountered vertex u.

Figure 3 (a) is an illustration of the first procedure of the decomposition algorithm. The
second procedure of our algorithm is to decompose F into a set M of n matches on [2n],
where a match is a rooted tree with two vertices.

Step 4. Find an l-edge (u, v) such that v is the rightmost child of u, v is a leaf and the
label i of u is the smallest. Then we obtain a match with root u.

the electronic journal of combinatorics 21(1) (2014), #P1.5 3



r r r

l l l

l r

r r

l

5

7 1 12

6 8
11

4 3

9 10

2

⇐⇒
(a)

r

8

3

r

12

10

r

l

14∗

9

2

r

5

15∗

r

16∗

1

17∗

7

6 13∗
11

4

r

l l l

l

m (b)

r

8

3

r

12

10

r

5

15∗

r

16∗

1

r

14∗

19#

r

17∗

22#

l

7

11

l

9

2

l

13∗

4

l

18#

20#

l

21#

6

Figure 3: The decomposition algorithm of a labeled NC-tree.

Step 5. Remove the match and relabel the vertex u by 2n − k + 1 in F . However, the
label i is still used for later comparisons of vertices.

Step 6. Repeat Step 4 and Step 5 for the remaining forest and subsequently supply
2n− k + 2, 2n− k + 3, . . . , 2n to relabel the encountered vertex u.

See Figure 3 (b) for an example of the second procedure. It is clear that for k = 0, the
decomposition algorithm for a labeled NC-tree with k descents reduces to the algorithm
for a plane tree introduced by Chen [2].

We call a match labeled by r or l an r-match or l-match respectively. For k > 1, the
resulting n matches on [2n] have the following properties:

(A1) There are k l-matches and n− k r-matches;

(A2) The labels for the roots of r-matches are in the set [2n− k];

(A3) The label 2n is a leaf of an r-match.

Let Mn,k := {M |M is a set of n matches on [2n] satisfying conditions (A1)-(A3)}. Now
we are ready to establish the inverse of the decomposition algorithm. Specifically, for
M ∈ Mn,k, we need to merge M into a labeled NC-tree.

First, rewrite the label set [2n] of M by the marked set

{1, 2, . . . , n+ 1, (n+ 2)∗, . . . , (2n− k)∗, (2n− k + 1)#, . . . , (2n)#}.
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A vertex labeled by a mark ∗ or a mark # is called a ∗-marked or a #-marked vertex
respectively.
Merging algorithm:

Step 1. Find the tree T without r-edge and #-marked vertex, such that the root i of T
is the smallest.

Step 2. Find the tree T# with the smallest #-marked vertex. Let j# be this marked
vertex.

Step 3. If j# is the root of T#, then merge T with T# by identifying i and j#, put the
subtrees of T to the right of T#, and keep i as the label of the combined vertex.
This operation is called a horizontal merge. If j# appears as a leaf of T#, then
replace j# by T in T#. This operation is called a vertical merge. See Figure 4.

Step 4. Repeat the above steps until no #-marked vertex left.

Step 5. Find the tree T without ∗-marked vertex and the root i of T is the smallest.

Step 6. Find the tree T ∗ with the smallest ∗-marked vertex j∗. If j∗ is the root of T ∗,
then merge T with T ∗ by applying the horizontal merge. If j∗ appears as a leaf of
T ∗, then merge T with T ∗ by applying the vertical merge.

Step 7. Repeat Step 5 and Step 6 until we get a labeled NC-tree.

j#

T#

+

i

T

⇒

i

j#

T#

+

i

T

⇒ i

Figure 4: A horizontal merge and a vertical merge.

Relying on the above algorithms, we arrive at the following result.

Theorem 2.1. The decomposition algorithm and the merging algorithm are inverse to

each other. Consequently, for k > 1, there is a bijection between the set of labeled NC-

trees of size n with k descents and the set Mn,k.

The proof of Theorem 2.1 is elementary but tedious, and we present it in Appendix
A.
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Combinatorial proof of Theorem 1.1. A NC-tree of size n with 0 descent reduces to a
plane tree with n edges. It is well known that the set of plane trees of n edges is counted
by the n-th Catalan number, see, for example, [12]. Hence, the formula (1.1) is clear. We
only need to confirm (1.1) for k > 1. Keep in mind that the number of labeled NC-trees
of size n with k descents equals (n + 1)! times the number of NC-trees of size n with k

descents. By Theorem 2.1, it is equivalent to prove the following expression

|Mn,k| = (n+ 1)!Nn,k =
(n+ 1)!

n

(
n− 1 + k

n− 1

)(
2n− k

n+ 1

)
. (2.1)

Note that the set of matches in Mn,k satisfies conditions (A1)–(A3). Formula (2.1) holds
since (i) there are

(
2n−k

n−k

)
ways to choose n − k labels from [2n − k] for the roots of r-

matches, (ii) there are
(
n−k

1

)
ways to choose a label to match 2n for an r-match, (iii)

there are
(
n+k−1

k

)
ways to choose k labels from the remaining label set for the roots of

l-matches, and (iv) there are (n− 1)! ways to arrange the remaining labels for the leaves
of the matches. This gives the number

(
2n− k

n− k

)(
n− k

1

)(
n+ k − 1

k

)
(n− 1)!,

which equals the right hand side of (2.1).

Observe that in the merging algorithm, a leaf with an unmarked label in M is still a
leaf in the corresponding labeled NC-tree. We may derive a refined formula on NC-trees
with respect to the number of descents and the number of leaves.

Theorem 2.2. For k > 1, the number of NC-trees of size n with k descents and i leaves

is equal to

1

n

n−k∑

t=0

(
n

t− 1

)(
n− k

t

)(
n+ 1− t

i

)(
k + t− 2

n− 1− i

)
. (2.2)

Proof. The proof is similar as Theorem 1.1, and we give a sketch. Note that a labeled
NC-tree of size n with k descents and i leaves corresponds to a set of n matches M ∈ Mn,k

with i unmarked leaves. Consider the set of M in Mn,k with exactly i unmarked leaves
and t r-matches with unmarked roots, which is counted by

(
n+ 1

t

)(
n− k − 1

n− k − t

)(
n− k

1

)(
n+ 1− t

i

)(
k + t− 2

n− 1− i

)
(n− 1)!.

By summing over t, we derive that the number of labeled NC-trees of size n with k

descents and i leaves is
n−k∑

t=0

(
n+ 1

t

)(
n− k − 1

n− k − t

)(
n− k

1

)(
n+ 1− t

i

)(
k + t− 2

n− 1− i

)
(n− 1)!

=
(n+ 1)!

n

n−k∑

t=0

(
n

t− 1

)(
n− k

t

)(
n+ 1− t

i

)(
k + t− 2

n− 1− i

)
.

This implies expression (2.2).
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We remark that for k = 0, the number of NC-trees of size n with k descents and i

leaves is given by the Narayana number, see [4]. The formula (2.2) is also a refinement of
a formula obtained by Flajolet and Noy [6, Theorem 1].

By arranging the matches in M ∈ Mn,k in terms of the increasing order of their
leaves, we obtain a sequence on the roots of these n matches. Assume that the label
for the root of an r-match is colored white, while the label for the root of an l-match is
colored black and written in boldface. Therefore, M can be represented by a bicolored
sequence consisting of n distinct integers such that

(B1) there are n− k white elements that belong to the set [2n− k],

(B2) there are k black elements that belong to the set [2n− 1],

(B3) the last element is white.

For example, the corresponding bicolored sequence for the labeled NC-tree in Figure 3 is
(16,9, 8,13,21, 12,7, 5, 14,18, 17).

Denote Pn,k the set of bicolored sequences satisfying conditions (B1)–(B3). It is
straightforward to obtain the following correspondence between labeled NC-trees and
the bicolored sequences.

Theorem 2.3. For k > 1, there is a bijection between labeled NC-tree of size n with k

descents and the set Pn,k.

3 A bijective proof of Question 1.2

In this section we present a bijective proof of Question 1.2. To describe our bijection,
we first notice that it is equivalent to construct a bijection between the set of labeled
NC-trees of size 2k + 1 with k l-edges and the set of labeled NC-trees of size 2k + 1 with
k−1 l-edges. Using Theorem 2.3, it remains to give a one-to-one correspondence between
P2k+1,k and P2k+1,k−1.

Let A2k+1,k denote the set of bicolored sequences π in P2k+1,k such that a white element
i is underlined and a black element j is double underlined. For example,

(16,9, 8,13,21, 12,7, 5, 14,18, 17)

belongs to A11,5. By definition, we have

|A2k+1,k| = (k + 1)k|P2k+1,k|. (3.1)

Let B2k+1,k−1 be the set of bicolored sequences σ in P2k+1,k−1 such that (i) a white element
i is underlined, (ii) a white element j different from i is double underlined, (iii) neither i
nor j is the last white element in σ. For example,

(16,9, 8, 13,21, 12,7, 5, 14,18, 17)
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belongs to B11,4. It follows that

|B2k+1,k−1| = (k + 1)k|P2k+1,k−1|. (3.2)

We proceed to construct a bijection Φ : A2k+1,k → B2k+1,k−1, which relies on the
partition of A2k+1,k and B2k+1,k−1. Without loss of generality, we may assume that the
elements in an integer set are arranged in the increasing order. As mentioned above, the
underlined and double underlined elements are always denoted by i and j respectively.
Now we need to consider five cases.
Case 1. φ1 : S1 → T1, where

• S1 is the set of bicolored sequences π in A2k+1,k such that i is not the last white
element and j < 3k + 3,

• T1 is the set of bicolored sequences σ in B2k+1,k−1 such that 3k + 3 is not a white
element in σ.

For π ∈ S1, φ1(π) can be generated from π by changing the black element j to a white
element j. For example, π = (16,9, 8,13,21, 12,7, 5, 14,18, 17) in A11,5 belongs to S1.
Then φ1(π) = (16,9, 8, 13,21, 12,7, 5, 14,18, 17).
Case 2. φ2 : S2 → T2, where

• S2 is the set of bicolored sequences π in A2k+1,k such that i is not the last white
element and j = 3k + 3,

• T2 is the set of bicolored sequences σ in B2k+1,k−1 such that 3k+3 is a white element
but not the last in σ and j = 3k + 3.

For π ∈ S2, φ2(π) can be generated from π by changing the black element 3k + 3
to a white element 3k + 3. For example, π = (16,9, 8,13,21, 12,7, 5, 14,18, 17) in A11,5

belongs to S2. Then φ2(π) = (16,9, 8,13,21, 12,7, 5, 14, 18, 17).
Case 3. φ3 : S3 → T3, where

• S3 is the set of bicolored sequences π in A2k+1,k such that 3k+ 3 is an element in π

and i is the last white element,

• T3 is the set of bicolored sequences σ in B2k+1,k−1 such that 3k + 3 is the last white
element in σ.

For π ∈ S3, assume that j is them-th black element in π. This implies that 1 6 m 6 k.
Then φ3(π) can be generated from π by the following procedures:

Step 1. Remove the double underline from j to the m-th white element;

Step 2. Change the black element 3k + 3 to a white element 3k + 3;

Step 3. Exchange the positions of 3k + 3 and i, where i is still underlined.
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For example, π = (16,9, 8,13, 12,18,7, 5, 14,21, 17) in A11,5 belongs to S3. Then φ3(π) =
(16,9, 8,13, 12, 17,7, 5, 14,21, 18).
Case 4. φ4 : S4 → T4, where

• S4 is the set of bicolored sequences π in A2k+1,k such that

– 3k + 3 is not an element in π,

– i is the last white element,

– j is them-th element in the set ([4k+1]−E(π)−{3k+3})∪{j} with 1 6 m 6 k,
where E(π) is the set of elements in π,

• T4 is the set of bicolored sequences σ in B2k+1,k−1 such that 3k+3 is a white element
but not the last in σ and i = 3k + 3.

For π ∈ S4, φ4(π) can be generated from π by the following procedures:

Step 1. Remove the double underline from j to the m-th white element;

Step 2. Replace the black element j by a white element 3k + 3;

Step 3. Remove the underline from i to 3k + 3.

For example, π = (16,9, 8,13, 12,19,3, 2, 14,21, 17) is in A11,5. By definition, k =
5 and ([4k + 1] − E(π) − {3k + 3}) ∪ {j} = {1, 3, 4, 5, 6, 7, 10, 11, 15, 20}. It follows
that m = 2 and 1 6 m 6 k. One can verify that π belongs to S4. Then φ4(π) =
(16,9, 8,13, 12,19, 18, 2, 14,21, 17).
Case 5. φ5 : S5 ∪ S6 ∪ S7 → T5, where

• S5 is the set of bicolored sequences π in A2k+1,k such that 3k + 3 is an element in
π, i is not the last white element and j > 3k + 3,

• S6 is the set of bicolored sequences π in A2k+1,k such that 3k + 3 is not an element
in π, i is not the last white element and j > 3k + 3,

• S7 is the set of bicolored sequences π in A2k+1,k such that

– 3k + 3 is not an element in π,

– i is the last white element,

– j is the m-th element in the set ([4k + 1] − E(π) − {3k + 3}) ∪ {j} with
k + 1 6 m 6 2k,

• T5 is the set of bicolored sequences σ in B2k+1,k−1 such that 3k+3 is a white element
but not the last in σ, i < 3k + 3 and j < 3k + 3.

For π ∈ S5 ∪ S6 ∪ S7, we have the following three cases.
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1. If π ∈ S5, assume that j is m-th element in π greater than 3k + 3. Then φ5(π) can
be generated from π by the following procedures:

Step 1. Change the black element 3k + 3 to a white element 3k + 3;

Step 2. Remove the double underline from j to the m-th white element, except for
i and 3k + 3.

For example, π = (16,9, 8,13,21, 12,7, 5, 14,18, 17) in A11,5 belongs to S5. One
sees that m = 1. Then φ5(π) = (16,9, 8,13,21, 12,7, 5, 14, 18, 17).

2. If π ∈ S6, let B denote the set of elements in π, except for j, greater than 3k + 3.
Assume that j is the m-th element in the set {3k+4, 3k+5, . . . , 4k+1}−B. Then
φ5(π) can be generated from π by the following procedures:

Step 1. Replace the black element j by a white element 3k + 3;

Step 2. Remove the double underline to the (m+ |B|)-th white element, except for
i and 3k + 3.

For example, π = (16,9, 8,13,20, 12,7, 5, 14,21, 17) in A11,5 belongs to S6. By
definition, B = {21}, {3k + 4, 3k + 5, . . . , 4k + 1} − B = {19, 20}, m = 2 and
|B| = 1. Hence, φ5(π) = (16,9, 8,13, 18, 12,7, 5, 14,21, 17).

3. If π ∈ S7, φ5(π) is generated from π by the following procedures:

Step 1. Remove the underline from i to the (m− k)-th white element;

Step 2. Replace the black element j by a white element 3k + 3;

Step 3. Remove the double underline to the (k − 1)-th white element, except for
the underlined white element and 3k + 3.

For example, π = (16,9, 8,13, 12,19,15, 5, 14,21, 17) is in A11,5. By definition,
k = 5, ([4k + 1] − E(π) − {3k + 3}) ∪ {j} = {1, 2, 3, 4, 6, 7, 10, 11, 15, 20} and thus
m = 9, which implies that k + 1 6 m 6 2k. It follows that π belongs to S7.
Therefore φ5(π) = (16,9, 8,13, 12,19, 18, 5, 14,21, 17).

It is easy to see that (i) Si ∩Sj = ∅ holds for 1 6 i 6= j 6 7, (ii) Ti ∩ Tj = ∅ holds for
1 6 i 6= j 6 5, (iii) A2k+1,k =

⋃7

i=1 Si, and (iv) B2k+1,k−1 =
⋃5

i=1 Ti. Furthermore, it can
be checked that each map φi is bijective. Given π ∈ A2k+1,k, it is natural to construct the
bijection Φ as follows

Φ(π) =





φ1(π), if π ∈ S1,

φ2(π), if π ∈ S2,

φ3(π), if π ∈ S3,

φ4(π), if π ∈ S4,

φ5(π), if π ∈ S5 ∪ S6 ∪ S7.
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This finishes the proof of Question 1.2.
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Appendix A: The proof of Theorem 2.1

We shall follow the notation introduced in Section 2. To prove Theorem 2.1, it is sufficient
to show the following two lemmas.

Lemma .1. Step 1 – Step 4 in the merging algorithm and Step 4 – Step 6 in the decom-

position algorithm are inverse to each other.

Lemma .2. Step 5 – Step 7 in the merging algorithm and Step 1 – Step 3 in the decom-

position algorithm are inverse to each other.

The proof of Lemma .1. First, it is necessary to verify the feasibility of the algorithms.
Obviously, Step 4 – Step 6 in the decomposition algorithm are always feasible. It remains
to confirm the feasibility of Step 1 – Step 4 in the merging algorithm.

For M ∈ Mn,k, note that M contains k trees without an r-edge and k #-marked
vertices. The merging algorithm consists of k merging operations successively by merging
the k #-marked vertices in their increasing order.

In order to show the validity of Step 1, we observe that each merging operation de-
creases the number of trees without an r-edge by 1 and the number of #-marked vertices
by 1. Then before the ith (1 6 i 6 k) merging operation, the number of trees without an
r-edge and the number of #-marked vertices are both k− i+1. It follows that there will
be at least one tree without an r-edge and #-marked vertices since (2n)# belongs to an
r-match.

For the validity of Step 3, we need to show that all the #-marked vertices must appear
either as a root or as a leaf. This is obtained by observing that in our merging algorithm,
the only trees with more than one #-marked vertex must be the match in M with two
#-marked vertices.

To complete the proof of Lemma .1, it suffices to show that

Claim 1. if M is a set of matches obtained from a forest F by applying Step 4 – Step 6
of the decomposition algorithm, then we can recover F from M by applying Step 1
– Step 4 of the merging algorithm;

Claim 2. if F is a forest obtained from a set of matches M by applying Step 1 – Step 4
of the merging algorithm, then we can recover M from F by applying Step 4 – Step
6 of the decomposition algorithm.
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We only prove Claim 1 for brevity and similarity. Set F ′ the corresponding forest by
applying Step 1 – Step 4 of the merging algorithm to M . Note that any #-marked label
in an r-match of M appears as a leaf. It follows that each r-match with #-marked label
will be merged by adopting a vertical merge in the merging algorithm, and the resulting
tree is an r-unique planted tree without #-marked label. This implies that F ′ is composed
of r-unique planted trees. To verify Claim 1, it suffices to show that F ′ = F . Remind
that the number of l-edges in F is k and the number of trees in F is n− k. We proceed
by induction on the number k.

If k = 1, denote F by {T1, T2, . . . , Tn−1}, where T1 contains the unique l-edge. It
implies that T1 is composed of two edges. More precisely, an l-edge is attached under an
r-edge in T1. In addition, any of T2, . . . , Tn−1 is an r-match. By applying Step 4 – Step 6
of the decomposition algorithm to F , we get M = {T11, T12, T2, . . . , Tn−1}, where T11 and
T12 are the l-match and the r-match respectively decomposed from T1. Conversely, it is
easy to see that (2n)# is the unique #-marked label in M and (2n)# appears as the leaf
of T12. Thus, by applying Step 1 – Step 4 of the merging algorithm, T11 will be merged
with T12 by a vertical merge. Clearly, this operation recovers F , that is, F ′ = F .

Assume that the result holds with k replaced by k − 1. Then if there are k l-edges in
F , let (i, j) be the first edge decomposed from F at the first running of Step 4 – Step 6
in the decomposition algorithm. Notice that (i, j) is an l-edge, j is the rightmost child of
i and j is a leaf. Let F1 be the forest obtained from F by deleting the edge (i, j) and the
vertex j. Besides, denote M1 the corresponding set of matches by applying Step 4 – Step
6 of the decomposition algorithm to F1. One sees that there are k − 1 l-edges in F1. By
the induction hypothesis, we can recover F1 from M1 by applying Step 1 – Step 4 of the
merging algorithm.

In light of the decomposition algorithm, it is straightforward to derive the following
relations between M and M1.

(1) (i, j) is an l-match in M but not in M1;

(2) The set of other matches in M is the same as M1 if we replace the label (2n−k+1)#

inM by i, and replace the #-marked labels inM1 in increasing order by (2n−k+2)#,
(2n− k + 3)#, . . ., (2n)# respectively.

Observe that (i, j) is still the first edge encountered whenever applying the merging algo-
rithm to M (This is implied by the fact that all the l-matches without #-marked vertex
are obtained from those leaves that are the rightmost child. Among such matches, (i, j)
has the smallest root label). Furthermore, the first merge step for M is the merging of
the match (i, j) and the match with the label (2n− k + 1)#. Then clearly, the following
merge steps are the same as those for M1. Moreover, at any step, j is always the rightmost
child of i. It follows that the forest F ′, corresponding to M by Step 1 – Step 4 of the
merging algorithm, can be obtained from F1 by attaching a rightmost child j to i. This
gives F ′ = F .

The proof of Lemma .2. The feasibility of Step 1 – Step 3 in the decomposition algorithm
is obvious. It is routine to check the feasibility of Step 5 – Step 7 in the merging algorithm.
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Before the first running of Step 5 – Step 7 in the merging algorithm, there are n− k

trees and n− k − 1 ∗-marked vertices in these trees. Thus there must be a tree without
∗-marked vertex. After each merge, both the number of trees and the number of ∗-marked
vertices decrease by 1. It means that we can always find a tree without ∗-marked vertex
at any step. Therefore, Step 5 – Step 7 in the merging algorithm are feasible.

To complete the proof of Lemma .2, it remains to show that

Claim 3. if F is a forest obtained from a tree T by applying Step 1 – Step 3 of the
decomposition algorithm, then we can recover T from F by applying Step 5 – Step
7 of the merging algorithm;

Claim 4. if T is a tree obtained from a forest F by applying Step 5 – Step 7 of the
merging algorithm, then we can recover F from T by applying Step 1 – Step 3 of
the decomposition algorithm.

The proofs of Claim 3 and Claim 4 are similar to that of Claim 1, and we only present
a sketch for the proof of Claim 3. Set T ′ the corresponding tree by applying Step 5 –
Step 7 of the merging algorithm to F . Since each tree in F is an r-unique planted tree,
we eventually get a NC-tree T ′ by adopting merging algorithm. Now, it suffices to show
T ′ = T . We proceed by induction on the number of r-edges in T .

If there is only one r-edge in T , T must be an r-unique planted tree. In terms of the
decomposition algorithm, F contains a unique tree T . Hence, we can recover T from F

trivially.
For a general labeled NC-tree T , let T̂ be the first r-unique planted subtree of T

encountered at the first running of Step 1 – Step 3 in the decomposition algorithm.
Moreover, let (i, j) be the planted edge of T̂ . Notice that (i, j) is an r-edge and j is

the rightmost child of i. Let T1 be the tree obtained from T by deleting T̂ but keeping
the vertex i. It is clear that the number of r-edges in T1 decreases by 1. Denote F1 the
corresponding forest by applying Step 1 – Step 3 of the decomposition algorithm to T1.
By the induction hypothesis, we can recover T1 from F1 by applying Step 5 – Step 7 of
the merging algorithm.

One can check that the relations between F and F1 are

(1) T̂ is an r-unique planted tree in F but not in F1;

(2) the set of other trees in F is the same as F1 if we replace the labels (n + 2)∗ in F

by i, and replace the ∗-marked labels in F1 in increasing order by (n+3)∗, (n+4)∗,
. . ., (2n− k)∗ respectively.

In addition, T̂ is still the first tree encountered whenever applying the merging algorithm
to F . Furthermore, the first merge step for F is the merging of T̂ and the tree with the
label (n + 2)∗. After that, the merge steps are the same as those for F1. Finally, T

′ can

be obtained from T1 by combining the vertex i of T1 and the vertex i of T̂ such that j is
the rightmost child of i, which implies T ′ = T .
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