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Abstract

For a d-dimensional cell complex Γ with H̃i(Γ) = 0 for −1 6 i < d, an i-
dimensional tree is a non-empty collection B of i-dimensional cells in Γ such that
H̃i(B ∪ Γ(i−1)) = 0 and w(B) := |H̃i−1(B ∪ Γ(i−1))| is finite, where Γ(i) is the i-
skeleton of Γ. The i-th tree-number is defined ki :=

∑
B w(B)2, where the sum is

over all i-dimensional trees. In this paper, we will show that if Γ is acyclic and ki > 0
for −1 6 i 6 d, then ki and the combinatorial Laplace operators ∆i are related by∑d

i=−1 ωi x
i+1 = (1 + x)2

∑d−1
i=0 κix

i, where ωi = log det ∆i and κi = log ki. We will
discuss various consequences and applications of this equation.

1 Introduction

In this paper, we will extend Temperley’s tree-number formula for finite graphs [13] to
a class of cell complexes, called γ-complexes, and show applications to various acyclic
complexes.

As the main object of study in this paper, we define a γ-complex to be a non-empty
finite cell complex Γ whose integral cellular chain complex {Ci, ∂i} with C−1 = Z satisfies
the following conditions:

(γ1) ∂i 6= 0 for 0 6 i 6 dim Γ, and

(γ2) the reduced integral homology H̃i(Γ) = 0 for i < dim Γ.
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This definition is intended to be a generalization of connected finite graphs. Other exam-
ples of γ-complexes are matroid complexes, standard simplexes, and cubical complexes [4]
with the latter two being acyclic. Note that a γ-complex is a special case of APC (acyclic
in positive codimension) complexes in the terminology of [4].

We define high-dimensional spanning trees for a γ-complex extending the ideas in [1].
Given a γ-complex Γ, let Γi be the set of all i-dimensional cells, and Γ(i) the i-skeleton
of Γ. Given a subset S ⊂ Γi, define ΓS = S ∪ Γ(i−1) as a subcomplex of Γ. An i-
dimensional spanning tree of Γ (or simply, an i-tree) is a non-empty subset B ⊂ Γi such
that H̃i(ΓB) = 0 and w(B) := |H̃i−1(ΓB)| is finite. Define the i-th tree-number of Γ by

ki(Γ) = ki =
∑
B

w(B)2 ,

where the sum is over all i-trees in Γ. We will see that ki > 0 for all −1 6 i 6 dim Γ
where we define k−1 = 1. If Γ is a graph, then k0 is the number of vertices and k1 is the
number of spanning trees in Γ.

An important method for computing the tree-numbers for Γ is given by the combi-
natorial Laplacians ∆i ([1], [4], and [13]). For example, let ∆0 = L + J , where L is the
Laplacian matrix of a finite graph G of order n, and J is the all 1’s matrix. Temperley
[13] showed that det ∆0 = n2k1 for G (refer to Theorem 4). This method is more efficient
than the matrix-tree theorem for certain graphs. Indeed, for Γ = Kn the complete graph
on n vertices, we have ∆0 = nI and det ∆0 = nn, from which the Cayley’s Theorem
k1(Kn) = nn−2 is immediate.

We will show that Temperley’s formula can be extended to any γ-complex Γ (refer to
Proposition 7). Also, if Γ is acyclic of dimension d, then each ∆i is positive-definite, and
the following polynomials are well-defined:

D(x) =
d∑

i=−1

(log det ∆i)x
i+1 and K(x) =

d−1∑
i=0

(log ki)x
i .

The main result of the paper is

D(x) = (1 + x)2K(x) . (1)

A refinement of this equation and its applicability to matroid complexes will be discussed
through a simple example. (See Section 5.)

This paper is organized as follows. Section 2 is a review of useful facts from matrix
theory and combinatorial Laplacians for γ-complexes. It also provides a proof of Tem-
perley’s tree-number formula. In Section 3, we will describe high-dimensional spanning
trees for a γ-complex via the boundary operators of its chain complex. In Section 4, we
will prove the main results of the paper which consist of a generalization of Temperley’s
tree-number formula and a logarithmic version (1) of this result for acyclic γ-complexes.
In Section 5, we will discuss applications of (1) to standard simplexes [7], the cubical
complexes [4], and an example of graphic matroid complex.
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2 Preliminaries

2.1 Lemmas from Matrix Theory

We will review several important facts about symmetric matrices. For definitions and
basic facts from matrix theory, one may refer to [6]. All matrices are assumed to have real
entries. For a square matrix M , let PM denote the multiset of all non-zero eigenvalues of
M , and let πM =

∏
λ∈PM

λ . The following two lemmas and their proofs appear in [1]. We
will sketch the proofs here.

Lemma 1. Let A and B be n × n symmetric matrices such that AB = BA = 0. Then,
PA+B = PA ∪ PB as a multiset. In particular, if A+B is non-singular,

det(A+B) = πAπB . (2)

Proof. Since A and B are symmetric and they commute, they are simultaneously diago-
nalizable. For each i ∈ [1, n], let λi and µi be the eigenvalues of A and B, respectively, so
that the collection {λi + µi | i ∈ [1, n]} is the multiset of all eigenvalues of A + B. Since
AB = 0, we have either λi = 0 or µi = 0 for each i. Therefore α = λi + µi ∈ PA+B if and
only if α = λi ∈ PA or α = µi ∈ PB.

Lemma 2. Let M be a rectangular matrix of rank r (r > 0). Let B(M) be the collection
of all non-singular r×r submatrices of M . If A = MM t, or M tM , then

πA =
∑

B∈B(M)

(detB)2 . (3)

Proof. This result follows from Binet-Cauchy theorem and the fact that the product of all
non-zero eigenvalues of a diagonalizable matrix of rank r equals the sum of all principal
minors of order r. Equation (3) holds for both MM t and M tM because they have the
same multiset of non-zero eigenvalues. Details will be omitted.

2.2 Combinatorial Laplacians for γ-complexes

We will assume familiarity with basic definitions concerning finite cell complexes and
reduced homology groups. One may refer to standard texts such as [10] for details.

Let X be a finite cell complex of dimension d. For i ∈ [0, d], let Xi denote the set of
all i-dimensional cells in X. The i-skeleton X(i) of X is X0 ∪ X1 ∪ · · · ∪ Xi. Since our
main object of study is a γ-complex, we will consider only those X such that Xi 6= ∅ for
all i ∈ [0, d]. This condition on X allows one to represent the boundary maps ∂i of its
chain complex as matrices. Also we define X−1 to be a set with one element.

For i ∈ [−1, d], the i-th chain group of X is the free abelian group Ci ∼= Z|Xi| generated
by Xi. Let {Ci, ∂i} be an augmented chain complex of X with the augmentation ∂0 : C0 →
C−1
∼= Z given by ∂0(v) = 1 for every v ∈ X0. The i-th reduced homology group of X is

defined H̃i(X) = Ker ∂i/Im ∂i+1 where we define ∂d+1 and ∂−1 to be zero maps. Hence,
we have H̃d(X) = Ker ∂d and H̃−1(X) = 0. X is acyclic if H̃i(X) = 0 for all i ∈ [−1, d].
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For i ∈ [0, d], regard the boundary map ∂i : Ci → Ci−1 as a |Xi−1|×|Xi| integer matrix
whose rows and columns are indexed by Xi−1 and Xi , respectively. In particular, the
augmentation ∂0 is an all 1’s row matrix of size |X0|. The coboundary map ∂ti : Ci−1 → Ci
is the transpose of ∂i.

For i ∈ [−1, d], the i-th combinatorial Laplacian ∆i : Ci → Ci is defined by

∆i = ∂i+1∂
t
i+1 + ∂ti∂i if i ∈ [0, d−1] ,

∆−1 = ∂0∂
t
0 , and ∆d = ∂td∂d .

Note that Li := ∂i+1∂
t
i+1 and Ji := ∂ti∂i are symmetric, non-negative definite, and LiJi =

JiLi = 0 because ∂i∂i+1 = 0. Hence, each ∆i is also symmetric and non-negative definite
by Lemma 1.

An important property of ∆i is that the dimension of the 0-eigenspace of ∆i as an
operator on a finite dimensional vector space over Q equals the dimension of the reduced
rational homology H̃i(X;Q) [5, Proposition 2.1]. Therefore, if ∆i 6= 0,

det ∆i > 0 if and only if rk H̃i(X) = 0 . (4)

Note that ∆−1 = L−1 : Z → Z is a multiplication by |X0|. Now the following lemma is
immediate from the definition of γ-complex and (4).

Lemma 3. If Γ is a γ-complex of dimension d, then det ∆i > 0 for i ∈ [−1, d). In
addition, if Γ is acyclic, then det ∆d > 0 also. �

2.3 Temperley’s tree-number formula

For a finite loopless graph G with n vertices and its Laplacian matrix L(G), Temperley [13]
showed the following analogue of the Matrix-Tree theorem [8] for the number of spanning
trees k(G) in G. Let J denote the all 1’s matrix.

Theorem 4.
det(L(G) + J) = n2k(G) .

Proof. We will give a proof of this formula as a consequence of the multilinearity of
determinant function and the Matrix-Tree theorem. We refer the readers to [2] for a
proof via eigenvalues.

Let L(G) +J = (C1 +D1, C2 +D2, . . . , Cn +Dn), where Ci’s and Di’s are the columns
of L(G) and J , respectively. Given a subset S ⊂ [n], define MS = (X1, X2, . . . , Xn), where
Xi = Ci if i /∈ S and Xi = Di if i ∈ S. By the multilinearity of determinant function (on
columns), det(L(G) + J) =

∑
S⊂[n] detMS, where the sum is over all subsets S of [n].

Clearly, we have detM∅ = detL(G) = 0 because L(G) is singular. Also, if |S| >
1, then detMS = 0 because rank of J is 1. However, for every i ∈ [n], we see that
detM{i} = nk(G) because every entry in Di is 1 and every cofactor of L(G) equals k(G)
by the Matrix-Tree theorem. Therefore, we have

det(L(G) + J) =
∑

06i6n

detM{i} = n2k(G) .
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We make two observations about Theorem 4. First, unlike Matrix-Tree theorem,
Temperley’s formula does not require deletion of a row and a column from L(G) to
compute k(G). Second, regarding G as a 1-dimensional γ-complex, one can check that
L(G) = ∂1∂

t
1 and J = ∂t0∂0. Hence, Theorem 4 says

det ∆0 = n2k(G) . (5)

As we shall see, similar observations can be made in computing high-dimensional tree-
numbers for γ-complexes using combinatorial Laplacians. In particular, one can easily
check that equation (5) is a consequence of Proposition 7.

3 High-dimensional trees for γ-complexes

We refer the readers to [1], [4], and [7] for details of high-dimensional trees and of the
exact homology sequence used in the proof of Theorem 6. In this section, Γ will denote
a γ-complex of dimension d. For a non-empty subset S ⊂ Γi, define ΓS := S ∪ Γ(i−1)

as an i-dimensional subcomplex of Γ. For i ∈ [−1, d], a non-empty subset B ⊂ Γi is an
i-dimensional spanning tree (or simply, i-tree) if

1. H̃i(ΓB) = 0,

2. w(B) := |H̃i−1(ΓB)| is finite, and

3. H̃j(ΓB) = 0 for j 6 i− 2.

Note that condition 3 is a consequence of the fact Γ
(i−1)
B = Γ(i−1). We will denote the set

of all i-trees in Γ by Bi = Bi(Γ) with B−1 = {∅}. It is clear that B0 is the set of all single
0-cells in Γ and B1 is the set of all graph theoretic spanning trees of Γ(1) as a finite graph.

Define the i-th tree-number of Γ to be

ki = ki(Γ) =
∑
B∈Bi

w(B)2 .

We have k−1 = 1 by definition, and k0 = |Γ0|. If Γ is a connected graph, then k1 is the
number of spanning trees in Γ because w(B) = 1 for B ∈ B1. However, w(B) may not
equal 1 for B ∈ Bi when i > 1. (See [7].)

Next, we will describe i-trees via the boundary operator ∂i of Γ, which will show that
ki > 0 for i > 0. Since ∂i 6= 0 for i ∈ [0, d], both Γi−1 and Γi are non-empty. Given a
non-empty subset T ⊂ Γi, define ∂T to be the |Γi−1|×|T | submatrix of ∂i consisting of the
columns of ∂i indexed by T . Recall that if Γ is a connected finite graph of order n with the
incidence matrix ∂1, then T ⊂ Γ1 is a spanning tree of Γ iff |T | = rk ∂T = rk ∂1 = n− 1.
(Refer to [2] for details.) More generally, we have the following useful fact.

Proposition 5. Let Γ be a γ-complex of dimension d. Let ri = rk ∂i for i ∈ [0, d]. Then
Bi is non-empty, and it is given by

Bi = {B ⊂ Γi | |B| = rk ∂B = ri } . (6)

Moreover, we have ri = |Γi−1| − ri−1, where r−1 = 0.
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Proof. Suppose B ∈ Bi. Since Ker ∂B = H̃i(ΓB) = 0, we have rk ∂B = |B|. Since

Γ
(i−1)
B = Γ(i−1) and H̃i−1(ΓB) is finite, we must have rk ∂B = ni−1 the rank of Ker ∂i−1.

However, H̃i−1(Γ) = 0 implies ri = ni−1, and we have |B| = rk ∂B = ri . The inclusion
of the right-hand side of (6) in Bi is proved similarly. The second statement follows from
ni−1 = |Γi−1| − ri−1.

Remarks 1. In matroid theoretic terms, Bi is the set of all bases of a matroid whose
ground set is Γi and the independent sets are the subsets I ⊂ Γi such that Ker ∂I = 0 or
I = ∅. (Refer to [11] for the definition of a matroid.)
2. If Γ is also acyclic, then there is exactly one d-tree, namely B = Γd. Since Ker ∂d =
H̃d(Γ) = 0, the only base of the matroid just mentioned is Γd. In this case, it also follows
that kd = 1 because H̃d−1(ΓB) = H̃d−1(Γ) = 0.
3. If X is a cell complex satisfying (γ2) but ri = 0 for some i, then X has no i-tree.
Indeed, for any non-empty subset S ⊂ Γi , we would have H̃i(ΓS) = Z|S| 6= 0.

The following theorem will play an essential role in Section 4. Given non-empty
subsets S ⊂ Γi−1 and T ⊂ Γi, let ∂S,T be the |S| × |T | submatrix of ∂i whose rows and
columns are indexed by S and T , respectively. Denote S̄ = Γi−1 \ S.

Theorem 6. Let Γ be a γ-complex of dimension d. Let ri = rk ∂i for i ∈ [0, d]. Then the
set of all ri×ri non-singular submatrices of ∂i is given by

B(∂i) := { ∂Ā,B |A ∈ Bi−1 and B ∈ Bi } .
Moreover, we have | det ∂Ā,B| = w(A)w(B) for ∂Ā,B ∈ B(∂i).

Proof. Let S ⊂ Γi−1 with |S| = ri−1 and let T ⊂ Γi with |T | = ri. Then ∂S̄,T is a
square submatrix of ∂i of order ri by Prop. 5. First, we will show that ∂S̄,T is singular if
S /∈ Bi−1 or T /∈ Bi. Regard ∂S̄,T as the top boundary operator for the relative complex

(ΓT ,ΓS). Note that H̃i(ΓT ) = Ker ∂T , H̃i(ΓT ,ΓS) = Ker ∂S̄,T , and H̃i−1(ΓS) = Ker ∂S.

Since H̃i(ΓS) = 0, we obtain the following exact sequence from the long exact homology
sequence of the pair (ΓT ,ΓS) :

0→ Ker ∂T → Ker ∂S̄,T → Ker ∂S → H̃i−1(ΓT ) .

If T /∈ Bi, then Ker ∂T 6= 0 by Remark 1 above. Hence, we have Ker ∂S̄,T 6= 0. Similarly,
if S /∈ Bi−1, then rk(Ker ∂S) 6= 0. If T /∈ Bi, we are done. If T ∈ Bi, then Ker ∂T = 0 and
H̃i−1(ΓT ) is finite. Therefore, it is clear that Ker ∂S̄,T 6= 0.

Now we proceed to prove the second statement, which will also complete the proof of
the first statement. Consider the following portion of the long exact homology sequence
of the pair (ΓB,ΓA) with A ∈ Bi−1 and B ∈ Bi:

H̃i−1(ΓA)→ H̃i−1(ΓB)→ H̃i−1(ΓB,ΓA)→ H̃i−2(ΓA)→ H̃i−2(ΓB) .

Since H̃i−1(ΓA) = H̃i−2(ΓB) = 0, it follows that

|H̃i−1(ΓB,ΓA)| = |H̃i−2(ΓA)| · |H̃i−1(ΓB)| = w(A)w(B) .

Note that Cj(ΓB,ΓA) = Zri if j = i − 1, and 0 if j < i − 1. Therefore, we have
|H̃i−1(ΓB,ΓA)| = |Zri/Im ∂Ā,B| = | det ∂Ā,B|.
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4 Main Results

The following proposition is a generalization of Temperley’s tree-number formula (5) for
γ-complexes.

Proposition 7. Let Γ be a γ-complex of dimension d, and let ∆i be its combinatorial
Laplacians for i ∈ [−1, d]. Then

(1) det ∆−1 = k0,

(2) det ∆i = ki−1k
2
i ki+1 for i ∈ [0, d− 1], and

(3) det ∆d = kd−1 if Γ is acyclic, and 0 otherwise.

Proof. (1) In Section 2, we noted that ∆−1 = L−1 : Z→ Z is a multiplication by |Γ0|. In
Section 3, we also saw that k0 = |Γ0|. Hence det ∆−1 = k0.
(2) Note that we have rk ∂i∂

t
i = rk ∂i > 0 for i ∈ [0, d]. Therefore, ∂i∂

t
i has non-zero

eigenvalues. Let πi denote the product of all non-zero eigenvalues of ∂i∂
t
i . By Lemma 2

and Theorem 6, we have

πi =
∑
A∈Bi−1
B∈Bi

(det ∂Ā,B)2 =
∑
A∈Bi−1
B∈Bi

w(A)2w(B)2 = ki−1ki .

Now recall that ∂ti∂i and ∂i∂
t
i have the same multiset of non-zero eigenvalues. Therefore,

for i ∈ [0, d−1], Lemma 1 and Lemma 3 imply

det ∆i = det(∂ti∂i + ∂i+1∂
t
i+1) = πiπi+1 = ki−1k

2
i ki+1 .

(3) If Γ is acyclic, then kd = 1 because Γd is the only d-tree in Γ. Therefore,

det ∆d = det(∂td∂d) = πd = kd−1kd = kd−1 .

If Γ is not acyclic, then rk H̃d(Γ) > 0 and det ∆d = 0 by (4).

As we discussed relations between Theorem 4 and the Matrix-Tree theorem in Sec-
tion 2.3, we can make similar observations about Proposition 7 and the Cellular Matrix-
Tree Theorem [4, Theorem 2.8] as follows. Proposition 7 may be derived from the
Cellular Matrix-Tree Theorem for general APC complexes X, which states that πi =
ki−1ki/|H̃i−2(X)|2. Since H̃i−2(X) = 0 if X is a γ-complex, this formula reduces to
πi = ki−1ki as in the above proof. Also, if X is an acyclic γ-complex, then the following
theorem, a logarithmic version of Proposition 7 for acyclic γ-complexes, shows that high-
dimensional tree numbers of X can be obtained without using reduced Laplacians. Refer
to Section 5 for examples.

Theorem 8. Let Γ be an acyclic γ-complex of dimension d. Let D(x) =
∑d

i=−1 ωix
i+1

and K(x) =
∑d−1

i=0 κix
i, where ωi = log det ∆i and κi = log ki . Then we have

D(x) = (1 + x)2K(x) . (7)
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Proof. Since Γ is a γ-complex, we have Bi 6= ∅ and ki > 1 for i ∈ [0, d]. Hence K(x) is
well defined. By Proposition 7, we see that det ∆i > 1 for i ∈ [−1, d], and D(x) is well
defined. The rest of the proof is checking the following details. Proposition 7 (1) implies
ω−1 = κ0. Proposition 7 (2) implies ωi = κi−1 + 2κi + κi+1 for i ∈ [0, d−1]. In particular,
k−1 = 1 implies ω0 = 2κ0 + κ1, which also follows from (5). Also, kd = 1 because Γ is
acyclic, and we have ωd−1 = κd−2 + 2κd−1. Finally, Proposition 7 (3) implies ωd = κd−1.
The result follows.

The requirement that Γ be a γ-complex is important in Theorem 8. For example, one
can construct an acyclic cell complex consisting of one 0-cell, one 2-cell, and one 3-cell
which is not a γ-complex because ∂1 = ∂2 = 0 in its cellular chain complex. In this case,
∆1 = 0 and the above theorem cannot be applied.

As a corollary to Theorem 8, we obtain the following interesting property of the
combinatorial Laplacians for acyclic γ-complexes. Refer to [12] for further discussions.

Corollary 9. Let Γ be an acyclic γ-complex of dimension d. Then

d∑
q=0

(−1)q+1q log det ∆q = 0 .

Proof. Letting x = −1 in (7), we obtain
∑d

q=−1(−1)q+1 log det ∆q = 0 . The result follows
by differentiating (7), letting x = −1, and applying this formula.

Remarks. Theorem 8 can be refined as follows. Let det ∆i =
∏

p p
εp,i be the prime

decomposition of the positive integer det ∆i . Let P be the set of all distinct primes that
appear in these prime decompositions. For each p ∈ P , define

Dp(x) = log p
d∑

i=−1

εp,i x
i+1 .

Then, D(x) =
∑

p∈P Dp(x). Also, we claim that each Dp(x) is divisible by (1 + x)2.

Indeed, suppose Dp(x) ≡ log p (apx + bp) mod (1 + x)2 for some integers ap and bp. Since
D(x) ≡ 0 mod (1 + x)2, we must have

∑
p∈P log p (apx+ bp) = 0. From this equation, one

can show that ap = 0 and bp = 0 for each p ∈ P . See Section 5.3 for an example.

5 Examples

5.1 Standard simplexes

Let Σ be the standard simplex on n vertices (hence dim Σ = n − 1). Σ is acyclic and
|Σi| =

(
n
i+1

)
for i ∈ [−1, n−1]. If [σ] denotes an oriented simplex for σ ∈ Σi, one can check

that ∆i[σ] = n[σ], which follows directly from the definition of the boundary operators
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∂i and ∂i+1 (and their transpose). Therefore, we have ∆i = nI, where I is the identity

matrix of order
(
n
i+1

)
, and det ∆i = n( n

i+1). Letting ωi = logn det ∆i =
(
n
i+1

)
, we see that

D(x) =
n−1∑
i=−1

ωix
i+1 =

n−1∑
i=−1

(
n

i+ 1

)
xi+1 = (1 + x)n .

By Theorem 8, we obtain

K(x) =
n−2∑
i=0

κix
i = (1 + x)n−2 ,

where κi = logn ki =
(
n−2
i

)
. Hence, we have ki = n(n−2

i ) for i ∈ [0, n−2]. This result was
originally obtained by Kalai [7].

5.2 Cubical complexes

The n-cube Qn (n > 1) is an n-dimensional cell complex that is the n-fold product
I × · · · × I, where I is the unit interval regarded as a cell complex with two 0-cells and
one 1-cell. Hence Qn is a cell complex of dimension n, and is the convex hull of the 2n

points in Rn whose coordinates are all 0 or 1. One can see that Qn is acyclic by induction
on n together with the fact that Qn−1 is a deformation retract of Qn for n > 2.

In [4], Duval, Klivans, and Martin showed that the tree-numbers for Qn are

ki =
n∏
j=2

(2j)(
j−2
i−1)(

n
j) (i ∈ [1, n−1]) (8)

based on the spectra (the multisets of eigenvalues) of ∂i∂
t
i , which are, in turn, obtained

from those of ∆i’s. In what follows, we will derive (8) directly from the spectra Spec(∆i) of
∆i via Theorem 8. We will start with the following generating function for the eigenvalues
of ∆i’s for Qn ([4, Theorem 3.4]):

dimQn∑
i=0

∑
λ∈Spec(Di)

tirλ = (1 + r2 + tr2)n =
n∑
k=0

tk
(
n

k

)
r2k(1 + r2)n−k , (9)

where Di = ∆i for i > 1 and D0 = ∂1∂
t
1. From (9), one can deduce that det ∆i =∏n

j=1(2j)(
n
j)(

j
i) for i ∈ [1, n], and that πD0 = k0k1 =

∏n
j=1(2j)(

n
j). By Theorem 4, we

also obtain det ∆0 = 2n
∏n

j=1(2j)(
n
j). Now, let ωi = log2 det ∆i, and let αj =

(
n
j

)
log2(2j).

Then,

ω−1 = n, ω0 = n+
n∑
j=1

αj , and ωi =
n∑
j=1

(
j

i

)
αj for i ∈ [1, n] ,
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and we have

D(x) =
n∑

i=−1

ωix
i+1

= n+
(
n+

n∑
j=1

αj

)
x+

n∑
i=1

( n∑
j=1

(
j

i

)
αj

)
xi+1

= n(1 + x) +
n∑
i=0

( n∑
j=1

(
j

i

)
αj

)
xi+1

= n(1 + x) + x
n∑
j=1

αj(1 + x)j (by interchanging the sums)

= n(1 + x)2 + x
n∑
j=2

αj(1 + x)j (because α1 = n) .

By Theorem 8, we obtain

K(x) =
n−1∑
i=0

κix
i = n+ x

n∑
j=2

αj(1 + x)j−2 ,

where κi = log2 ki. By identifying the coefficients of xi for i ∈ [1, n− 1], we obtain

κi =
∑n

j=2

(
j−2
i−1

)
αj, and ki =

∏n
j=2(2j)(

j−2
i−1)(

n
j) for i ∈ [1, n−1].

5.3 A non-acyclic example

Let X be a 2-dimensional simplicial complex on the vertex set E = {a, b, c, d, e} given by
X−1 = {∅}, X0 =

(
E
1

)
, X1 =

(
E
2

)
, and X2 =

(
E
3

)
\ {{a, b, e}, {c, d, e}}. One can check

that X is the independent set complex of a cycle matroid of the graph K4 \ {an edge}.
(Refer to [3] for general matroid complexes.) In particular, X has the homotopy type of
a bouquet of two-dimensional spheres. Hence it is a γ-complex of dimension 2.

For convenience, assume that simplices in each Xi (i = 0, 1, 2) are ordered lexicograph-
ically, and that the alphabetical ordering of vertices in each simplex gives the positive
orientation for the corresponding oriented simplex. For example, C2 for X is isomorphic
to Z8 generated by the oriented simplices [abc], [abd], [acd], [ace], [ade], [bcd], [bce], and
[bde]. X is not acyclic because H̃2(X) = Ker ∂2

∼= Z2 whose generators can be chosen to be
z1 = [abc]−[abd]+[ace]−[ade]−[bce]+[bde] and z2 = [acd]−[ace]+[ade]−[bcd]+[bce]−[bde].
The simplices in z1 (or z2) form a hollow triangular bipyramid. As column vectors, we
may write

z1 = [1,−1, 0, 1,−1, 0,−1, 1]t and z2 = [0, 0, 1,−1, 1,−1, 1,−1]t .

Now, let C3 = Z2, and define ∂3 : C3 → C2 to be a 8×2 matrix whose columns are z1

and z2. One easily checks that the chain complex of X together with C3 and ∂3 is acyclic.
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With this new “augmented” acyclic complex, one can show

det ∆−1 = 5, det ∆0 = 55, det ∆1 = 2258, det ∆2 = 2455, and det ∆3 = 225 .

By Proposition 7, det ∆2 and det ∆3 are independent of the choices of z1 and z2 because
k2 depends only on ∂2 and k3 = 1. The primes that appear in these prime decompositions
are P = {2, 5}, and we see that

D2(x) = log 2 (2x2 + 4x3 + 2x4) = log 2 (1 + x)22x2 and

D5(x) = log 5 (1 + 5x+ 8x2 + 5x3 + x4) = log 5 (1 + x)2(1 + 3x+ x2) .

By the remarks at the end of Section 4,

D(x) = D2(x) +D5(x) = (1 + x)2(log 5 + log 53 x+ log 225x2) ,

from which we get k0 = 5, k1 = 53, and k2 = 225 by Theorem 8.

Question. Can one characterize tree numbers of a matroid complex via known matroid
invariants?
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