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Abstract

We consider a new family of 4-vertex regions with zigzag boundary on the square
lattice with diagonals drawn in. By proving that the number of tilings of the new
regions is given by a power 2, we generalize both Aztec diamond theorem and
Douglas’ theorem. The proof extends an idea of Eu and Fu for Aztec diamonds, by
using a bijection between domino tilings and non-intersecting Schröder paths, then
applying Lindström-Gessel-Viennot methodology.

Keywords: Aztec diamonds, dominos, tilings, perfect matchings, Schröder paths

1 Introduction

Given a lattice in the plane, a (lattice) region is a finite connected union of fundamental
regions of that lattice. A tile is the union of two fundamental regions sharing an edge. A
tiling of the region R is a covering of R by tiles so that there are no gaps or overlaps.

A perfect matching of a graph G is a collection of edges such that each vertex of G is
adjacent to precisely one edge in the collection. Denote by M(G) the number of perfect
matchings of graph G. The tilings of a region R can be naturally identified with the
perfect matchings of its dual graph (i.e., the graph whose vertices are the fundamental
regions of R, and whose edges connect two fundamental regions precisely when they share
an edge). In the view of this, we denote by M(R) the number of tilings of R.

The Aztec diamond region of order n is defined to be the union of all the unit squares
with integral corners (x, y) satisfying |x|+ |y| 6 n+1 in the Cartesian coordinate system
(see Figure 1 for an example of Aztec diamond region of order 4). The number of tilings
of an Aztec diamond region is given by the following theorem that was first proved by
Elkies, Kuperberg, Larsen and Propp [5].
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Theorem 1 (Aztec diamond theorem [5]). The number of (domino) tilings of the Aztec
diamond of order n is 2n(n+1)/2.

Further proofs of the Aztec diamond theorem were given by several authors (see e.g.,
[2], [3], [6], [9], [10], [12]).

Figure 1: The Aztec diamond region of order 4 (left) and its dual graph, the Aztec
diamond graph of order 4 (right).

Douglas [4] considered a certain family of regions in the square lattice with every second
southwest-to-northeast diagonal drawn in (examples are shown in Figure 2). Precisely,
the region of order n, denoted by D(n), has four vertices that are the vertices of a diamond
of side-length 2n

√
2.

Theorem 2 (Douglas [4]).
M(D(n)) = 22n(n+1). (1)

n = 2
n = 3

n = 1

Figure 2: The Douglas’ regions of order n = 1, n = 2 and n = 3.

The regions in the Douglas’ theorem have the distances1 between any two successive
southwest-to-northeast diagonals drawn in are 2. Next, we consider general situation
when the distances between two successive drawn-in diagonals2 are arbitrary.

1The unit here is the distance between two consecutive lattice diagonals of the square lattice, i.e.√
2/2.
2 From now on, “diagonal(s)” refers to “southwest-to-northeast diagonal(s)”
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Consider the setup of drawn-in diagonals in the square lattice as follows. Let ℓ and
ℓ′ be two fixed lattice diagonals (ℓ and ℓ′ are not drawn-in diagonals), and assume that
k−1 diagonals have been drawn in between ℓ and ℓ′, with the distances between successive
ones, starting from top, being d2, . . . , dk−2. The distance between ℓ and the top drawn-in
diagonal is d1, and the distance between the bottom drawn-in diagonal and ℓ′ is dk.

Given a positive integer a, we define the region Da(d1, . . . , dk) as follows (see Figure
3 for an example). Its southwestern and northeastern boundaries are defined in the next
two paragraphs.

Color the resulting dissection of the square lattice black and white so that any two
fundamental regions that share an edge have opposite colors, and assume that the fun-
damental regions passed through by ℓ are white (by definition ℓ and ℓ′ pass through unit
squares). Let A be a lattice point on ℓ. Start from A and take unit steps south or east so
that for each step the color of the fundamental region on the left is black. We arrive ℓ′ at
a lattice point B. The described path from A to B is the northeastern boundary of our
region.

Let D be the lattice point on ℓ that is a unit square diagonals to the southwest of
A (i.e. |AD| = a

√
2). The southwestern boundary is obtained from the northeastern

boundary by reflecting it about the perpendicular bisector of segment AD, and reversing
the directions of its unit steps (from south to north, and from east to west). Let C be
the reflection point of B about the perpendicular bisector above, so C is also on ℓ′.

A

B

C

D

ℓ

ℓ′

d1

d2

d3

d4

Figure 3: The region D7(4, 2, 5, 4) (left) and its dual graph (right).

Connect D and A by a zigzag lattice path consisting of alternatively east and north
steps, so that the unit squares passed through by ℓ are on the right of the zigzag path.
Similarly, we connect B and C by a zigzag lattice path, so that the square cells passed
through by ℓ′ are on the right. These two zigzag lattice paths are northwestern and
southeastern boundaries, and they complete the boundary of the region Da(d1, . . . , dk).
We call the resulting region a generalized Douglas region.
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Remark 3. (1) If the line ℓ′ passes through black unit squares, then the region does not
have a tiling (since we can not cover the black squares by disjoint tiles). Hereafter, we
assume that ℓ′ passes through white unit square.

(2) Since we only consider connected region, we also assume from now on that the
southwestern and northeastern boundaries do not intersect each other.

We call the fundamental regions in a generalized Douglas region cells. Note that there
are two kinds of cells, square and triangular. The latter in turn come in two orientations:
they may point towards ℓ′ or away from ℓ′. We call them down-pointing triangles or
up-pointing triangles, respectively. A cell is said to be regular if it is a black square or a
black up-pointing triangle.

A (southwest-to-northeast) line of cells consists of all the triangular cells of a given
color with bases resting on a fixed lattice diagonal, or consists of all the square cells (of
a given color) passed through by a fixed lattice diagonal. Define the width of our region
to be the number of white squares in the bottom line of cells. One readily sees that the
width of the region is exactly |BC|/

√
2, where |BC| is the Euclidian distance between B

and C. The number of tilings of a generalized Douglas region is obtained by the theorem
stated below.

Theorem 4. Assume that a, d1, . . . , dk are positive integers, so that for which the gen-
eralized Douglas region Da(d1, . . . , dk) has the width w, and has its western and eastern
vertices (i.e. the vertices B and D) on the same horizontal line. Then

M(Da(d1, . . . , dk)) = 2C−w(w+1)/2 (2)

where C is the number of regular cells in the region.

Let k = 1 (i.e. there are no dawn-in diagonals between ℓ and ℓ′) and a = d1 = n, our
generalized Douglas region, Da(d1, . . . , dk), is exactly the Aztec diamond region of order
n. One readily sees that the region has the width w = n and the number of regular cells
C = n(n+ 1). This means that we can imply Aztec diamond theorem 1 from Theorem 4.

Moreover, one can get Douglas’ theorem 2 from the Theorem 4 by setting k = 2n > 2,
d1 = dk = 1, a = k, and d2 = d3 = . . . = dk−1 = 2. Therefore, Theorem 4 can be view
as a common multi-parameter generalization of Aztec diamond theorem and Douglas’
theorem.

For the sake of simplicity, hereafter, “square(s)” refers to “square cell(s)”, and “trian-
gle(s)” refers to “triangular cells”.

The goal of this paper is to prove Theorem 4. Our proof is inspired by the idea of
Eu and Fu in [6]. In particular, the proof uses some one-to-one correspondence between
domino tilings and barred non-intersecting Schröder paths, then applies Lindström-Gessel-
Viennot lemma (see Lemma 5).

2 Structure of generalized Douglas regions

Our goal of this section is to investigate further the structure of generalized Douglas
regions.
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Consider a generalized Douglas region Da(d1, . . . , dk). Denote by p the number of
(southwest-to-northeast) lines of black square cells, denote by q the number of lines of
black up-pointing triangular cells, and denote by l the number of lines of black down-
pointing triangular cells in the region.

The region Da(d1, . . . , dk) can be partitioned into a horizontal strips of cells above BD
and w horizontal strips of cells below BD (see Figure 4 for an example with a = 7, k = 4,
d1 = 4, d2 = 2, d3 = 5, d4 = 4). Consider the horizontal strips above segment BD. Each
of them starts by a white square in the top line of cells, and ends by a black square or
a black down pointing-triangle along the northeastern boundary of the region. Compare
the number of starting cells and the number of ending cells in those strips, we get

a = p+ l. (3)

A

C

D B

Figure 4: Partitioning a generalized Douglas region into horizontal strips of cells.

We consider now the horizontal strips below the segment BD. Each of them starts
by a black square or a black up-pointing triangle along the southwestern boundary, and
ends by a white square in the bottom lines of cells. Again, we compare of the number of
starting cells and the number of ending cells in those strips, and obtain

w = p+ q. (4)

From (3) and (4), we get
a+ q − l = p+ q = w, (5a)

a+ w = 2p+ q + l. (5b)

Consider the number of unit steps on the southwestern boundary of the region. Each
line of black squares contributes 2 steps, and each line of black triangles contributes 1 step
to the latter number of steps. Thus, the number of steps here is exactly the expression on
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the right hand side of (5b). On the other hand, one readily see that the number of steps
on the southwestern boundary is equal to the sum of all distances di’s. Therefore,

a+ w = 2p+ q + l =
k∑

i=1

di. (6)

For each of k − 1 drawn-in diagonals of Da(d1, . . . , dk), there is exactly one line of
black up-pointing triangles or one line of black down-pointing triangles with bases resting
on it. This implies that the number of lines of black triangles is equal to k − 1, i.e.

q + l = k − 1. (7)

The k − 1 drawn-in diagonals divide the region into k parts called layers. The first
layer is the part above the top drawn-in diagonal, the last layer is the part below the
bottom drawn-in diagonal, and the i-th layer (for 1 < i < k) is the part between the
(i− 1)-th and the i-th drawn-in diagonals.

3 Schröder paths with barriers

A Schröder path is a path in the plane, starting and ending on the x-axis, never going
below the x-axis, using (1, 1), (1,−1) and (2, 0) steps (i.e. up, down and level steps,
respectively). Denote by U, D, and L the up, down and level steps, respectively.

A barrier is a length-1 horizontal segment in the plane. A Schröder path is said to be
compatible with a setup of barriers if it does not cross any barriers of the setup.

Let a1, . . . , am be nonnegative integers so that a1 < a2 < . . . < am. We consider a
setup of barriers as follows. For any k ∈ Z and 1 6 i 6 m, we draw a barrier connecting
two points (−ai + k, k + 1

2
) and (−ai + k + 1, k + 1

2
) (i.e. all barriers appear along the

lines y = x + ai, for i = 1, 2, . . . ,m). Denote by Bar(a1, a2, . . . , am) the resulting setup
of barriers. A bad level step (with respect to the setup Bar(a1, a2, . . . , am)) of a Schröder
path is a level step from (x, 0) to (x + 2, 0), where x /∈ {−ai − 1 : 1 6 i 6 m}. Figure 5
illustrates an example of a Schröder path compatible with the set of barriers Bar(2, 5, 8),
and the path has a bad level step from (1, 0) to (3, 0).

−2−5−8

−9

71 3

Figure 5: A Schröder path compatible with barrier set Bar(2, 5, 8).

Let xi be the i-th largest negative odd number in Z\{−a1, . . . ,−am}, let Ai be the
point (xi, 0), and let Bi be the point (2i − 1, 0), for i = 1, 2, . . . , n. We consider two
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sets of n-tuples of non-intersecting Schröder paths compatible with Bar(a1, a2, . . . , am) as
follows.

The set Πn(a1, . . . , am) consists of n-tuples of non-intersecting Schröder paths (π1, π2,
. . . , πn) (compatible with Bar(a1, a2, . . . , am)), where πi connects two points Ai and Bi.
The set Λn(a1, . . . , am) consists of n-tuples of non-intersecting Schröder paths (λ1, λ2, . . . ,
λn) (compatible with Bar(a1, a2, . . . , am)), where λi connects Ai and Bi, and has no bad
level steps.

The following well-known result is due to Lindström-Gessel-Viennot (see [7]; [11],
Lemma 1; [13] Theorem 1.2).

Lemma 5. Let U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) be two n-tuples of vertices
in an acyclic digraph G. Assume that for any 1 6 i < i′ 6 n and n > j > j′ > 1,
every path P ∈ P(ui, vj) intersects every path Q ∈ P(ui′ , vj′), where P(ui, vj) (resp.,
P(ui′ , vj′)) is the set of paths in G from ui to vj (resp., from ui′ to vj′). Then the number
of n-tuples of non-intersecting paths connecting vertices in U to vertices in V is equal to

det
(
(ai,j)16i,j6n

)
, where ai,j is the number of paths in G from ui to vj.

Given a setup of barriers Bar(a1, . . . , am), where a1 < a2 < . . . < am. We define

Hn := Hn(a1, . . . , am) :=




r1,1 r1,2 . . . r1,n
r2,1 r2,2 . . . r2,n
...

...
...

rn,1 rn,2 . . . rn,n


 , (8)

and

Gn := Gn(a1, . . . , am) :=




s1,1 s1,2 . . . s1,n
s2,1 s2,2 . . . s2,n
...

...
...

sn,1 sn,2 . . . sn,n


 , (9)

where ri,j (resp., si,j) is the number of Schröder paths (resp., Schröder paths without
bad level steps) from Ai to Bj, where Ai = (xi, 0) with xi is the ith largest negative odd
integer in Z\{−a1, . . . ,−am}, and where Bj = (2j − 1, 0), for 1 6 i, j 6 n.

Proposition 6. For any positive integers n and m, we have

|Πn(a1, . . . , am)| = det(Hn(a1, . . . , am)), (10)

|Λn(a1, . . . , am)| = det(Gn(a1, . . . , am)). (11)

Proof. Consider two sets of points: A = {A1, . . . , An} and B = {B1, . . . , Bn}, where Ai’s
and Bj’s are defined as in the paragraph before the statement of the theorem.

Let G be the digraph defined as follows. The vertex set of G consists of all lattice
points of the square lattice that are inside or on the edges of the up-pointing isosceles
right triangle whose hypothenuse is segment AnBn, and that can be reached from An by
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(1, 1), (1,−1) and (2, 0) steps. An edge of G connects from (x, y) to (x′, y′) if we can go
from the former vertex to the latter vertex by one of the above steps. Next, we remove all
edges which cross some barriers of Bar(a1, . . . , am) (see the illustrative picture in Figure
6(a), for m = 3, n = 4, a1 = 2, a2 = 5, and a3 = 8).

(a) (b)

Figure 6: Illustrating the proof of Proposition 6.

Apply the Lemma 5 to the digraph G with two compatible sets of vertices A and B,
we get

det(Hn) = |Πn(a1, . . . , am)|, (12)

which proves (10).
The equality (11) can be proved similarly. We apply the same procedure as in the proof

of (10) to the digraph G′ that is obtained from the graph G by removing all horizontal
edges on x-axis containing no points (−ai, 0), for 1 6 i 6 m (see Figure 6(b)).

Similar to the relationship between large and small Schröder numbers (see [6] and [8]),
we have the following fact about ri,j and si,j .

Proposition 7. Given a setup of barriers Bar(a1, . . . , am). If a1 > 1, then ri,j = 2si,j,
for any 1 6 i, j 6 n.

Proof. It is easy to see r1,1 = 2 = 2s1,1. Thus, we assume in the rest of the proof that
i+ j > 3.

Fix two indices i and j, so that i + j > 3. We consider the following two subsets of
the set of all Schröder paths from Ai to Bj, which are compatible with Bar(a1, . . . , am):

(i) The set S of the paths having at least one bad level step;

(ii) The set S ′ of the paths having no bad level steps.

We have a bijection between S and S ′ working as follows.
Let τ be a Schröder path in S. We can factor τ = P LQ, where L is the last bad level

step in τ , so Q has no bad level steps (see the upper picture in Figure 7). We define a
Schröder path λ = UP DQ (see the lower picture in Figure 7). One readily sees that λ
is compatible with the setup of barriers Bar(a1, . . . , am), and has no bad level steps. It
means λ ∈ S ′. Since λ is determined uniquely by τ , this gives an injection from S to S ′.
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P Q
L

Figure 7: A bijection between two types of Schröder paths with barriers.

On the other hand, let λ be a Schröder path in S ′, and let A∗ = (c, 0) the first returning
point of λ to x-axis. We factor λ = λQ, where λ is the portion of λ connecting Ai and
A∗. We can factor further λ = UP D by the choice of A∗. Next, we define a Schröder
path τ = P LQ. We have the number c − 2 is not in the set {−ai − 1 : 1 6 i 6 m}
(otherwise the last step of λ, which is a down step, crosses a barrier, a contradiction).
Thus, by definition, the level step L, from (c − 2, 0) to (c, 0), in the factorization of τ is
a bad level step. Moreover, τ is compatible with Bar(a1, . . . , am), so τ ∈ S. Since τ is
determined uniquely by λ, this yields an injection from S ′ to S.

Therefore, we have a bijection between S and S ′, which completes the proof of the
lemma.

Proposition 8. For any positive integers n,m, and for any nonnegative integers a1, a2,
. . . , am so that a1 < a2 − 1 < . . . < am − 1

(a) |Πn(a1, . . . , am)| = |Λn+1(a1 + 2, . . . , am + 2)|.
(b) |Λn(1, a2 . . . , am)| = |Πn(a2 − 2, . . . , am − 2)| if a1 = 1.
(c) |Πn(0, a2 . . . , am)| = |Πn−1(a2 − 2 . . . , am − 2)| if a1 = 0.

Proof. (a) We have a bijection ϕ between two sets Πn(a1, . . . , am) and Λn+1(a1+2, . . . , am+
2) defined as follows. ϕ carries (π1, . . . , πn) ∈ Πn(a1, . . . , am) into (λ1, . . . , λn+1) ∈
Λn+1(a1 + 2, . . . , am + 2), where λ1 = UD and λi+1 = U(i−1) πi D

(i−1), for 1 6 i 6 n.
This bijection is illustrated in Figure 8.

(b) There is also a bijection ψ between Πn(a2 − 2 . . . , am − 2) and Λn(1, a2 . . . , am) by
setting

ψ((π1, . . . , πn)) = (λ1, . . . , λn) ∈ Λn(1, a1, . . . , am),

where λi := Uπi D, for 1 6 i 6 n. This bijection is illustrated in Figure 9.

(c) We construct a bijection φ between two sets Πn(0, a2 . . . , am) and Πn−1(a2 −
2 . . . , am − 2), for n > 2, as follows. Let (π1, . . . , πn−1) be an element of Πn−1(a2 −
2 . . . , am − 2).
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1 3 5 7−1−5−7−9

π1

π2

π3

π4

1 3 5 7−1−7−9−11 9−3

λ1

λ2

λ3

λ4

λ5

Figure 8: Illustrating the proof of Lemma 8(a), for m = 2, n = 4, a1 = 3, and a2 = 6.

5−1 1 3 7−3−7−9 −1 1 3 5 7−3−5−9−11

Figure 9: Illustrating the proof of Lemma 8(b), for m = 3, n = 4, a1 = 1, a2 = 7 and
a3 = 10.

It is easy to see that the last i − 1 steps of πi are down steps, for 2 6 i 6 n − 1.
Thus, we can factor πi := π̃i D

(i−1), for 2 6 i 6 n − 1. Let π′

1 := L, π′

2 := Uπ1 LD and
π′

i := U π̃i−1 LD(i−1), for 2 6 i 6 n (see Figure 10). Define φ by setting

φ((π1, . . . , πn−1)) := (π′

1, . . . , π
′

n).

1 3 5 7 1 3 5 7 9−1−3−5−7−9−1−5−7 −3

Figure 10: Illustrating the proof of Lemma 8(c), for m = 2, n = 5, a1 = 0, and a2 = 6.

4 Proof of Theorem 4

Before presenting the proof of Theorem 4, we prove an important fact stated in the next
proposition.
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Proposition 9. Assume that a, d1, . . . , dk are positive integers so that the generalized
Douglas region Da(d1, d2, . . . , dk) has the width w, and has its western and eastern vertices
on the same horizontal line. Let ai := dk + . . . + dk−i+1 + i − 1, for i = 1, 2, . . . , k − 1.
Then

M(Da(d1, . . . , dk)) = |Πw(a1, . . . , ak−1)|. (13)

(a) (b)

Figure 11: Transforming the dual graph of D7(4, 2, 5, 4) (after deformed into a subgraph
of the square grid) into the region D7(4, 2, 5, 4) associating with some bold barriers.

Proof. We first deform the dual graph G of D := Da(d1, . . . , dk) into a subgraph G′ of the
infinite square grid Z

2 (see Figure 11(a) for an example). We notice that G′ is a planar
graph. We apply the local transformation to all square and hexagonal faces as of G′ in
Figure 12. In particular, a square face is replaced by a 2× 2 block, and a hexagonal faces
is replaced by a 2 × 3 block with 3 barriers. We obtain a new region associating with a
sets barriers, denoted by D := Da(d1, . . . , dk) (see Figure 11(b)). We notice that if two
faces in G′ have some vertices in common, then their blocks in D share the unit squares
(and the barriers) corresponding to the common vertices.

Figure 12: The local replacements in creating D from G′.

A bad domino is a vertical domino having a middle barrier (see the middle vertical
domino of the 2 × 3 block in Figure 12), and a tiling of D is good if it contains no bad
dominoes. We have

M(G′) = M∗(D), (14)

where M∗(D) is the number of good tilings of D. Indeed, the expression on the right of
(14) is exactly the number of perfect matchings of the graph obtained from the dual graph
of D by removing all its vertical edges corresponding to bad dominoes, i.e. the graph G′.
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We have a bijection between the set of good tilings of D and the set of w-tuples of
non-intersecting Schröder paths (τ1, τ2, . . . , τw) compatible with the barriers of D, where
τi starts by the center of the ith vertical step (from bottom) on the southwestern bound-
ary, and ends by the center of the ith vertical step on the southeastern boundary of D
(illustrated in Figure 13). In particular the bijection works as in the next paragraph.

It is easy to see that each good tiling of D gives a unique w-tuple of non-intersecting
paths (τ1, τ2, . . . , τw). On the other hand, given a w-tuple of non-intersecting paths
(τ1, τ2, . . . , τw), we can recover the corresponding good tiling of the region as follows. The
up and down steps in each path τi are covered by vertical dominos, and the level steps
are covered by horizontal dominos. After covering all steps of all paths τi’s, we cover the
rest of the region by horizontal dominos.

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

Figure 13: Bijection between domino tilings and non-intersecting paths

Next, we have a bijection between the set of w-tuples (τ1, τ2, . . . , τw) above and the set
Πw(a1, . . . , ak−1) of w-tuples (π1, π2, . . . , πw) (shown in Figure 14). Precisely, the Schröder
path πi is obtained from τi by adding i− 1 up steps before its starting point, and adding
i− 1 down steps after its ending point, i.e. πi := U(i−1) τi D

(i−1), for i = 1, 2, . . . , w.
By the two above bijections and (14), we get (13).

We are now ready to prove Theorem 4.

Proof of Theorem 4. We prove (2) by induction on the number of layers k of the
region.

For k = 1, the region Da(d1, . . . , dk) is the Aztec diamond of order a, so (2) follows
from the Aztec diamond theorem 1.

For the induction step, suppose (2) holds for any generalized Douglas regions with
strictly less than k layers, for some fixed k > 2. We need to show that (2) holds for any
generalized Douglas region Da(d1, . . . , dk).
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−1−3−5−7−9−11−15−17 1 3 5 7 9 11 13 15

π1 π2

π3

π4

π5

π6

π7

π8

Figure 14: Bijection between (τ1, . . . , τ8) in Figure 13 and (π1, . . . , π8)

Let ai := dk+ . . .+dk−i+1+i−1, for i = 1, 2, . . . , k−1, as in Proposition 9. Recall that
we denote by p, q, l the numbers of lines of black squares, of black up-pointing triangles,
and of black down-pointing triangles, respectively.

There are two cases to distinguish, based on the parity of dk.

Case I. dk is even.
Assume that dk = a1 = 2x, for some x > 1. The last layer of the region has x lines of

black square, so p > x; and the (k − 1)th layer has a line of black up-pointing triangles
with bases resting on the last drawn-in diagonal, so q > 1. Thus, w = p + q > x + 1 (by
(4)).

By Proposition 9, we have

M(Da(d1, . . . , dk)) = |Πw(a1, . . . , ak−1)|. (15)

By Propositions 6 and 7, we obtain

|Πw(a1, . . . , ak−1)| = det(Hw) = 2w det(Gw) = 2w|Λw(a1, . . . , ak−1)|. (16)

We apply Proposition 8(a) and obtain

|Λw(a1, . . . , ak−1)| = |Πw−1(a1 − 2, . . . , ak−1 − 2)|. (17)

Two equalities (16) and (17) imply

|Πw(a1, . . . , ak−1)| = 2w|Πw−1(a1 − 2, . . . , ak−1 − 2)|. (18)

We apply (18) x times, obtain

|Πw(a1, . . . , ak−1)| = 2
∑

x−1

i=0
(w−i)|Πw−x(0, a2 − a1 . . . , ak−1 − a1)|. (19)

By equality (3), we have a = p+l > p > x. There are now two subcases to distinguish,
depending on the value of a.
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Case I.1. a = x.
The equality (3) implies p = x and l = 0. By (7), we have q = k − 1; and by (6), we

obtain

a+ w = 2p+ n+m = 2x+ k − 1 =
k∑

i=1

di.

Since dk = 2x, we have d1 = d2 = . . . = dk−1 = 1 (see Figure 15 for an example of the
generalized Douglas region in this case). Moreover, by (4), we get w = p+ q = x+ k− 1.
It is easy to see that

|Πw−x(0, a2 − a1 . . . , ak−1 − a1)| = |Πk−1(0, 2, 4, . . . , 2(k − 1))| = 1,

so
M(Da(d1, . . . , dk)) = 2

∑
x−1

i=0
(w−i).

One can verify that C = (w+1)x+
∑w−a−1

i=0 (w− i). Since a = x, the equation (2) follows.

A

B

C

D

Figure 15: Illustrating the region in Case I.1.

Case I.2. a > x.

Then there is some di > 1, for some 1 6 i 6 k − 1, so the ith layer has at least
one line of black squares. Since the last layer still have x lines of black squares, we have
p > x + 1. Since we already have q > 1 from the argument at the begining of Case I,
w = p+ q > x+ 2. By Proposition 8(c), we get

|Πw(a1, . . . , ak−1)| = 2
∑

x−1

i=1
(w−i)|Πw−x−1(a2 − a1 − 2 . . . , ak−1 − a1 − 2)|. (20)

Consider a new generalized Douglas region D′ := Da−x(d1, . . . , dk−1 − 1) having k − 1
layers. Assume that C ′ is the number of black regular cells in D′, and w′ is the width
of D′. Intuitively, D′ is obtained from D by removing its last layer and the line of black
up-pointing triangles right above the last layer, and reducing the length of all remaining
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lines of cells by x units (see Figure 16 for an example). Therefore, one can see that
w−w′ = x+1, and C −C ′ = (w+1)x+w+x(w−x− 1). Thus, by induction hypothesis

M(D′) = 2C
′−w′(w′+1)/2 = 2C−(w+1)x−w−x(w−x−1)−(w−x−1)(w−x)/2. (21)

Moreover, by Proposition 9, we get

M(D′) = |Πw−x−1(a2 − a1 − 2 . . . , ak−1 − a1 − 2)|. (22)

By (15), (20), (21) and (22), we obtain

M(Da(d1, . . . , dk)) = 2
∑

x−1

i=0
(w−i)M(D′)

= 2
∑

x−1

i=0
(w−i)2C−(w+1)x−w−x(w−x−1)−(w−x−1)(w−x)/2, (23)

which implies (2).

Figure 16: Comparison of two regions D = D7(4, 2, 5, 4) and D′ = D5(4, 2, 4) (restricted
by the bold contour).

Case II. dk is odd.

Assume that dk = a1 = 2x+ 1, for some x > 0. By (5b), (6), and (7), we have

2p+ k − 1 = 2p+m+ n =
k−1∑

i=1

di + 2x+ 1 > 2x+ 1 + k − 1. (24)

Thus, p > x+1, and by (4), we imply w = p+q > x+1. Note that the last layer has now
one line of black down-pointing triangles right below the last drawn-in diagonal. Thus,
l > 1, and by (3), a = p+ l > x+ 2.
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We have also the two equalities (15) and (18) as in Case 1. We apply (18) x times,
and obtain

|Πw(a1, . . . , ak−1)| = 2
∑

x−1

i=0
(w−i)|Πw−x(1, a2 − a1 + 1 . . . , ak−1 − a1 + 1)|. (25)

By Propositions 6 and 7, we have

M(D) = 2
∑

x−1

i=0
(w−i)2w−x|Λw−x(1, a2 − a1 + 1 . . . , ak−1 − a1 + 1)|. (26)

There are also two subcases to distinguish, based on the value of w.

Case II.1. w = x+ 1.

By (4), we have q = 0 and p = x + 1. The equality (24) implies that
∑k−1

i=1 di = k.
Moreover, if di = 2 for some 1 < i 6 k−1, then the (i−1)th layer has a line of up-pointing
triangles with bases resting on the ith drawn-in diagonal, a contradiction to the fact that
q = 0. Therefore, we must have d1 = 2 and d2 = d3 = . . . = dk−1 = 1 (see Figure 17 for
an example of this case).

A

B

C

D

Figure 17: Illustrating the region in Case II.1

We have now

|Λw−x(1, a2 − a1 + 1 . . . , ak−1 − a1 + 1)| = |Λ1(1, 3, 5, . . . , 2k − 3)|.

One readily sees that the path in Λ1(1, 3, 5, . . . , 2k − 3) connecting (−2k + 1, 0) to (1, 0),
so that it never go up once goes down. Thus, we can partition Λ1(1, 3, 5, . . . , 2k − 3) =⋃k

i=1 Si, where Sk is the set of paths starting by exactly i up steps followed by down and
level steps. It is easy to see that |Si| is the number of lattice paths using (1,−1) and (2, 0)
steps from (−2k + 1 + i, i) to (0, 1) (see Figure 18 for an example with k = 6; the black
dots indicate the points (−2k + 1 + i, i)’s). Thus, |Si| =

(
k−1
i−1

)
, for 1 6 i 6 k, and

|Λw−x(1, a2 − a1 + 1 . . . , ak−1 − a1 + 1)| = |Λ1(1, 3, 5, . . . , 2k − 3)| =
k∑

i=1

(
k − 1

i− 1

)
= 2k−1.
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1−1−3−5−7−9−11

Figure 18: Illustrating all possible steps of the path in Λ1(1, 3, 5, 7, 9).

By (26), we have M(D) = 2k−1+
∑

x

i=0
(w−i). It is easy to see that a = w + k − 1 and

C = (w + 1)x+ a, so (2) follows.

Case II. 2. w > x+ 1.

By (26) and Proposition 8(b), we obtain

M(D) = 2
∑

x

i=1
(w−i)|Λw−x(1, a2 − a1 + 1 . . . , ak−1 − a1 + 1)|

= 2
∑

x

i=1
(w−i)|Πw−x−1(a2 − a1 − 1 . . . , ak−1 − a1 − 1)|. (27)

Consider the region D′′ := Da−x−1(d1, . . . , dk−1) (note that we already showed that a >

x + 2 at the begining of Case II). Assume that C ′′ is the number of regular black cells
in D′′, and w′′ is the width of D′′. The region D′′ is obtained from D by removing its
last layer, reducing the length of all remaining lines of cells by x+1 units (see the region
restricted by the bold contour in Figure 19(a)), and replacing the bottom line of white
triangles in the resulting region by a line of white squares (see Figure 19(b)). Therefore,
w − w′′ = x and C − C ′′ = (w + 1)x+ (x+ 1)(w − x). By induction hypothesis, we have

(a) (b)

Figure 19: Comparison of two regions D and D′′ (right).

M(D′′) = 2C
′′−w′′(w′′+1)/2 = 2C−(w+1)x−(x+1)(w−x)−(w−x)(w−x+1)/2. (28)
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Moreover, by Proposition 9, we get

M(D′′) = |Πw−x−1(a2 − a1 − 1 . . . , ak−1 − a1 − 1)|. (29)

Finally, by (27), (28) and (29), we obtain

M(Da(d1, . . . , dk)) = 2
∑

x

i=0
(w−i) M(D′′)

= 2
∑

x

i=0
(w−i)2C−(w+1)x−(x+1)(w−x)−(w−x)(w−x+1)/2, (30)

which implies (2).

5 Concluding remarks

We have two other proofs of the main theorem, Theorem 4, using Kuo’s graphical con-
densation [10] and a certain reduction theorem due to Propp [12], respectively. We are
planning to present them in a subsequent paper.
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[8] I. M. Gessel. Schröder numbers, large and small. A talk at CanaDAM 2009. Slide is
available at: http://people.brandeis.edu/~gessel/homepage/slides

[9] S. Kamioka Laurent biorthogonal polynomials, q-Naryana polynomials and domino
tilings of the Aztec diamonds, J. Combin. Theory Ser. A 123, 2004, 14–29.

[10] E. H. Kuo. Applications of graphical condensation for enumerating matchings and
tilings. Theoretical Computer Science, 319: 29–57, 2004.

the electronic journal of combinatorics 21(1) (2014), #P1.51 18

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.8060
http://people.brandeis.edu/~gessel/homepage/slides


[11] B. Lindström. On the vector representations of induced matroids. Bull. London
Math. Soc., 5: 85–90, 1973.

[12] J. Propp. Generalized domino-shuffling, Theoretical Computer Science, 303: 267–301,
2003.

[13] J. R. Stembridge. Nonintersecting paths, Pfaffians and plane partitions. Adv. in
Math., 83: 96–131, 1990.

the electronic journal of combinatorics 21(1) (2014), #P1.51 19


	Introduction
	Structure of generalized Douglas regions
	Schröder paths with barriers
	Proof of Theorem 4
	Concluding remarks

