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1 Introduction

Given a simple graph H, an orientation ~H of H is obtained by assigning an ‘orientation’ or
‘direction’ to each of its edges. Such an ~H is called oriented graph. Given a simple graph G
and an oriented graph ~H, let D(G, ~H) be the number of orientations of G with no copy

of ~H and let D(n, ~H) = max{D(G, ~H) : |V (G)| = n}. The problem of estimating D(n, ~H)
was posed by Paul Erdős [5, p. 45] in 1974. We investigate a similar problem, where we
consider ‘typical’ graphs G(n,m) with n vertices and m edges. Our terminology and
notation are standard (see, e.g., [3, 8]). In particular, we use the notation a � b as
shorthand for the statement a/b→ 0 as n→∞.

Alon and Yuster [2] proved that, if n is sufficiently large, then D(n, Tk) = 2ex(n,Kk)

for any tournament Tk with k vertices, i.e., any orientation of the complete graph Kk.
Here we work with directed cycles C�` of length ` as opposed to tournaments and we
consider random graphs. Let us state our main theorem in terms of the binomial random
graph G(n, p) (one may derive corresponding results for the G(n,m) model from the
G(n, p) results below by standard means; the reader is referred to [8, Section 1.4] for this
‘equivalence’ of the models G(n, p) and G(n,m)).

Theorem 1.1. Fix ` > 3. For every 0 < γ < 1, there exist c and C for which the
following hold for G = G(n, p) with probability tending to 1 as n→∞.

(i) If p > Cn−1+1/(`−1), then D(G,C�` ) 6 2γ(
n
2)p.

(ii) If n−2 � p 6 cn−1+1/(`−1), then D(G,C�` ) > 2(1−γ)(n2)p.

We refer to cases (i) and (ii) above, respectively, as the supercritical and the subcritical
cases.

Since our results are mostly asymptotic, in the next sections, when convenient, we
freely and tacitly suppose that n is larger than a suitably large constant.

2 Preliminaries

Let 0 < p 6 1 be given and let ~G = (V,E) be an oriented graph. Let A and B be non-

empty disjoint subsets of V . We write e ~G(A,B) for the number of edges of ~G oriented from
A to B. Define the p-density of (A,B) as d ~G,p(A,B) = e ~G(A,B)/p|A||B|. For 0 < ε 6 1,

the pair (A,B) is called (ε, ~G, p)-regular if, for all X⊂ A and Y ⊂ B such that |X| > ε|A|
and |Y | > ε|B|, we have |d ~G,p(X, Y )− d ~G,p(A,B)| 6 ε. We consider analogous definitions
for graphs. In particular, if G = (A,B;E) is a bipartite graph and (A,B) is an (ε,G, p)-
regular pair, then we say that G is (ε,G, p)-regular. If the bipartite graph G is (ε,G, d)-
regular, where d = eG(A,B)/|A||B|, then we say that G is (ε)-regular. More explicitly,
in an (ε)-regular bipartite graph G = (A,B;E), for all X ⊂ A and Y ⊂ B such that
|X| > ε|A| and |Y | > ε|B|, we have∣∣∣∣eG(X, Y )− eG(A,B)

|A||B|
|X||Y |

∣∣∣∣ 6 ε
eG(A,B)

|A||B|
|X||Y |. (1)

the electronic journal of combinatorics 21(1) (2014), #P1.52 2



Given an oriented n-vertex graph ~G and a constant ε > 0, a partition {V0, V1, . . . , Vk} of

the vertex set of ~G is called (ε, k)-equitable if |V0| 6 εn and |V1| = . . . = |Vk|. Furthermore,

we say that an (ε, k)-equitable partition is (ε, ~G, p)-regular if, for 1 6 i, j 6 k, at most εk2

pairs (Vi, Vj) are not (ε, ~G, p)-regular. Given 0 < η, p = p(n) 6 1, an n-vertex graph G
is called (η, p)-upper uniform if, for all subsets X, Y ⊂ V (G) with X ∩ Y = ∅ such
that |X| > ηn and |Y | > ηn, we have eG(X, Y ) 6 (1 + η)p|X||Y |. Now we give a version
of Szemerédi’s Regularity Lemma for sparse oriented graphs (see, e.g., [10, 12], where the
non-oriented case is considered).

Theorem 2.1. For all ε > 0 and positive integer m, there exist η > 0 and M > m, such
that, for any 0 < p 6 1 and any orientation ~G of a sufficiently large (η, p)-upper uniform

graph G, there exists an (ε, ~G, p)-regular partition of the vertex set of ~G into k+1 classes,
where m 6 k 6M .

Let ~G be an oriented n-vertex graph and let W1, . . . ,W` ⊂ V (~G) be a family of
pairwise disjoint sets with |W1| = · · · = |W`| > σn. We say that (W1, . . . ,W`) induces

an (ε, δ, σ)-blow-up of C�` in ~G if, for 1 6 i 6 `, the pairs (Wi,Wi+1) are (ε, ~G, p)-regular
with d ~G,p(Wi,Wi+1) > δ, where we set W`+1 = W1. Naturally, here, we are thinking of the

oriented subgraph
⋃

16i6`
~G[Wi,Wi+1] of ~G, where ~G[Wi,Wi+1] has vertex set Wi ∪Wi+1

and contains precisely the oriented edges of ~G starting in Wi and ending in Wi+1.
A digraph ~D is a pair (V,E) where V is the vertex set of ~D and E is a set of arcs,

or oriented edges, that is, ordered pairs (u, v), where u, v ∈ V and u 6= v. Let 0 < ε, δ,

p = p(n) 6 1 be given and let ~G be an n-vertex oriented graph. Let P = {V0, V1, . . . , Vk}
be an (ε, k)-equitable partition of the vertex set of ~G. The coloured reduced digraph ~R =
~R(~G, ε, δ,P) associated with P has vertex set [k] = {1, . . . , k} and, for every {i, j} ∈

(
[k]
2

)
,

the pair (i, j) is an arc in ~R if and only if the pair (Vi, Vj) is (ε, ~G, p)-regular; moreover, an

arc (i, j) in ~R is coloured grey if d ~G,p(Vi, Vj) < δ and is coloured blue if d ~G,p(Vi, Vj) > δ.
Given a graph H, a real number ε > 0, and positive integers n and m, we define

G(H,n,m, ε) as the family of graphs G with vertex set V =
⋃
x∈V (H) Vx, where the sets Vx

have cardinality n each and are pairwise disjoint, and with edge set of the form E =⋃
{x,y}∈E(H) Exy, where each Exy is the edge set of an (ε)-regular graph with exactly m

edges between Vx and Vy for all {x, y} ∈ E(H). We denote by F(H,n,m, ε) the set of
graphs in G(H,n,m, ε) that do not contain transversal copies of H, i.e., copies of H with
exactly one vertex in each Vx. The following result is proved in [6] (for a weaker result,
see [11]).

Theorem 2.2. Let C` be a cycle with ` > 3. For any 0 < α < 1, there exists ε0 > 0 such
that, for all µ > 0, there exists C > 1 such that, for all p > Cn−1+1/(`−1) and 0 < ε < ε0,
the random graph G(n, p) contains a.a.s. no subgraphs in F(C`, ñ, bαñ2pc, ε) for any ñ >
µn.

Now we give a definition and some results that are useful in the proof of Theorem 1.1(i).
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Definition 2.3. Let σ, ε > 0 and 0 < p = p(n) 6 1 be given. We say that an n-
vertex graph G satisfies EDGE(σ, ε, p) if, for every U ⊂ V (G) with |U | > σn, we have∣∣eG(U)−

(|U |
2

)
p
∣∣ < εp

(|U |
2

)
.

Lemma 2.4. For every 0 < δ < 1/2, there exists ε > 0 such that, for every σ > 0, if
~G is an orientation of an n-vertex graph G that satisfies EDGE

(
σ, ε, p

)
for some 0 <

p = p(n) 6 1, then, for every disjoint X, Y ⊂ V (G) with |X| = |Y | > σn, we have
eG(X, Y ) > (1− 3δ)p|X||Y |. Furthermore, either d ~G,p(X, Y ) > δ or d ~G,p(Y,X) > δ.

Proof. Fix 0 < δ < 1/2 and put ε = min{(1 − 2δ)/3, δ}. Fix σ > 0. Let ~G be an
orientation of an n-vertex graph G and consider 0 < p = p(n) 6 1. Suppose G satisfies
EDGE

(
σ, ε, p

)
and let X and Y be disjoint subsets of V (G) with |X| = |Y | > σn. Then

eG(X, Y ) = eG(X ∪ Y )− eG(X)− eG(Y )

> (1− ε)
(
|X|+ |Y |

2

)
p− (1 + ε)

(
|X|
2

)
p− (1 + ε)

(
|Y |
2

)
p

= (1− 3ε+ 2ε/|X|)p|X||Y | > (1− 3ε)p|X||Y |, (2)

where the first inequality follows from the definition of EDGE
(
σ, ε, p

)
. Thus, since

ε 6 δ, we deduce that eG(X, Y ) > (1− 3δ)p|X||Y |. Furthermore, using the fact ε 6
(1 − 2δ)/3, we have eG(X, Y ) > 2δp|X||Y |. Therefore, we conclude that d ~G,p(X, Y ) > δ
or d ~G,p(Y,X) > δ.

The following three simple facts will be useful in Section 3. For a proof of Fact 2.5,
the reader is referred to [7]. Fact 2.6 follows from Chernoff bounds and Fact 2.7 follows
from calculations similar to those in the proof of Lemma 2.4.

Fact 2.5. For all 0 < ε 6 1/6, there exists a constant C > 0 such that any (ε)-regular
bipartite graph B = (V1, V2;E) contains a spanning (2ε)-regular subgraph with exactly m
edges, for all C(|V1|+ |V2|) 6 m 6 |E|.

Fact 2.6. For every 0 < σ, ε < 1, if p = p(n) � 1/n, then, a.a.s., G(n, p) satisfies
EDGE(σ, ε, p).

Fact 2.7. For every η > 0, there exist ε > 0 and σ > 0 such that, if 0 < p 6 1 and G is
an n-vertex graph satisfying EDGE(σ, ε, p), then G is (η, p)-upper uniform.

3 Proof of Theorem 1.1

Let us briefly sketch the main idea of the proof of part (i). Given p > Cn−1+1/(`−1) and

a graph G = G(n, p), we will consider the set of (ε, ~G, p)-regular partitions of its C�` -free
orientations. Since these partitions are into a number of parts bounded by M = M(ε),
there are at most Mn of them, and the total number of coloured reduced digraphs is

bounded by a constant. It follows that, if G has more than 2γ
(
n
2

)
p orientations that are
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C�` -free, then there is one partition of V (G) and one coloured reduced digraph ~R that

account for more than 2
γ
2

(
n
2

)
p of these orientations of G.

Now we consider the number of ways we can orient the edges of G so that we obtain
the reduced digraph ~R. We will see that if there are only few pairs of clusters with blue

arcs in both directions, then there are at most 2
γ
2

(
n
2

)
p possible orientations. But if there

are many pairs of clusters with blue arcs in both directions—which there must be for the

total number of C�` -free orientations of G to be at least 2γ
(
n
2

)
p—then we can find a triple

of clusters in ~R which contains a directed blue 3-cycle plus one extra blue arc. We will
prove that, since p > Cn−1+1/(`−1), the graph G has a.a.s. the property that the directed
edges in ~G between the clusters of any such triple must contain a copy of C�` , and this
contradiction will imply the result.

The only step at which we used the probability bound of part (i) was the final step

of finding a copy of C�` given the triple with a directed blue 3-cycle plus a blue arc in ~R.
That step fails if p 6 cn−1+1/(`−1) for some small constant c, and it does so for the simple
reason that for such values of p, most edges of G are not contained in any copy of C`.
We can fix a C�` -free orientation of those edges of G that are contained in copies of C`s,
and then any orientation of the remaining edges is automatically C�` -free. Since almost
all edges do not belong to C`s, part (ii) follows.

3.1 Two auxiliary lemmas

We now give two lemmas that concern orientations ~G of n-vertex graphs G for which the
following two conditions hold, for certain parameters σ, εE, p = p(n), ñ, δ and εF, to be
specified later:

(H1) G satisfies EDGE
(
σ, εE, p

)
,

(H2) G contains no member of F(C`, ñ, bδñ2pc, εF).

In the first lemma (Lemma 3.1), we suppose that ~G contains an `-tuple of sets

(W1, . . . ,W`) inducing an appropriate blow-up of C�` , and deduce that ~G itself contains
a C�` . In the second lemma (Lemma 3.2), we suppose that the regularity lemma has

been applied to ~G and that the associated coloured reduced digraph ~R contains a certain
subdigraph D� made up of blue arcs; we then conclude that ~G contains a C�` , finding
first a suitable `-tuple of sets (W1, . . . ,W`) and then applying Lemma 3.1.

Lemma 3.1. For every 0 < δ, εF < 1/3 and ` > 3, there exists εE such that, for every
0 < σ < 1, the following holds.

Suppose ~G is an orientation of G, where G is an n-vertex graph that satisfies both
(H1) and (H2) above for some σn 6 ñ 6 n and p = p(n) � 1/n. If (W1, . . . ,W`)
with |W1| = · · · = |W`| = ñ induces an (εR, δ, σ)-blow-up of C�` , where εR = εF(1− 3δ)/2,

then ~G contains a copy of C�` .
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Proof. Fix 0 < δ, εF < 1/3 and ` > 3. Let εE be given by an application of Lemma 2.4
with parameter δ. Fix 0 < σ < 1 and define C(F. 2.5) as the constant obtained by an

application of Fact 2.5 with parameter εF/2. Now suppose that G, ~G and (W1, . . . ,W`)
are as in the statement of the lemma and p = p(n)� 1/n.

For convenience, put W`+1 = W1. Let ~G` =
⋃

16i6`
~G[Wi,Wi+1] be the subdigraph of ~G

associated with the (εR, δ, σ)-blow-up of C�` induced by the sets Wi. Also, let G` be the

underlying graph of ~G`, that is, the graph obtained from ~G` by ignoring the orientation
of its edges.

Fix i ∈ [`]. Since p � 1/n we have bδ|Wi||Wi+1|pc > C(F. 2.5)(|Wi|+ |Wi+1|) and,
by the definition of (εR, δ, σ)-blow-up of C�` , we have bδ|Wi||Wi+1|pc 6 eG`(Wi,Wi+1).
Furthermore, since G satisfies EDGE

(
σ, εE, p

)
, by Lemma 2.4, we have eG`(Wi,Wi+1) >

(1 − 3δ)p|Wi||Wi+1|. Thus, since (Wi,Wi+1) is (εR, G`, p)-regular, we conclude that the
induced bipartite subgraph G`[Wi ∪ Wi+1] of G` is (εF/2)-regular. Therefore, we can
apply Fact 2.5 on the bipartite graphs G`[Wi ∪Wi+1] for 1 6 i 6 `, obtaining spanning
(εF)-regular subgraphs Gspan

` [Wi∪Wi+1] of G`[Wi∪Wi+1] with exactly bδ|Wi||Wj|pc edges.

Let J ⊂ G` be the graph with vertex set
⋃`
i=1 Wi and edge set

⋃`
i=1E(Gspan

` [Wi ∪
Wi+1]). The graph J is clearly a graph of the family G(C`, |W1|, bδ|W1|2pc, εF). Recalling
that G contains no subgraphs from F(C`, |W1|, bδ|W1|2pc, εF), we deduce that J ⊂ G`

contains a C`. This C` corresponds to a C�` in ~G` ⊂ ~G, and the proof is complete.

Let D�3 be obtained from the cycle C�3 of length 3 by the addition of an extra arc,
forming a directed cycle of length 2 with some arc of C�3 . As in the previous lemma, we

shall consider in our next lemma an orientation ~G of an n-vertex graph G that satisfies
both (H1) and (H2). However, in Lemma 3.2 below, our hypothesis will be that ~G has
been regularized with some suitably small parameter εR and that the associated coloured
reduced digraph ~R = ~R(~G, εR, δ,P) contains a blue D�3 . In the lemma below, we are
interested in odd cycles C�` . (The case in which ` is even is similar and simpler. For

even `, it is enough that ~R should contain a blue directed 2-cycle C�2 ; we omit the
details.)

Lemma 3.2. Fix z > 1 and set ` = 2z + 1. For every positive δ < 1/3 and εF < 1/z
and M > 1, there exist εE and σ such that the following holds. Suppose G is an n-vertex
graph that satisfies (H1) and (H2) for some ñ and p = p(n)� 1/n. Furthermore, suppose

that ~G is an orientation of G and that P = {V0, V1, . . . , Vk} is an (εR, ~G, p)-regular (εR, k)-

equitable partition of the vertex set of ~G, where εR = min
{
εF

(
1−3(δ/2)

)
/2, δ/2

}
and k 6

M . If ñ = b|V1|/zc and the coloured reduced digraph ~R = ~R(~G, εR, δ,P) associated with P
contains a blue copy of D�3 , then ~G contains a copy of C�` = C�2z+1.

Proof. Fix z > 1, 0 < δ < 1/3, 0 < εF < 1/z and M > 1. Set ` = 2z + 1. Let
εE = εE(L. 3.1) be given by an application of Lemma 3.1 with parameters δ(L. 3.1) = δ/2,
εF(L. 3.1) = zεF and `. In order to apply Lemma 3.1, put εR(L. 3.1) = εF(L. 3.1)

(
1−3δ(L. 3.1)

)
/2.

Let εR = min{εR(L. 3.1)/z, δ/2} and set σ = (1− εR)/zM (we shall apply Lemma 3.1 with
this σ). We have now defined all the required constants.
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We now suppose that G, ~G, P = {V0, . . . , Vk}, and ~R = ~R(~G, εR, δ,P) are as in the

statement of the lemma and p = p(n)� 1/n. We prove that ~G must contain a C�` .
Adjusting the notation suitably, assume that (v1, v2), (v2, v1), (v2, v3) and (v3, v1) are

the arcs of a blue D�3 in ~R. Thus, we know that the corresponding pairs (Vi, Vj) are

(εR, ~G, p)-regular with density at least δ in ~G.
For z = 1, the result follows directly from Lemma 3.1. Suppose z > 2. For i = 1,

2 and 3, consider pairwise disjoint subsets V 1
i , . . . , V

z
i of Vi with |V 1

i | = . . . = |V z
i | =

b|Vi|/zc. To apply Lemma 3.1, we shall prove that the sequence (V 1
1 , V

1
2 . . . , V

z
1 , V

z
2 , V

1
3 )

induces an (εR(L. 3.1), δ(L. 3.1), σ)-blow-up of C�` in ~G. If u, v ∈ [z] and X ⊂ V u
1 and Y ⊂ V v

2

have cardinalities |X| > εR(L. 3.1)|V u
1 | > εR|V1| and |Y | > εR(L. 3.1)|V v

2 | > εR|V2|, then,

since (V1, V2) is (εR, ~G, p)-regular, we have that |d ~G,p(X, Y )− d ~G,p(V u
1 , V

v
2 )| is at most

|d ~G,p(X, Y )− d ~G,p(V1, V2)|+ |d ~G,p(V1, V2)− d ~G,p(V
u

1 , V
v

2 )| 6 2εR 6 zεR 6 εR(L. 3.1). (3)

Applying the same argument we have |d ~G,p(Y,X) − d ~G,p(V v
2 , V

u
1 )| 6 εR(L. 3.1). Therefore,

for all u, v ∈ [z], the pairs (V u
1 , V

v
2 ) and (V u

2 , V
v

1 ) are (εR(L. 3.1), ~G, p)-regular. Similarly,

for all u, v ∈ [z], the pairs (V 1
3 , V

u
1 ) and (V v

2 , V
1

3 ) are (εR(L. 3.1), ~G, p)-regular.

As d ~G,p(Vi, Vj) > δ and (Vi, Vj) is (εR, ~G, p)-regular for every pair (i, j) in the set
{(1, 2), (2, 1), (2, 3), (3, 1)}, we have, for all u, v ∈ [z], that

d ~G,p(V
u

1 , V
v

2 ), d ~G,p(V
v

2 , V
u

1 ), d ~G,p(V
v

2 , V
1

3 ), d ~G,p(V
1

3 , V
u

1 ) > δ − εR > δ/2 = δ(L. 3.1), (4)

where the last inequality follows from εR 6 δ/2. Therefore, V 1
1 , V

1
2 , . . . , V

z
1 , V

z
2 , V

1
3 does

induce an (εR(L. 3.1), δ(L. 3.1), σ)-blow-up of C�2z+1 = C�` in ~G. Recalling that (H1) and (H2)
hold for G, we see that G satisfies EDGE

(
σ, εE(L. 3.1), p

)
and G contains no member of

F(C`, b|V1|/zc, bδ(L. 3.1)b|V1|/zc2pc, εF(L. 3.1)).

Thus, all conditions of Lemma 3.1 are satisfied and we conclude that ~G contains a copy
of C�` .

3.2 Main lemma for the supercritical case

The next result (Lemma 3.3) is the main lemma in the proof of Theorem 1.1(i). As in
Lemmas 3.1 and 3.2 in Section 3.1, in Lemma 3.3 below we consider an n-vertex graph G
that satisfies (H1) and (H2) given at the beginning of Section 3.1, but suppose that (H2)
holds for a range of values of ñ, namely, for all ñ > cn for a certain constant c > 0. The
conclusion in Lemma 3.3 is that, for any given γ > 0, with the constants in (H1) and (H2)

chosen suitably, such a graph G has at most 2γ(
n
2)p orientations avoiding C�` .

Lemma 3.3. Fix ` > 3. For every 0 < γ < 1, there exists δ > 0 such that, for
every 0 < εF < 1/`, there exist εE and σ > 0 and an integer M such that, if 1/n � p =
p(n) 6 1, then the following holds. Let G be an n-vertex graph satisfying (H1) and (H2)
for all ñ > bn/`Mc. Then we have

D(G,C�` ) 6 2γ(
n
2)p. (5)
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Proof. We assume that ` is odd, since the even case is similar and easier. Suppose ` =
2z + 1. Fix 0 < γ < 1. Let δ > 0 satisfy 4δ + 3 H(δ) < γ/32 and δ < 1/3, where
H is the binary entropy function, that is, H(x) = −x log2 x − (1 − x) log2(1 − x) for all
0 < x < 1 and H(0) = H(1) = 0. Fix εF(L. 3.2) = εF < 1/` and put εR = min{εF

(
1 −

3(δ/2)
)
/2, δ/2, (γ/64)2}.

Let η1 and M be the constants obtained by an application of Theorem 2.1 with pa-
rameters εR and m = d1/εRe. Put η = min{η1, 1/2M, εR/2} and let εE(L. 3.2) and σE(L. 3.2)

be obtained by an application of Lemma 3.2 with parameters z, δ, εF and M .
Now let εE(F. 2.7) and σE(F. 2.7) be obtained by an application of Fact 2.7 with param-

eter η. Set σ = min{σE(L. 3.2), σE(F. 2.7), η} and let εE(L. 2.4) be obtained by an application
of Lemma 2.4 with parameter δ. Set εE = min{εE(L. 2.4), εE(F. 2.7), εE(L. 3.2)}. Suppose
1/n� p = p(n) 6 1 and n is large enough.

Now let G be an n-vertex graph that satisfies (H1) and (H2) for all ñ > bn/`Mc. We

shall show that D(G,C�` ) 6 2γ(
n
2)p. For convenience, let us state our hypotheses on G

explicitly here: we suppose that G satisfies EDGE(σ, εE, p) and suppose that G contains
no graph in F(C`, ñ, b(δ/2)ñ2pc, zεF) as a subgraph for any ñ > bn/`Mc.

Denote by R the set of digraphs ~R = ~R(~G, εR, δ,P) whose arcs are coloured grey and

blue such that there exists a C�` -free orientation ~G of G where ~R is the coloured reduced

digraph of an (εR, ~G, p)-regular partition P of ~G with k + 1 classes with m 6 k 6 M .

Given ~R ∈ R, we denote by D~R(G,C�` ) the number of C�` -free orientations ~G of G

satisfying the extra condition that ~R should be a coloured reduced digraph of an (εR, ~G, p)-

regular partition of ~G.
By Theorem 2.1, for every orientation ~G of G, there exists an (εR, ~G, p)-regular par-

tition of G with k + 1 classes, where m 6 k 6 M . Note that, since there are 32 possible
kinds of connections between two vertices in a coloured reduced digraph, there exist at

most 9(i2) different coloured reduced graphs with i vertices. Thus,

D(G,C�` ) 6
∑

m6i6M

∑
~R : |V (~R)|=i

D~R(G,C�` ) 6M9(M2 ) max
~R
D~R(G,C�` ). (6)

We now make the following claim.

Claim 3.4. For any coloured reduced digraph ~R, we have

D~R(G,C�` ) 6 2
γ
2 (n2)p. (7)

Given that M is a constant and p� 1/n, inequalities (6) and (7) imply (5) for all large
enough n, and the proof of Lemma 3.3 is complete. It now remains to prove Claim 3.4.

Proof of Claim 3.4. Fix a coloured reduced digraph ~R. We first claim that ~R does not
contain too many blue directed 2-cycles C�2 . More precisely, our claim is as follows. Let R2

be the graph on [k] = V (~R) where {i, j} is an edge of R2 if and only if both arcs (i, j)

and (j, i) belong to ~R and are blue. We claim that

e(R2) = |E(R2)| 6 ε
1/2
R k2. (8)
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Suppose for a contradiction that (8) fails. Then there is a vertex a in R2 with degree dR2(a)

larger than 2ε
1/2
R k in R2. Therefore

(
dR2

(a)
2

)
> εRk

2, and it follows from the fact that ~R

is the coloured reduced digraph of an (εR, ~G, p)-regular partition P = {V0, . . . , Vk} that
there is a pair (b, c) with both b and c adjacent to a in R2 with both (Vb, Vc) and (Vc, Vb)

(εR, ~G, p)-regular pairs. By Lemma 2.4, we know that either d ~G(Vb, Vc) > δ or d ~G(Vc, Vb) >
δ, and hence at least one of (b, c) and (c, b) is blue in ~R. It thus follows that ~R contains a
blue copy of D�3 with vertex set {a, b, c}. It now suffices to apply Lemma 3.2 to conclude

that ~G contains a copy C�` , contradicting that ~G is a C�` -free orientation of G. This
completes the proof of (8). We now move on to the proof of (7).

The digraph ~R can be associated with at most (M + 1)n partitions of V (G) into at
most M+1 parts. Let P = {V0, V1, . . . , Vk} be one of those partitions, where m 6 k 6M .
To estimate D~R(G,C�` ), we shall estimate the number

D(P , ~R) (9)

of C�` -free orientations ~G of G that admit P as an (εR, ~G, p)-regular partition and, fur-

thermore, ~R is the coloured reduced digraph ~R(~G, εR, δ,P). We shall then have

D~R(G,C�` ) =
∑
P

D(P , ~R) 6 (M + 1)nD(P , ~R). (10)

By property EDGE(σ, εE, p), there exist at most

(1 + εE)p

(
n/k

2

)
k 6 2εRn

2p (11)

edges of G with both endpoints in the same Vi for some 1 6 i 6 k.
Since σ 6 η 6 εR/2 and |V0| 6 εRn, there is U0 ⊂ V (G) that contains V0 and with

|U0| = bεRnc > ηn > σn. Since G satisfies EDGE(σ, εE, p), by Fact 2.7, we know that
G is (η, p)-upper uniform. Thus, using (η, p)-upper uniformity, we know that the number
of edges with only one endpoint in U0 is at most (1 + η)εRn

2p. For the edges with both
endpoints in U0, we use the fact G satisfies EDGE(σ, εE, p). Recalling that |U0| > σn, we
may conclude that the number of edges inside U0 is at most (1 + εE)ε2

Rn
2p/2. Therefore,

the number of edges with at least one endpoint in V0 ⊂ U0 is at most

3εRn
2p. (12)

Let ~G be a C�` -free orientation of G. Note that the orientation of the at most 5εRn
2p

edges counted in (11) and (12) does not affect whether or not ~G should be counted

in D(P , ~R) (recall the definition of D(P , ~R), given near (9)). Thus, the edges in (11)
and (12) contribute

25εRn
2p (13)

to our count. Now, the structure of ~R does impose restrictions on how the remaining
edges of G may be oriented in any ~G that is counted in D(P , ~R). We proceed to analyse
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those restrictions. By the (η, p)-upper uniformity of G and the fact that |V1| = · · · =
|Vk| > n/2M > ηn, we know that

eG(Vi, Vj) 6 (1 + η)
(n
k

)2

p 6 2
(n
k

)2

p, (14)

for all 1 6 i < j 6 k. Let us now count the number of ways those edges between Vi and Vj
may be oriented in the ~G counted in D(P , ~R). To do so, let us observe that, clearly, any
given pair {i, j} with 1 6 i < j 6 k satisfies one of the following:

(i) At least one of (i, j) and (j, i) is not an arc of ~R.

(ii) Both (i, j) and (j, i) are arcs of ~R and one of them is grey and the other one is blue.

(iii) Both (i, j) and (j, i) are arcs of ~R and both of them are blue.

(iv) Both (i, j) and (j, i) are arcs of ~R and both of them are grey.

Note that, because of Lemma 2.4, possibility (iv) is excluded. We now estimate in how
many ways the edges in (14) may be oriented, according to the ‘type’ of the pair {i, j}.
Case 1. The pair {i, j} is of type (i). The number of orientations of the edges in such
pairs {i, j} is at most 2

∑
{i,j} eG(Vi,Vj), where the sum ranges over all pairs {i, j} of this

type. Note that the number of such {i, j} is at most εRk
2. Hence, recalling (14), we see

that
2
∑

(i,j) eG(Vi,Vj) 6 22(n/k)2pεRk
2

= 22εRn
2p. (15)

Case 2. The pair {i, j} is of type (ii). Recalling (14), we see that the number of possible
orientations of the edges in such a pair (Vi, Vj) is at most

2

bδ(n/k)2pc∑
i=0

(
(n/k)2p(1 + η)

i

)
6 2δ

(n
k

)2

p

(
(n/k)2p(1 + η)

δ(n/k)2p(1 + η)

)
6 2δ

(n
k

)2

p2H(δ)(n/k)2p(1+η) 6 2δ
(n
k

)2

p22 H(δ)(n/k)2p. (16)

The first inequality follows from the fact that δ(1 + η) < 1/2, and the second follows
from the estimate

(
x
βx

)
< 2H(β)x, valid for all 0 < β < 1 (see [9], Corollary 22.9). We now

observe that the total contribution of the edges induced by pairs {Vi, Vj} with {i, j} of
type (ii) is at most(

2δ
(n
k

)2

p

)k2
22 H(δ)(n/k)2pk2 6 n2k222 H(δ)n2p 6 23 H(δ)n2p, (17)

where we used that p� 1/n to absorb n2k2 into the exponential term.

Case 3. The pair {i, j} is of type (iii). Recall that in (8) we proved that the number

of pairs {i, j} of type (iii) is at most ε
1/2
R k2. Calculations similar to the calculations in
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Case 1 show that the total contribution of the edges within pairs {i, j} of type (iii) is at
most

22ε
1/2
R n2p. (18)

We now note that, by (13), (15), (17) and (18) and the choices of δ and εR, we have

log2D(P , ~R) 6 5εRn
2p+ 2εRn

2p+ 3 H(δ)n2p+ 2ε
1/2
R n2p 6

γ

4

(
n

2

)
p. (19)

From (10), (19) and the fact that p� 1/n, we deduce that

D~R(G,C�` ) 6 2n log2(M+1)+ γ
4 (n2)p 6 2

γ
2 (n2)p, (20)

concluding the proof of Claim 3.4.

3.3 Proof of Theorem 1.1

We consider the supercritical and subcritical cases, respectively, in Lemmas 3.5 and 3.6.
Theorem 1.1 follows from Lemmas 3.5 and 3.6.

Lemma 3.5. Fix ` > 3. For every γ > 0 there exists C > 0 such that if p > Cn−1+1/(`−1)

and G = G(n, p), then D(G,C�` ) 6 2γ(
n
2)p with probability 1− o(1).

Proof. Let ` > 3 and γ > 0 be given. In what follows, we consider the case in which ` is
odd (the case in which ` is even is similar).

Let δ(L. 3.3) be given by an application of Lemma 3.3 with parameters ` and γ. Let
εR(T. 2.2) be obtained by an application of Theorem 2.2 with parameters ` and δ(L. 3.3)/2.
Following the quantification in Theorem 2.2 applied with µ = 1/2`M , we obtain a con-
stant C.

Suppose p > Cn−1+1/(`−1) and fix εF(L. 3.3) < min{εR(T. 2.2)/`, 1/`}. Now we continue
the application of Lemma 3.3 with parameter εF(L. 3.3), obtaining constants εE(L. 3.3), σ(L. 3.3)

and M .
Let G = G(n, p). By Fact 2.6 applied with parameters σ(L. 3.3) and εE(L. 3.3), we know G

satisfies EDGE(σ(L. 3.3), εE(L. 3.3), p) with probability 1−o(1). By Theorem 2.2, the graph G
contains no member of F(C`, ñ, b(δ(L. 3.3)/2)ñ2pc, zεF(L. 3.3)) with probability 1− o(1), for

any ñ > bn/`Mc > µn. Therefore, by Lemma 3.3, we conclude that D(G,C�` ) 6 2γ(
n
2)p

holds with probability 1− o(1).

Lemma 3.6. Fix ` > 3. For every γ > 0 there exists c > 0 such that if
(
n
2

)−1 � p 6

cn−1+1/(`−1) and G = G(n, p), then D(G,C�` ) > 2(1−γ)(n2)p with probability 1− o(1).

Proof. Let ` > 3 and γ > 0 be given. Put c = (γ/16`)1/(`−1) and denote by XC` the
number of copies of C` in G. We divide the proof in two cases, depending on the order of
magnitude of p.
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Case 1.
(
n
2

)−1 � p� n−1+1/(`−1). It is easy to see that E(XC`) 6 (np)`. Using Markov’s
inequality we have

P
(
XC` >

γ

2`

(
n

2

)
p

)
6

2`(np)`

γ
(
n
2

)
p
. (21)

Since p� n−1+1/(`−1) we have P
(
XC` > γ

(
n
2

)
p/2`

)
= o(1). Furthermore, since p�

(
n
2

)−1
,

by Chernoff bounds, e
(
G(n, p)

)
> (1− γ/2)

(
n
2

)
p holds with probability 1− o(1).

Assume that XC` < (γ/2`)
(
n
2

)
p. Consider the following procedure: fix the orientation

of the edges that belong to cycles of length ` in G according to some total order of the
vertices of G and orient the remaining edges in any way. An orientation generated by this
procedure contains no copy of C�` . Therefore, with probability 1 − o(1), the number of

such orientations is at least 2e(G(n,p))−(γ/2)(n2)p > 2(1−γ)(n2)p.

Case 2. n−1 � p 6 cn−1+1/(`−1). Since p� n−1, we know that XC` < 2(np)` holds with
probability 1− o(1) (see Theorem 4.4.4 in [1]). Furthermore, note that

P
(
XC` > 2(np)`

)
> P

(
XC` > γ

(
n

2

)
p/2`

)
, (22)

and hence P
(
XC` > γ

(
n
2

)
p/2`

)
= o(1). It now suffices to proceed as in Case 1.

4 Concluding remarks

For simplicity, we restricted our attention to counting C�` -free orientations. Using versions
of Theorem 2.2 that work for general graphs H (see, e.g., [4, 13]), one may prove certain

results on the number of ~H-free orientations of G(n, p) for orientations ~H of any given
graph H.

We have obtained satisfactory results for the random variable D(G(n, p), C�` ) for p
close to the ‘threshold’. For p substantially below the threshold (the subcritical case),
the value of D(G(n, p), C�` ) is a.a.s. 2e(G(n,p))−Θ(p`n`). A simple analysis of our proof gives
the lower bound part of this statement, while the upper bound part follows from the fact
that Ω(p`n`) edge-disjoint copies of C` exist in G(n, p) in this range.

For p substantially above the threshold (the supercritical case) we expect that our
results can be substantially improved. One may check that D(Kn, C

�
` ) is approximately

Cnn!, where C > 1 depends only on ` (and is equal to one if ` = 3). But this ceases
to be true for D(G(n, p), C�` ) when p � 1. It would be interesting to determine more
accurately the asymptotic value of D(G(n, p), C�` ) as p varies from the threshold to 1.
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[10] Y. Kohayakawa, Szemerédi’s regularity lemma for sparse graphs, Foundations of com-
putational mathematics (Rio de Janeiro, 1997), Springer, Berlin, 1997, pp. 216–230.

[11] Y. Kohayakawa and B. Kreuter, Threshold functions for asymmetric Ramsey prop-
erties involving cycles, Random Structures Algorithms 11 (1997), no. 3, 245–276.
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