
Non-normal very ample polytopes
and their holes

Akihiro Higashitani∗

Department of Pure and Applied Mathematics
Graduate School of Information Science and Technology

Osaka University, Japan

a-higashitani@cr.math.sci.osaka-u.ac.jp

Submitted: Aug 16, 2013; Accepted: Feb 26, 2014; Published: Mar 10, 2014

Mathematics Subject Classifications: 52B20; 14M25; 52B12

Abstract

In this paper, we show that for given integers h and d with h > 1 and d > 3,
there exists a non-normal very ample integral convex polytope of dimension d which
has exactly h holes.

1 Introduction

The normality and the very ampleness of integral convex polytopes are of importance in
several points of view, e.g., not only combinatorics on convex polytopes but also toric
geometry and commutative algebra. In particular, normal or very ample integral convex
polytopes appearing in the context of toric geometry are well studied (cf. [1, 2, 3, 8, 9, 10]).
To determine whether a given integral convex polytope is normal (very ample) or not is
a fascinating problem. (See [7, 11, 12].) In this paper, we will show the existence of
non-normal very ample integral convex polytopes with an additional property in any
dimension.

Let P ⊂ Rd be an integral convex polytope, which is a convex polytope all of whose
vertices are contained in Zd, of dimension d. Define P̃ ⊂ Rd+1 to be the convex hull of
the points (α, 1) ∈ Rd+1 with α ∈ P and let AP = P̃ ∩ Zd+1. We say that P is normal if
P satisfies

R>0AP ∩ ZAP = Z>0AP .
Moreover, we say that P is very ample if the set

(R>0AP ∩ ZAP) \ Z>0AP
∗The author is supported by JSPS Research Fellowship for Young Scientists.
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is finite and we call the elements of (R>0AP ∩ZAP) \Z>0AP the holes of P . (In [1], holes
are called gaps.) In particular, when P is normal, P is very ample.

In addition, for a positive integer k, we say that P is k-normal if for each n = k, k+1, . . .
and for each α ∈ nP ∩ Zd, where nP = {nα : α ∈ P }, there exist n integer points
α1, . . . , αn belonging to P ∩ Zd such that α = α1 + · · ·+ αn.

Let us assume
ZAP = Zd+1.

Then P is normal if and only if P is 1-normal. Moreover, P is very ample if and only if P
is k-normal for some sufficiently large positive integer k. A definition of very ampleness
described in [5, 6, 9] is equivalent to ours ([1, Proposition 2.1]).

The notions “normal” or “very ample” also arise naturally in the contex of toric
varieties. For an algebraically closed filed K and an integral convex polytope P , we write
K[Z>0AP ] for the toric ring arising from P . Let XP = Proj(K[Z>0AP ]) ⊂ PN−1

K , where N
is the number of integer points in P . Then P is normal if and only if the corresponding
projective variety XP is projectively normal, i.e., its affine cone is normal. Moreovr, P is
very ample if and only if XP is normal. For more detailed information, consult, e.g., [5,
Chapter 2] and [6, Chapter 2].

It often happens that for some class of integral convex polytopes, its normality is
equivalent to its very ampleness. For example, edge polytope is a typical example (cf
[11]). Thus, the following is a quite natural question:

Does there exist an integral convex polytope which is not normal but very ample ?

In [4, Example 5.1], Bruns and Gubeladze succeeded in giving the first example of
a non-normal very ample integral convex polytope, which is of dimension 5 and can be
obtained from a triangulation of a real projective plane. Recently, they provided the
second example in [5, Exercise 2.24], which is of dimension 3. Moreover, in [9, Section 2],
Ogata generalized the second example and established infinitely many non-normal very
ample integral convex polytopes of dimension 3.

In this paer, we present a non-normal very ample integral convex polytope in any
dimension having an additional property. The following is our main theorem of this
paper.

Theorem 1. Let h and d be integers with h > 1 and d > 3. Then there exists a 3-normal
but non-normal integral convex polytope of dimension d which has exactly h holes.

Remark 2. In the 3-dimensional case, the existence of non-normal very ample integral
convex polytopes having exactly h holes is known in [2, Example 15]. This example is
exhaustively analyzed in [1, Theorem 3.2].

Remark 3. Let P be an integral convex polytope which is not normal but very ample.
Then P × [0, 1] is also very ample by [6, Theorem 2.4.7]. Moreover, P × [0, 1] is not
normal. Thus, P × [0, 1] is non-normal and very ample, in particular, P × [0, 1]n is a non-
normal very ample integral convex polytope of dimension dimP + n. Hence, we know
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the existence of non-normal very ample integral convex polytopes in any dimension at
least 3. However, we cannot show Theorem 1 by using this inductive construction. More
precisely, the number of holes of P × [0, 1] is not equal to that of P . In fact, one sees that
the number of holes of P × [0, 1] is equal to

∑
k>2(k + 1)hk, where hk is the number of

holes of P with degree k.

Let h and d be integers with h > 1 and d > 3, and let

ui =



0, i = 1,

ed, i = 2,

e2 + · · ·+ ed−1, i = 3,

h(e2 + · · ·+ ed−1 + ed), i = 4,

(h− 1)(e2 + · · ·+ ed−1) + hed, i = 5,

h(e2 + · · ·+ ed−1) + (h− 1)ed, i = 6,

e1 + 4ed, i = 7,

e1 + 5ed, i = 8,

e1 + e2 + · · ·+ ed−1, i = 9,

e1 + e2 + · · ·+ ed−1 + ed, i = 10,

vi = ei, i = 2, . . . , d− 1,

v′i = ei + ed, i = 2, . . . , d− 1,

where 0 = (0, . . . , 0) ∈ Rd and e1, . . . , ed are the unit coordinate vectors of Rd. We define
the integral convex polytope Ph,d ⊂ Rd by setting the convex hull of

{u1, . . . , u10} ∪ {vi, v′i : i = 2, . . . , d− 1}.

In this paer, we will show that Ph,d enjoys the required properties, i.e., this is a 3-
normal but non-normal integral convex polytope of dimension d which has exactly h holes.
It is immediate that Z(Ph,d ∩ Zd) = Zd. Thus dim(Ph,d) = d and ZAPh,d

= Zd+1.
The strategy of our proof is as follows. After calculating all the facets of Ph,d, we will

first prove that Ph,d ∩ {(x1, . . . , xd) ∈ Rd : x1 = 0} is normal by using theory of Gröbner
basis and the remaining facets of Ph,d are also normal in Section 2. In Section 3, we will
analyze 2Ph,d ∩ {(x1, . . . , xd) ∈ Rd : x1 = 1} and find h holes of Ph,d. This implies that
Ph,d is not normal. At last, Section 4 is devoted to showing that there is no hole except
for such h holes, also forcing Ph,d is very ample (3-normal).

2 Normality of facets of Ph,d
In this section, we verify that the facets of Ph,d are all normal, which we shall use in
Section 4.

For a hyperplane H ⊂ Rd defined by the equality a1x1 + · · ·+ adxd = b, we write H(+)

(resp. H(−)) for the closed half space defined by the inequality a1x1 + · · ·+adxd 6 b (resp.
a1x1 + · · ·+ adxd > b). We define ten types of hyperplanes as follows:
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H0 : x1 = 0,

H1 : xd = 0,

H2,i : −xi = 0,

H3,i : −(d− 4)xi +
∑

j 6=i,26j6d−1 xj − xd = 1,

H4,i : 4x1 − 4xi − xd = 0,

H5,i : −4x1 − xi + xd = 1,

H6,i : x1 − (d− 3)xi +
∑

j 6=i,26j6d−1 xj = 1,

H7,i : (5h− 5)x1 − ((d− 3)(5h− 1)− 4)xi + (5h− 1)
∑

j 6=i,26j6d−1 xj + xd = 5h,

H8,i : (h− 5)x1 − (d− 3)(h− 1)xi + (h− 1)
∑

j 6=i,26j6d−1 xj + xd = h,

H9,i : (h− 1)x1 − ((d− 3)h− 1)xi + h
∑

j 6=i,26j6d−1 xj = h,

where i = 2, . . . , d − 1. Then each hyperplane above is a supporting hyperplane of Ph,d.
Moreover, some routine works unable us to show that there is no facet except for the
facets defined by the above (8(d− 2) + 2) supporting hyperplanes. Hence,

Ph,d = H(−)
0 ∩H(−)

1 ∩

 ⋂
26j69,
26i6d−1

H(+)
j,i

 . (1)

Let F0,F1,Fj,i, where j = 2, . . . , 9 and i = 2, . . . , d − 1, be the facets of Ph,d defined
by the corresponding hyperplanes H0,H1 or Hj,i.

We prove the normality of F0. We employ some techniques using Gröbner basis. We
refer the readers to [14] for fudamental materials on Gröbner basis.

Let

u3,j =
(h− 1− j)u3 + ju6

h− 1
= (j + 1)(e2 + · · ·+ ed−1) + jed, j = 0, 1, . . . , h− 1,

u2,j =
(h− 1− j)u2 + ju5

h− 1
= j(e2 + · · ·+ ed−1) + (j + 1)ed, j = 0, 1, . . . , h− 1,

u1,j =
(h− j)u1 + ju4

h
= j(e2 + · · ·+ ed−1) + jed, j = 0, 1, . . . , h.

Then u3,1, . . . , u3,h−2, u2,1, . . . , u2,h−2, u1,1, . . . , u1,h−1 are all the integer points contained in
Ph,d ∩ Zd except for the vertices. Note that u3,0 = u3, u3,h−1 = u6, u2,0 = u2, u2,h−1 =
u5, u1,0 = u1 and u1,h = u4.

Let Ah,d ∈ Zd×(2(d−2)+3h+1) be an integer matrix of the form(
v∗2, v

′∗
2 , · · · , v∗d−1, v′∗d−1, u∗3,0, . . . , u∗3,h−1, u∗2,0, . . . , u∗2,h−1, u∗1,0, . . . , u∗1,h

)
,
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where v∗ = e1 + v for an integer point v ∈ Zd. This is nothing but a configuration arising
from F0. Let K[T ] = K[t1, t2, . . . , td] be the polynomial ring in d variables over a field K.
Then the toric ring of Ah,d is the subalgebra K[Ah,d] of K[T ] which is generated by the
monomials

t1t2, t1t2td, . . . , t1td−1, t1td−1td, t1t2 · · · td−1, t1t22 · · · t2d−1td, . . . , t1th2 · · · thd−1th−1d ,

t1td, t1t2 · · · td−1t2d, . . . , t1th−12 · · · th−1d−1t
h
d , t1, t1t2 · · · td−1td, . . . , t1th2 · · · thd−1thd .

Let K[X, Y, Z,W ] = K[x1, . . . , x2d−4, y1, . . . , yh, z1, . . . , zh, w0, w1, . . . , wh] be the polyno-
mial ring in 2d + 3h − 3 variables over K and define the surjective ring homomorphism
π : K[X, Y, Z,W ]→ K[Ah,d] by setting

π(x2i−1) = t1ti+1, π(x2i) = t1ti+1td for i = 1, . . . , d− 2,

π(yj) = t1t
j
2 · · · t

j
d−1t

j−1
d , π(zj) = t1t

j−1
2 · · · tj−1d−1t

j
d for j = 1, . . . , h,

π(wk) = t1t
k
2 · · · tkd−1tkd for k = 0, . . . , h.

The toric ideal I is the kernel of the map π. Let < be the lexicographic order on
K[X, Y, Z,W ] induced by the ordering

wh < · · · < w0 < zh < · · · < z1 < yh < · · · < y1 < x2d−4 < · · · < x1.

Proposition 4. A Gröbner basis of I with respect to < consists of the following sets
G1, . . . , G8 of the binomials:

G1 = {x2i−1x2j − x2ix2j−1 : 1 6 i < j 6 d− 2};
G2 = {yiyl − yjyk, zizl − zjzk : 1 6 i 6 j 6 k 6 l 6 h with i+ l = j + k};
G3 = {wiwl − wjwk : 0 6 i 6 j 6 k 6 l 6 h with i+ l = j + k};
G4 = {x2i−1zj − x2iwj−1, x2i−1wj − x2iyj : 1 6 i 6 d− 2, 1 6 j 6 h};
G5 = {yizj − wi−1wj : 1 6 i, j 6 h};
G6 = {yiwj − yi+1wj−1, ziwj − zi+1wj−1 : 1 6 i 6 h− 1, 1 6 j 6 h};
G7 = {x2i−1yjw0 − x2iy1yj−1 : 1 6 i 6 d− 2, 2 6 j 6 h};

G8 =

{
k∏

q=1

x2q−1

d−2∏
q=k+1

x2q − zd−4−k1 z2w
k+1
0 : 0 6 k 6 d− 4

}
⋃{

x2d−4

d−3∏
q=1

x2q−1 − wd−3
0 w1,

d−2∏
q=1

x2q−1 − wd−3
0 y1

}
.

Proof. Let G =
⋃8

i=1Gi. Let in<(Gi) denote the set of the initial monomials of all the
binomials in Gi with respect to < and in<(G) the ideal generated by all the monomials
in
⋃8

i=1 in<(Gi). Here the initial monomial of each binomial in Gi is the first monomial.
Since G ⊂ I, we have in<(G) ⊂ in<(I). Our goal is to show in<(I) ⊂ in<(G).
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Fix an irreducible non-zero binomial f = u − v ∈ I with v < u. Thus u ∈ in<(I).
For monomials m1,m2 ∈ K[X, Y, Z,W ], let m1 | m2 (resp. m1 - m2) denote that m2 is
divisible (resp. not divisible) by m1. Suppose that u 6∈ in<(G).

First, we assume that xi - u for any 1 6 i 6 2d− 4.

• Assume that yj - u for any 1 6 j 6 h. Then, for any i, j, both xi - v and yj - v are
satisfied.

– When zj - u for any j, the variables appearing in u are only wk, 0 6 k 6 h,
and so is v. Since u− v ∈ I, it must be u ∈ in<(G3), a contradiction.

– When zj | u for some j, since u 6∈ in<(G2), the variables among zj appearing
in u is either zj or zjzj+1. When the former case, i.e., when u = z

cj
j

∏
wk, since

u 6∈ in<(G6), we have j = h or
∏
wk = wd1

0 . If j = h, since f is irreducible,
only wk appears in v, which contradicts to f ∈ I. Similarly, if

∏
wk = wd1

0 ,
then it contradicts f ∈ I. When the latter case, i.e., when u = z

cj
j z

cj+1

j+1

∏
wk,

similarly, it contradicts f ∈ I.

• Assume that yj | u for some j. Since u 6∈ in<(G2) ∪ in<(G5) ∪ in<(G6), u looks like

y
bj
j w

d1
0 , y

bj
j y

bj+1

j+1 w
d1
0 or ybhh

∏
wk. In these cases, similar discussions to the previous

case can be applied and lead a contradiction.

Next, we assume that xi | u for some i.

• When only one variable xi appears in u, u looks like xaii
∏
yj
∏
zj
∏
wk.

– When i is even, the variables appearing in v are chosen from xi+1, . . . , x2d−4,
which obviously contradicts f ∈ I.

– When i is odd, since u 6∈ in<(G4) ∪ in<(G7), u looks like either xaii
∏
yj or

xaii y
b1
1 w

d1
0 . When these cases, it contradicts f ∈ I.

• When at least (d− 1) distinct xi’s appear in u, there is at least one 1 6 q 6 d− 2
such that x2q−1x2q | u, which contradicts f ∈ I.

• When there are (d − 2) xi’s in u and there is no q such that x2q−1x2q | u, one
has u ∈ in<(G8), a contradiction. When there are distinct r xi’s in u, where
2 6 r 6 d − 3, and there is no q such that x2q−1x2q | u, since u 6∈ in<(G1), u looks

like x
a2i1
2i1
· · ·xa2il2il

x
a2il+1−1

2il+1−1 · · · x
a2ir−1

2ir−1
∏
yj
∏
zj
∏
wk, where 1 6 i1 < · · · < ir 6 d− 2.

This contradicts f ∈ I.

Therefore, we conclude that u belongs to in<(G), as required.

Corollary 5. The integral convex polytope F0 has a regular unimodular triangulation. In
particular, F0 is normal.

Proof. By Proposition 4, the toric ideal I has a squarefree initial ideal. This is equivalent
to what F0 has a regular unimodular triangulation. (Consult, e.g., [14, Corollary 8.9].)
In general, an integral convex polytope having a unimodular triangulation is normal.
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The remaining facets of Ph,d are also normal.

Lemma 6. The facets F1 and Fj,i, where j = 2, . . . , 9 and i = 2, . . . , d−1, are all normal.

Proof. First, let us discuss the facets F4,i,F7,i and F8,i. Fix i = 2. Then the sets of
vertices of F4,2,F7,2 and F8,2 are {u1, u7, u9, v3, . . . , vd−1}, {u4, u8, u10, v′3, . . . , v′d−1} and
{u4, u5, u8, v′3, . . . , v′d−1}, respectively. Each of the matrices whose column vectors are the
vertices of each facet can be transformed into the matrix (0, e1, . . . , ed−1) by unimodular
transformations. Thus each facet F4,2,F7,2 or F8,2 is unimodularly equivalent to a unit
simplex of dimension d− 1. Thus, in particular, F4,2,F7,2 and F8,2 are normal. Similarly,
for any i, F4,i,F7,i and F8,i are normal.

Next, let us investigate F1,F2,i,F6,i and F9,i. For F2,2, the set of its vertices is

{u1, u2, u7, u8, v3, . . . , vd−1, v′3, . . . , v′d−1}.

By unimodular transformations, the matrix whose column vector is the above vertices
can be transformed into the matrix

(0,−ed, e1, e1 − ed, e3, . . . , ed−1, e3 − ed, . . . , ed−1 − ed).

This is totally unimodular ([13, Chapter 19]). Thus, F2,2 has a unimodular triangulation.
In particular, this is normal. Similarly, for any i, F2,i is normal and so are F1, F6,i and
F9,i.

Finally, let us consider the facets F3,i and F5,i. Then one can see that each of them is
unimodularly equivalent to the simplex whose vertex set is {0, e1, . . . , ed−2, (h− 1)ed−1}.
This is also normal, as desired.

3 Holes of Ph,d
In this section, we find h holes of Ph,d. Let

u′j =
1

2
(u1,j−1 + u1,j + u8 + u9) for j = 1, . . . , h.

Then u′j = e1+j(e2+· · ·+ed−1)+(j+2)ed and each (u′j, 2) is contained in R>0APh,d
∩Zd+1.

On the other hand, since none of the points (u′j, 2) − (ui, 1), where i = 7, . . . , 10, are
contained in APh,d

, it must be (u′j, 2) 6∈ Z>0APh,d
. Hence, the above h integer points are

holes of Ph,d. In the rest of this section, we show that there is no more holes in

{x ∈ R>0APh,d
∩ Zd+1 : deg(x) = 2}. (2)

For nonnegative integers n and k, let

Ph,d(n, k) = nPh,d ∩ {(x1, . . . , xd) ∈ Rd : x1 = k}.

For example, Ph,d(1, 0) = F0 and Ph,d(1, 1) = conv({u7, u8, u9, u10}). Let P0 = Ph,d(1, 0)
and P1 = Ph,d(1, 1).

For a hyperplane H defined by the equality a1x1 + · · ·+adxd = b and a positive integer
m, we write mH(+) (resp. mH(−)) for the closed half space defined by the inequality
a1x1 + · · ·+ adxd 6 mb (resp. a1x1 + · · ·+ adxd > mb).
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Lemma 7. Let Q = Ph,d(2, 1). Then one has

Q∩ Zd = {a0 + a1 ∈ Zd : ai ∈ Pi ∩ Zd, i = 0, 1} ∪ {u′1, . . . , u′h}.

Proof. Clearly, Q∩ Zd ⊃ {a0 + a1 ∈ Zd : ai ∈ Pi ∩ Zd, i = 0, 1} ∪ {u′1, . . . , u′h}. Thus it is
enough to show the other inclusion. We remark that from (1), one has

Q ⊂ 2H(−)
0 ∩ 2H(−)

1 ∩

 ⋂
26j69,
26i6d−1

2H(+)
j,i

 .

Let x = (1, x2, . . . , xd) ∈ Q ∩ Zd.

The first step. Assume that x2 = x3 = · · · = xd−1. Since x ∈ 2H(+)
2,2 ∩ 2H(+)

9,2 , one has
0 6 x2 6 h+ 1. On the other hand, since

x ∈
⋂

j=3,4,5,7,8,
26i6d−1

2H(+)
j,i ,

we have

max{x2 − 2,−4(x2 − 1)} 6 xd 6 min{x2 + 6, 5h+ 5− 4x2, h+ 5}.

One can verify that all of these are contained in {a0 + a1 ∈ Zd : ai ∈ Pi ∩ Zd, i =
0, 1} ∪ {u′1, . . . , u′h}.
The second step. Assume that x does not satisfy x2 = x3 = · · · = xd−1. Let a1, . . . , am be
distinct m integers such that {a1, . . . , am} = {x2, . . . , xd−1}, where a1 > a2 > · · · > am.

Then m > 2. By x ∈
⋂d−1

i=2 2H(+)
2,i , we have am > 0. Let p` be the number of a`’s among

x2, . . . , xd−1. Thus, p` > 0 and p1+ · · ·+pm = d−2. For ` = 1, . . . ,m−1, let b` = a`−am.

Then b` > m− `. From x ∈
⋂d−1

i=2 2H(+)
6,i , we have

−(d− 3)am + (p1a1 + · · ·+ pm−1am−1 + (pm − 1)am)

= −(d− 3)am + (p1(am + b1) + · · ·+ pm−1(am + bm−1) + (pm − 1)am)

= −(d− 2)am + (p1 + · · ·+ pm)am + p1b1 + · · ·+ pm−1bm−1

= p1b1 + · · ·+ pm−1bm−1 6 1.

Hence, we obtain m = 2 and p1 = b1 = 1. Let, say, x = (1, am + 1, am, . . . , am, xd).

Moreover, from x ∈
⋂d−1

i=2 2H(+)
9,i , we have

−((d− 3)h− 1)am + h(am + 1 + (d− 4)am) = h+ am 6 h+ 1,

which implies that am = 0 or 1.

• When x = (1, 1, 0, . . . , 0, xd), since x ∈ 2H(+)
4,3 ∩ 2H(+)

5,3 , we have 4 6 xd 6 6.

• When x = (1, 2, 1, . . . , 1, xd), since x ∈ 2H(−)
1 ∩ 2H(+)

7,3 , we have 0 6 xd 6 2.
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All of these are contained in {a0 + a1 ∈ Zd : ai ∈ Pi ∩Zd, i = 0, 1}. Similarly, the integer
points x = (1, am, . . . , am, xd) + ej, where am ∈ {0, 1} and j = 3, . . . , d − 1, are also
contained there, as required.

Now, Corollary 5 says that P0 is normal. Moreover, since P1 is of dimension 2, this is
also normal ([6, Corollary 2.2.13]). Thus, there is no hole in

{(x1, . . . , xd, xd+1) ∈ R>0APh,d
∩ Zd+1 : x1 ∈ {0, 2}, xd+1 = 2}.

Therefore, there exist exactly h holes contained in (2).

4 The 3-normality of Ph,d
In this section, we claim that there is no other hole except for (u′j, 2), j = 1, . . . , h. In
other words, we prove that Ph,d is 3-normal.

Similar computations to Lemma 7 enable us to show the following

Lemma 8. One has

(a) Ph,d(3, 1) ∩ Zd = {a0 + a0
′ + a1 ∈ Zd : a0, a0

′ ∈ P0 ∩ Zd, a1 ∈ P1 ∩ Zd};

(b) Ph,d(3, 2) ∩ Zd = {a0 + a1 + a1
′ ∈ Zd : a0 ∈ P0 ∩ Zd, a1, a1

′ ∈ P1 ∩ Zd};

(c) Ph,d(4, 1) ∩ Zd = {a0 + a0
′ + a0

′′ + a1 ∈ Zd : a0, a0
′, a0

′′ ∈ P0 ∩ Zd, a1 ∈ P1 ∩ Zd}.

Finally, we prove

Lemma 9. Let n > 3 and 0 6 k 6 n. For each α ∈ Ph,d(n, k), we have

α = a0
(1) + · · ·+ a0

(n−k) + a1
(1) + · · ·+ a1

(k), (3)

where a0
(s) ∈ P0 ∩Zd for s = 1, . . . , n− k and a1

(t) ∈ P1 ∩Zd for t = 1, . . . , k. That is to
say, Ph,d is 3-normal.

Proof. Fix α = (α1, . . . , αd) ∈ Ph,d(n, k), where α1 = k. Since P0 and P1 are normal, we
may assume that 1 6 k 6 n−1. Moreover, thanks to Lemma 8, we may also assume that
n > 4, k > 2 or n > 5, k = 1. In addition, by Lemma 6, we may also assume that

α 6∈ nF0 ∪ nF1 ∪

 ⋃
26j69,
26i6d−1

nFj,i

 .

We will proceed our discussions by induction on n.
The first step. Suppose that α satisfies the following (d− 1) inequalities:

αd > 5 and − (d− 4)αi +
∑

j 6=i,26j6d−1

αj − αd 6 n− 6 for i = 2, . . . , d− 1. (4)

Let β = α−u8 = (α1− 1, α2, . . . , αd−1, αd− 5). Then we have β ∈ Ph,d(n− 1, k− 1)∩Zd.
In fact, one can easily see that for i = 2, . . . , d− 1, we have
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• α1 − 1 = k − 1 > 0;

• αd − 5 > 0 by (4);

• αi > 0;

• −(d− 4)αi +
∑

j 6=i,26j6d−1 αj − (αd − 5) 6 n− 6 + 5 = n− 1 by (4);

• 4(α1 − 1)− 4αi − (α− 5) 6 −1− 4 + 5 = 0 since α 6∈ nF4,i;

• −4(α1 − 1)− αi + αd − 5 6 n− 1;

• α1 − 1− (d− 3)αi +
∑

j 6=i,26j6d−1 αj 6 n− 1;

• (5h − 5)(α1 − 1) − ((d − 3)(5h − 1) − 4)αi + (5h − 1)
∑

j 6=i,26j6d−1 αj + αd − 5 6
5hn− (5h− 5)− 5 = 5h(n− 1);

• (h−5)(α1−1)−(d−3)(h−1)αi+(h−1)
∑

j 6=i,26j6d−1 αj +αd−5 6 hn−(h−5)−5 =
h(n− 1);

• (h− 1)(α1− 1)− ((d− 3)h− 1)αi +h
∑

j 6=i,26j6d−1 αj 6 hn− 1− (h− 1) = h(n− 1)
since α 6∈ nF9,i.

The above estimations imply that β ∈ (n− 1)Ph,d ∩Zd because of (1). By the hypothesis
of induction, we obtain the required expression on α like (3).
The second step. Suppose that α satisfies either

αd 6 4 or − (d− 4)αi +
∑
j 6=i,

26j6d−1

αj − αd > n− 5 for i = 2, . . . , d− 1. (5)

Then we obtain the new inequalities

−4α1 − αi + αd 6 n− 6, (6)

(h− 5)α1 − (d− 3)(h− 1)αi + (h− 1)
∑

j 6=i,26j6d−1

αj + αd 6 hn− 5

for i = 2, . . . , d− 1 as follows.

(i) First, suppose that α satisfies the left-hand condition of (5). Since α 6∈ nF2,i, one
has αi > 1 > 10− 4k − n from our assumption n > 4, k > 2 or n > 5, k = 1. Thus
we obtain

−4α1 − αi + αd 6 −4k − 10 + 4k + n+ 4 = n− 6.

Moreover, since α 6∈ nF6,i, one has α1 − (d − 3)αi +
∑

j 6=i,26j6d−1 αj 6 n − k − 1.
Hence (h− 1)(α1− (d− 3)αi +

∑
j 6=i,26j6d−1 αj) 6 (h− 1)(n− 1) + 4k+ h+ n− 10.

Remark that h > 1. Thus we also obtain

(h− 5)α1 − (d− 3)(h− 1)αi + (h− 1)
∑

αj + αd

6 −4α1 + (h− 1)(n− 1) + 4k + h+ n− 10 + 4 = hn− 5.
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(ii) Second, suppose that α satisfies the right-hand condition of (5). Since α 6∈ nF6,i,
one has −4α1− (d− 3)αi +

∑
αj 6 n− 5k− 1 6 n− 5k− 1 +n+ 5k− 10 = 2n− 11.

Thus we obtain

−4α1 − αi + αd = −4α1 − (d− 3)αi +
∑

αj − (−(d− 4)αi +
∑

αj − αd)

6 2n− 11− n+ 5 = n− 6.

Moreover, since α 6∈ nF9,i, one has (h−1)α1− ((d−3)h−1)αi +h
∑
αj 6 hn−1 6

hn− 1 + 4k + n− 9 = hn+ 4k + n− 10. Thus we obtain

(h− 5)α1 − (d− 3)(h− 1)αi + (h− 1)
∑

αj + αd

= −4α1 + (h− 1)α1 − ((d− 3)h− 1)αi + h
∑

αj − (−(d− 4)αi +
∑

αj − αd)

6 −4k + hn+ 4k + n− 10− n+ 5 = hn− 5.

Let β′ = α − u9. If we assume that α satisfies (5) then similar to the first step, we can
verify that β′ ∈ (n − 1)Ph,d ∩ Zd. Here we use (6) and the normality of some facets of
Ph,d in the same way as the first step.
The third step. Suppose that α satisfies neither (4) nor (5). When this is the case, one
has d > 4 and there exist ` and `′ with 2 6 ` 6= `′ 6 d− 1 such that the inequalities

−(d− 4)α` +
∑

αj − αd 6 n− 6 and − (d− 4)α`′ +
∑

αj − αd > n− 5

are satisfied. It then follows that (d− 3)(α`−α`′) > 1, i.e., α`−α`′ > 1. Let β′′ = α− v`.
Then, similarly, we can verify that β′′ ∈ (n − 1)Ph,d ∩ Zd by using α` − α`′ > 1 and the
normality of some facets of Ph,d, as desired.
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