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Abstract

The total chromatic number of a graph G, denoted by χ′′(G), is the minimum
number of colors needed to color the vertices and edges of G such that no two adjacent
or incident elements get the same color. It is known that if a planar graph G has
maximum degree ∆ ≥ 9, then χ′′(G) = ∆ + 1. The join K1 ∨ Pn of K1 and Pn is
called a fan graph Fn. In this paper, we prove that if G is a F5-free planar graph with
maximum degree 8, then χ′′(G) = 9.

Key words: Planar graph; Total coloring; Cycle

1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow [2] for the
terminology and notation not defined here. For a graph G, we denote its vertex set, edge set
and maximum degree by V (G), E(G) and ∆(G) (or simply V , E and ∆), respectively. For
a face f of G, the degree d(f) is the number of edges incident with it, where each cut-edge
is counted twice. The join K1 ∨ Pn of K1 and Pn is called a fan graph Fn. We say that a
graph G is Fn-free if G contains no Fn as a subgraph. A k-cycle is a cycle of length k. We
say that two cycles are adjacent if they share at least one edge.

A total k-coloring of G is a coloring of V ∪E using k colors such that no two adjacent or
incident elements receive the same color. The total chromatic number χ′′(G) is the smallest
integer k such that G has a total k-coloring. Clearly, χ′′(G) ≥ ∆ + 1. Behzad [1] and
Vizing [12] independently posed the following famous conjecture, which is known as the
total coloring conjecture (TCC).
Conjecture A. For any graph G, χ′′(G) ≤ ∆+ 2.

∗This work is supported by research grants NSFC (11271006, 11201440).
†Corresponding author. E-mail address: jlwu@sdu.edu.cn.
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This conjecture was confirmed for general graphs with ∆ ≤ 5. In recent years, the study
of total colorings for the class of planar graphs has attracted considerable attention. For
planar graphs the only open case is ∆ = 6 ([7, 9]), and for planar graphs with large maximum
degree, there is a stronger result. It is shown that χ′′(G) = ∆ + 1 if G is a planar graph
with ∆ ≥ 9 ([8]). This stronger result does not hold for planar graphs of maximum degree
at most 3. For 4 ≤ ∆ ≤ 8, it is unknown that χ′′(G) = ∆ + 1 if G is a planar graph with
maximum degree ∆. For ∆ = 8, the following three results have been recently proved.

Theorem A. ([6]) Let G be a planar graph with ∆ = 8. If G contains no adjacent 3-cycles,
then χ′′(G) = ∆ + 1.

Theorem B. ([11]) Let G be a planar graph with ∆ ≥ 8. If G contains no adjacent 4-cycles,
then χ′′(G) = ∆ + 1.

Theorem C. ([10]) Let G be a planar graph with ∆ ≥ 8. If G contains no 5- or 6-cycles
with chords, then χ′′(G) = ∆ + 1.

Theorem D. ([5]) Let G be a planar graph with ∆ ≥ 8. If G contain no 5-cycles with two
chords, then χ′′(G) = ∆ + 1.

Here, we generalize these results and get the following result.

Theorem 1. If G be a F5-free planar graph with ∆ ≥ 8, then χ′′(G) = ∆ + 1.

Now, we introduce some more notations and definitions. Let G be a planar graph with
a plane drawing, denote by F the face set of G. For a vertex v of G, let N(v) denote the set
of vertices adjacent to v, and let d(v) = |N(v)| denote the degree of v. A k-vertex, k−-vertex
or a k+-vertex is a vertex of degree k, at most k or at least k, respectively. Similarly, we can
define a k-face, k−-face and a k+-face. We use (v1, v2, · · · , vk) to denote a cycle (or a face)
whose boundary vertices are v1, v2, · · · , vk in the clockwise order in G. Denote by nd(v) the
number of d-vertices adjacent to v, by fd(v) the number of d-faces incident with v.

2 Proof of Theorem 1

According to [8], planar graphs with ∆ ≥ 9 has a total (∆ + 1)-coloring, so to prove
Theorem 1, in the following we assume that ∆ = 8. Let G = (V,E, F ) be a minimal
counterexample to Theorem 1, such that |V |+ |E| is minimum. Then every proper subgraph
of G has a total 9-coloring. Let L be the color set {1, 2, · · · , 9} for simplicity. It is easy to
prove that G is 2-connected and hence the boundary of each face f is exactly a cycle. We
first show some known properties on G.
(a) G contains no edge uv with min{d(u), d(v)} ≤ 4 and d(u) + d(v) ≤ 9. (see([3]))
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(b) G contains no even cycle (v1, v2, · · · , v2t) such that d(v1) = d(v3) = · · · = d(v2t−1) = 2.
(see([3]))

It follows from (a) that, the two neighbors of a 2-vertex are all 8-vertices, and any two
4−-vertices are not adjacent. Note that in all figures of the paper, vertices marked • have
no edges of G incident with them other than those shown.

Lemma 2. ([5], [6]) G has no configurations depicted in Fig. 1(1)− (6).
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Fig. 1. Reducible Configuration: d(v) = 7 in (1)

Lemma 3. ([4]) Suppose that v is a 8-vertex and v1, v2, · · · , vk are consecutive neighbors of
v with d(v1) = d(vk) = 2 and d(vi) ≥ 3 for 2 ≤ i ≤ k − 1, where k ∈ {3, 4, 5, 6, 7}. If the
face incident with v, vi, vi+1 is a 4-face for all 1 ≤ i ≤ k − 1, then at least one vertex in
{v2, v3, · · · , vk−1} is a 4+-vertex.

Lemma 4. ([13]) Suppose that v is a 8-vertex and u, v1, v2, · · · , vk are consecutive neighbors
of v with d(u) = d(v1) = 2 and d(vi) ≥ 3 for 2 ≤ i ≤ k, where k ∈ {3, 4, 5, 6, 7}. If the face
incident with v, vi, vi+1 is a 4-face for all 1 ≤ i ≤ k− 2, and the face incident with v, vk−1, vk

is a 3-face, then at least one vertex in {v2, v3, · · · , vk−1} is a 4+-vertex.

Lemma 5. ([5]) Suppose that v is a 8-vertex and u, v1, v2, · · · , vk are consecutive neighbors
of v with d(u) = 2 and d(vi) ≥ 3 for 1 ≤ i ≤ k, where k ∈ {4, 5, 6, 7}. If the face incident
with v, vi, vi+1 is a 4-face for all 2 ≤ i ≤ k − 2, and the face incident with v, vj, vj+1 is a
3-face for all j ∈ {1, k − 1}, then at least one vertex in {v2, v3, · · · , vk−1} is a 4+-vertex.
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Let φ be a (partial) total 9-coloring of G. For a vertex v of G, we denote by C(v)

the set of colors of edges incident with v. Call φ is nice if only some 4−-vertices are not
colored. Note that every nice coloring can be greedily extended to a 9-total-coloring of G,
since each 4−-vertex is adjacent to at most four vertices and incident with at most four edges.
Therefore, in the rest of this paper, we shall always suppose that such vertices are colored
at the very end.

By the Euler’s formula |V | − |E|+ |F | = 2, we have

∑
v∈V

(2d(v)− 6) +
∑
f∈F

(d(f)− 6) = −12 < 0.

We define ch to be the initial charge. Let ch(v) = 2d(v)− 6 for each v ∈ V and ch(f) =

d(f)− 6 for each f ∈ F . So
∑

x∈V ∪F ch(x) = −12 < 0. In the following, we will reassign a
new charge denoted by ch

′
(x) to each x ∈ V ∪ F according to the discharging rules. Since

our rules only move charges around, and do not affect the sum, we have
∑

x∈V ∪F ch
′
(x) =∑

x∈V ∪F ch(x) = −12. If we can show that ch
′
(x) ≥ 0 for each x ∈ V ∪ F , then we get an

obvious contradiction to 0 ≤
∑

x∈V ∪F ch
′
(x) =

∑
x∈V ∪F ch(x) = −12. which completes our

proof.
For f = (v1, v2, · · · , vk) ∈ F , we use (d(v1), d(v2), · · · , d(vk)) → (c1, c2, · · · , ck) to denote

that the vertex vi sends f the amount of charge ci for i = 1, 2, · · · , k. Now we define the
discharging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.

R2. For a 3-face (v1, v2, v3), let
(3−, 7+, 7+) →

(
0, 3

2
, 3
2

)
,

(4, 6+, 6+) →
(
1
2
, 5
4
, 5
4

)
,

(5+, 5+, 5+) →
(
1, 1, 1

)
.

R3. For a 4-face (v1, v2, v3, v4), let
(3−, 7+, 3−, 7+) →

(
0, 1, 0, 1

)
,

(3−, 7+, 4+, 7+) →
(
0, 3

4
, 1
2
, 3
4

)
,

(4+, 4+, 4+, 4+) →
(
1
2
, 1
2
, 1
2
, 1
2

)
.

R4. For a 5-face (v1, v2, v3, v4, v5), let
(3−, 7+, 3−, 7+, 7+) →

(
0, 1

3
, 0, 1

3
, 1
3

)
,

(3−, 7+, 4+, 4+, 7+) →
(
0, 1

4
, 1
4
, 1
4
, 1
4

)
,

(4+, 4+, 4+, 4+, 4+) →
(
1
5
, 1
5
, 1
5
, 1
5
, 1
5

)
.

Next we show that ch
′
(x) ≥ 0 for each x ∈ V ∪ F . Since our discharging rules are

designed such that ch′
(f) ≥ 0 for all f ∈ F and ch

′
(v) ≥ 0 for all 2-vertices v ∈ V , it suffices
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to check that ch
′
(v) ≥ 0 for all 3+-vertices in G. Let v ∈ V . Suppose d(v) = 3. Then

ch
′
(v) = ch(v) = 0. Suppose d(v) = 4. Then v sends at most 1

2
to each of its incident faces

and ch
′
(v) ≥ ch(v) − 1

2
× 4 = 0. Suppose d(v) = 5. Then f3(v) ≤ 3, and v sends at most

1 to each of its incident 3-faces by R2, at most 1
2

to each of its incident 4+-faces by R3 and
R4. So ch

′
(v) ≥ ch(v) − f3(v) × 1 − (5 − f3(v)) × 1

2
= 3

2
− 1

2
f3(v) ≥ 0. Suppose d(v) = 6.

Then f3(v) ≤ 4, and v sends at most 5
4

to each of its incident 3-faces, at most 1
2

to each of
its incident 4+-faces. So ch

′
(v) ≥ ch(v)− f3(v)× 5

4
− (6− f3(v))× 1

2
= 3− 3

4
f3(v) ≥ 0.

Call a 3-face is bad if it has a 3−-vertex, a 4-face is bad if it has two 3−-vertices, good
otherwise.

Suppose d(v) = 7. Note that f3(v) ≤ 5. If f3(v) ≤ 2, then ch
′
(v) ≥ ch(v)− f3(v)× 3

2
−

(7−f3(v))×1 = 1− 1
2
f3(v) ≥ 0. Suppose 3 ≤ f3(v) ≤ 5, then v is incident with at most two

bad 3-faces by Fig. 1(1). If 3 ≤ f3(v) ≤ 4, then ch
′
(v) ≥ ch(v)−max{2× 3

2
+(f3(v)−2)× 5

4
+

(7−f3(v))× 1
2
, 3
2
+(f3(v)−1)× 5

4
+ 3

4
+(7−f3(v)−1)× 1

2
, f3(v)× 5

4
+2×1+(7−f3(v)−2)× 3

4
} =

9
4
− 1

2
f3(v) ≥ 1

4
> 0. If f3(v) = 5, then ch

′
(v) ≥ ch(v)−max{2× 3

2
+ 3× 5

4
+ 2× 1

2
, 3
2
+ 4×

5
4
+ 3

4
+ 1

2
} = 1

4
> 0.

Suppose d(v) = 8. Let v1, v2, · · · , v8 be neighbors of v and f1, f2, · · · , f8 be faces incident
with v in an clockwise order, where fi is incident with vi, vi+1, and i ∈ {1, 2, · · · , 8}. Note
that all the subscripts in the paper are taken modulo 8. First, we prove some lemmas.

Lemma 6. Suppose that v is a 8-vertex and v1, v2, · · · , vk, vk+1, vs, vs+1 are consecutive
neighbors of v with d(v1) = 2 and d(vi) = 3 for 2 ≤ i ≤ k, where 3 ≤ k + 1 ≤ s and
s ∈ {3, 5, · · · , 7}. If v is incident with 3-faces (v, vk, vk+1) and (v, vs, vs+1), and incident
with 4-faces (v, vj, xj, vj+1) for all 1 ≤ j ≤ k − 1, then min{d(vs), d(vs+1)} ≥ 4.
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Fig. 2. Reducible Configuration in G

Proof. By Fig. 1(2), we have min{d(vs), d(vs+1)} ≥ 3. Assume to be contradictory that
d(vs) = 3 or d(vs+1) = 3. Without loss of generality, suppose that d(vs+1) = 3, and N(vs+1) =

{v, vs, xs+1} (see Fig. 2). Consider a nice coloring φ of G′ = G−vv1. If φ(v1x1) ∈ C(v), then
the forbidden colors for vv1 number at most 8, so vv1 can be properly colored. Then we can
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suppose φ(v1x1) ̸∈ C(v). Without loss of generality, suppose that φ(v) = 9, φ(v1x1) = 1,
and φ(vvj) = j for j ∈ {2, · · · , k, k + 1, s, s + 1}. It is easy to see that 1 ∈ C(vj) for j ∈
{2, · · · , k, s+1}, since otherwise, we can recolor vvj with 1, color vv1 with j, a contradiction.
So φ(v2x2) = · · · = φ(vk−1xk−1) = φ(vkvk+1) = 1 and 1 ∈ {φ(vsvs+1), φ(vs+1xs+1)}. Note
that φ(vkxk−1) = k + 1, since otherwise, we may get a contradiction by exchange the colors
on vvk+1 and vkvk+1, color vv1 with k + 1. Thus φ(vk−1xk−2) = k + 1, since otherwise, we
exchange the colors on vvk+1 and vkvk+1, vkxk−1 and vk−1xk−1, color vv1 with k + 1, also a
contradiction. Similarly, φ(vk−2xk−3) = · · · = φ(v2x1) = k + 1.

If k + 1 = s, then φ(vs+1xs+1) = 1. We exchange the colors on vvk and vvs+1, recolor
vkvk+1 with φ(vsvs+1), vvk+1 with 1, and vsvs+1 with k + 1, color vv1 with k + 1, a con-
tradiction. So we can suppose k + 1 < s. Then k + 1 ∈ {φ(vsvs+1), φ(vs+1xs+1)}, since
otherwise, we can exchange the colors on vvk+1 and vkvk+1, vkxk−1 and vk−1xk−1, · · · , v1x1

and v2x1, recolor vvs+1 with k + 1, color vv1 with s+ 1, a contradiction. We first exchange
the colors on vvs and vsvs+1. If φ(vsvs+1) = k + 1, we additionally exchange the colors on
vvk+1 and vkvk+1, vkxk−1 and vk−1xk−1, · · · , v1x1 and v2x1. Then we color vv1 with s, also
a contradiction.

Lemma 7. Suppose that v is a 8-vertex and v1, v2, v3, vk, vk+1, vs, vs+1 (3 ≤ k < s ≤ 8) are
consecutive neighbors of v with d(v2) = 3. If the face incident with v, vi, vi+1 is a 3-face for
all i ∈ {1, 2, k, s}, then at most one vertex in {vk, vk+1, vs, vs+1} is a 3−vertex.

Proof. By Fig. 1(2), we have min{d(vk), d(vk+1, d(vs), d(vs+1)} ≥ 3. Assume to be con-
tradictory that there are two 3−vertices in {vk, vk+1, vs, vs+1}. Consider a nice coloring φ

of G
′
= G − vv2. Without loss of generality, suppose that φ(v) = 2 and φ(vvi) = i for

i ∈ {1, 3, k, k+1, s, s+1}. First, we have 9 ∈ C(v2), that is, φ(v1v2) = 9 or φ(v2v3) = 9, for
otherwise, we can obtain a nice coloring of G by color vv2 with 9, a contradiction. Second,
for each 3−vertex vj (j ∈ {k, k + 1, s, s + 1}), we note that if j ̸∈ C(v2), then 9 ∈ C(vj).
Otherwise, we can recolor vvj with 9, and color vv2 with j to obtain a nice coloring of G, a
contradiction.
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Fig. 3. Reducible Configuration in G
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Case 1. k > 3 and s < 8.
Without loss of generality, suppose that d(vk) = d(vs+1) = 3, N(vk) = {v, vk+1, xk},

N(vs+1) = {v, vs, xs+1} and φ(v2v3) = 9 (see Fig. 3(1)). We note that if φ(v1v2) ̸∈ {3, k},
then 3 ∈ C(vk), that is, C(vk) = {k, 3, 9}. Otherwise, we exchange the colors on vv3 and v2v3,
recolor vvk with 3, and color vv2 with k, a contradiction. Similarly, if φ(v1v2) ̸∈ {3, s + 1},
then C(vs+1) = {s + 1, 3, 9}. Suppose φ(v1v2) ̸∈ {3, k + 1}. Since φ(v1v2) is different from
either k or s + 1, we may assume that φ(v1v2) ̸= k. Then C(vk) = {k, 3, 9}. We exchange
the colors on vvk+1 and vkvk+1, color vv2 with k + 1. If φ(vkvk+1) = 3, we additionally
exchange the colors on vv3 and v2v3. Thus we obtain a nice coloring of G, a contradiction.
Suppose φ(v1v2) = 3. Then 9 ∈ C(vk). If 1 ̸∈ C(vk), then we exchange the colors on
vv1 and v1v2, vv3 and v2v3, recolor vvk with 1, and color vv2 with k, a contradiction. So
C(vk) = {k, 1, 9}. We exchange the colors on vvk+1 and vkvk+1, color vv2 with k + 1. If
φ(vkvk+1) = 1, we additionally exchange the colors on vv1 and v1v2, vv3 and v2v3. Thus we
obtain a nice coloring of G, a contradiction. Suppose φ(v1v2) = k+1. Then C(vk) = {k, 3, 9}
and C(vs+1) = {s+1, 3, 9}. We exchange the colors on vvk+1 and vkvk+1, recolor vvs+1 with
k+1, and color vv2 with s+1. If φ(vkvk+1) = 3, we additionally exchange the colors on vv3

and v2v3. Thus we also obtain a nice coloring of G, a contradiction.

Case 2. k = 3.
Then d(vk+1) = 3. Without loss of generality, suppose that d(vs) = 3 and s ̸= k + 1,

N(vk+1) = {v, v3, xk+1}, N(vs) = {v, vs+1, xs} (see Fig. 3(2)).
Case 2.1. φ(v2v3) = 9.
We note that if φ(v1v2) ̸∈ {3, k + 1}, then 3 ∈ C(vk+1), that is, C(vk+1) = {k + 1, 3, 9}.

Otherwise, we exchange the colors on vv3 and v2v3, recolor vvk+1 with 3, and color vv2

with k + 1, a contradiction. Similarly, if φ(v1v2) ̸∈ {3, s}, then C(vs) = {s, 3, 9}. Suppose
φ(v1v2) ̸∈ {3, k + 1}. Then C(vk+1) = {k + 1, 3, 9}. So φ(v3vk+1) = 3 or 9, a contradiction.
Suppose φ(v1v2) = 3. Then 9 ∈ C(vk+1). If 1 ̸∈ C(vk+1), then we exchange the colors on
vv1 and v1v2, vv3 and v2v3, recolor vvk+1 with 1, and color vv2 with k + 1, a contradiction.
So C(vk+1) = {k + 1, 1, 9}. Similarly, C(vs) = {s, 1, 9}. If v1 = vs+1, then φ(v1vs) = 9 and
φ(v3vk+1) = 1. We exchange the colors on v1v2 and v1vs, recolor v2v3 with 1, vv3 with 9,
v3vk+1 with 3, and color vv2 with 3, a contradiction. Otherwise, v1 ̸= vs+1. We exchange
the colors on vvs+1 and vsvs+1, and color vv2 with s + 1. If φ(vsvs+1) = 1, we additionally
exchange the colors on vv1 and v1v2, vv3 and v2v3. Thus we obtain a nice coloring of G, also
a contradiction. Suppose φ(v1v2) = k + 1. Then C(vs) = {s, 3, 9}. We exchange the colors
on vvs+1 and vsvs+1, color vv2 with s+1. If φ(v1vs) = 3, we additionally exchange the colors
on vv3 and v2v3. Thus we also obtain a nice coloring of G, a contradiction.

Case 2.2. φ(v1v2) = 9.
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By Case 2.1, we may assume that v1 ̸= vs+1. We note that if φ(v2v3) ̸∈ {1, k + 1}, then
1 ∈ C(vk+1), that is, C(vk+1) = {k + 1, 1, 9}. Otherwise, we exchange the colors on vv1 and
v1v2, recolor vvk+1 with 1, and color vv2 with k + 1, a contradiction. Similarly, if φ(v2v3) ̸∈
{1, s}, then C(vs) = {s, 1, 9}. Suppose φ(v2v3) ̸∈ {1, k + 1}. Then C(vk+1) = {k + 1, 1, 9}.
We exchange the colors on vv3 and v3vk+1, and color vv2 with 3. If φ(v3vk+1) = 1, we
additionally exchange the colors on vv1 and v1v2. Thus we obtain a nice coloring of G, a
contradiction. Suppose φ(v2v3) = 1.Then 9 ∈ C(vk+1). If 3 ̸∈ C(vk+1), then we exchange
the colors on vv1 and v1v2, vv3 and v2v3, recolor vvk+1 with 3, and color vv2 with k + 1,
a contradiction. So C(vk+1) = {k + 1, 3, 9}. Similarly, C(vs) = {s, 3, 9}. We exchange
the colors on vv1 and v1v2, v2v3 and v3vk+1, recolor vvs with 1, and color vv2 with s, a
contradiction. Suppose φ(v2v3) = k + 1. Then C(vs) = {s, 1, 9}. We exchange the colors on
vvs+1 and vsvs+1, color vv2 with s+1. If φ(vsvs+1) = 1, we additionally exchange the colors
on vv1 and v1v2. Thus we also obtain a nice coloring of G, a contradiction.

Case 3. s+ 1 = 1. Completely similar with the Case 2.

Lemma 8. Suppose that d(vi) = d(vk) = 2 and d(vj) ≥ 3 for all j = i+ 1, · · · , k− 1, where
k ≥ i + 2. If min{d(fi), d(fi+1), · · · , d(fk−1)} ≥ 4, then v sends at most 3

2
+ (k − i− 2) (in

total) to fi, fi+1, · · · , fk−1.

Proof. By Lemma 3, max{d(vi+1), · · · , d(vk−1)} ≥ 4 or max{d(fi), · · · , d(fk−1)} ≥ 5. If
max{d(vi+1), · · · , d(vk−1)} ≥ 4, then v sends at most 2 × 3

4
+ (k − i − 2) (in total) to

fi, · · · , fk−1 by R3. If max{d(fi), · · · , d(fk−1)} ≥ 5, then or v sends at most 1
3
+(k− i−1)(in

total) to fi, · · · , fk−1 by R3 and R4. Since 2× 3
4
> 1+ 1

3
, v sends at most 3

2
+ (k− i− 2) (in

total) to fi, fi+1, · · · , fk−1.

Lemma 9. Suppose that d(vi) = d(vi+4) = 2 and d(vj) ≥ 3 for all j = i + 1, i + 2, i + 3.
If min{d(fi), d(fi+2), d(fi+3)} ≥ 4 and d(fi+1) = 3, then v sends at most 15

4
(in total) to fi,

fi+1, fi+2 and fi+3.

Proof. If d(vi+1) = 3, then d(vi+2) ≥ 7, and d(fi) ≥ 5 by Lemma 4, so v sends at most
1
3
+ 3

2
+ 3

4
+ 1 = 43

12
to fi, fi+1, fi+2 and fi+3. If d(vi+2) = 3, then d(vi+1) ≥ 7, and

d(vi+3) ≥ 4 or there is at least one 5+-face in {fi+2, fi+3} by Lemma 4, so v sends at most
3
4
+ 3

2
+max{2× 3

4
, 1 + 1

3
} = 15

4
to fi, fi+1, fi+2 and fi+3. If min{d(vi+1), d(vi+2)} ≥ 4, then

v sends at most 3
4
+ 5

4
+ 3

4
+ 1 = 15

4
to fi, fi+1, fi+2 and fi+3. Since 43

12
< 15

4
, v sends at most

15
4

(in total) to fi, fi+1, fi+2 and fi+3.

Lemma 10. Suppose that d(vi) = d(vk) = 2 and d(vj) ≥ 3 for all j = i+1, · · · , k−1, where
k ≥ i+ 3. If min{d(fi), d(fk−1)} ≥ 4 and d(fi+1) = · · · = d(fk−2) = 3, then v sends at most
11
4
+ (k − i− 3)× 5

4
(in total) to fi, fi+1, · · · , fk−1.
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Proof. We note that if k ≥ i + 4, then min{d(vi+2), · · · , d(vk−2)} ≥ 4 by Fig. 1(5). If
d(fi) = d(fk−1) = 4, then min{d(vi+1), d(vk−1)} ≥ 4 by Lemma 4, so v sends at most
2× 3

4
+ (k− i− 2)× 5

4
= 11

4
+ (k− i− 3)× 5

4
(in total) to fi, fi+1, · · · , fk−1. If one of fi and

fk−1 is 4−face, then v sends at most 3
4
+ 1

3
+ 3

2
+(k−i−3)× 5

4
= 31

12
+(k−i−3)× 5

4
(in total) to

fi, fi+1, · · · , fk−1. If min{d(fi), d(fk−1)} ≥ 5, then v sends at most 2×1
3
+2×3

2
+(k−i−4)×5

4
=

29
12

+ (k − i − 3) × 5
4

(in total) to fi, fi+1, · · · , fk−1. Since max{11
4
, 31
12
, 29
12
} = 11

4
, v sends at

most 11
4
+ (k − i− 3)× 5

4
(in total) to fi, fi+1, · · · , fk−1.

Now, we come back to check the new charge of 8-vertex v and consider nine cases in the
following.

Case 1. n2(v) = 8. Note that f6+(v) = 8 by Fig. 1(3) and (4). Then, no charge is discharged
from v to its incident faces. So ch

′
(v) = ch(v)− 8× 1 = 10− 8 = 2 > 0 by R1.

Case 2. n2(v) = 7. Then f6+(v) ≥ 6 and f3(v) = 0 by Fig. 1(4). So ch
′
(v) ≥ ch(v) − 7 ×

1− 2× 1 = 10− 9 = 1 > 0.

Case 3. n2(v) = 6. Then there are four possibilities in which 2-vertices are located. They
are shown as configurations in Fig. 4. For Fig. 4(1), f6+(v) ≥ 5 and f3(v) ≤ 1. So
ch

′
(v) ≥ ch(v)− 6× 1− 3

2
− 2× 1 = 1

2
> 0. For Fig. 4(2)–(4), f6+(v) ≥ 4 and f3(v) = 0. So

ch
′
(v) ≥ ch(v)− 6× 1− 4× 1 = 0.

)
1
(
 )
4
(
)
3
(
)
2
(


Fig. 4. n2(v) = 6

Case 4. n2(v) = 5. Then there are five possibilities in which 2-vertices are located. They
are shown as configurations in Fig. 5.

)
1
(
 )
4
(
)
3
(
)
2
(
 )
5
(


Fig. 5. n2(v) = 5
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For Fig. 5(1), f6+(v) ≥ 4 and f3(v) ≤ 2. So ch
′
(v) ≥ ch(v)−5×1−2× 3

2
−2×1 = 0. For

Fig. 5(2) and (3), f6+(v) ≥ 3 and f3(v) ≤ 1. So ch
′
(v) ≥ ch(v)−5×1− 3

2
−max{11

4
, 3
2
+1} =

3
4
> 0 by Lemma 8 and Lemma 10. For Fig. 5(4) and (5), f6+(v) ≥ 2 and f3(v) = 0. So

ch
′
(v) ≥ ch(v)− 5× 1− 3× 3

2
= 1

2
> 0.

Case 5. n2(v) = 4. Then there are eight possibilities in which 2-vertices are located. They
are shown as configurations in Fig. 6.

)
1
(
 )
4
(
)
3
(
)
2
(


)
6
(
 )
8
(
)
7
(
)
5
(


Fig. 6. n2(v) = 4

For Fig. 6(1), f6+(v) ≥ 3 and f3(v) ≤ 3. If f3(v) = 3, then ch
′
(v) ≥ ch(v) − 4 × 1 −

(11
4
+ 2 × 5

4
) = 3

4
> 0. Otherwise, ch′

(v) ≥ ch(v) − 4 × 1 − f3(v) × 3
2
− (5 − f3(v)) × 1 =

1 − 1
2
f3(v) ≥ 0. For Fig. 6(2) and (4), f6+(v) ≥ 2 and f3(v) ≤ 2. If f3(v) = 2, then

ch
′
(v) ≥ ch(v) − 4 × 1 − 3

2
− (11

4
+ 5

4
) = 1

2
> 0 by Lemma 8 and Lemma 10. Otherwise,

ch
′
(v) ≥ ch(v)− 4× 1− 3

2
− f3(v)× 3

2
− (4− f3(v))× 1 = 1

2
− 1

2
f3(v) ≥ 0. For Fig. 6(3) and

(7), f6+(v) ≥ 2 and f3(v) ≤ 2. So ch
′
(v) ≥ ch(v)−4×1−f3(v)× 11

4
− (2−f3(v))× (3

2
+1) =

1− 1
4
f3(v) > 0 by Lemma 8 and Lemma 10. For Fig. 6(5) and (6), f6+(v) ≥ 1 and f3(v) ≤ 1.

So ch
′
(v) ≥ ch(v)− 4× 1− 2× 3

2
− f3(v)× 11

4
− (1− f3(v))× (3

2
+ 1) = 1

2
− 1

4
f3(v) > 0. For

Fig. 6(8), f3(v) = 0. So ch
′
(v) ≥ ch(v)− 4× 1− 4× 3

2
= 0.

Case 6. n2(v) = 3. Then there are five possibilities in which 2-vertices are located. They
are shown as configurations in Fig. 7.

For Fig. 7(1), note that min{d(f1), d(f2)} ≥ 6, min{d(f3), d(f8)} ≥ 4, and f3(v) ≤ 3. If
f3(v) ≤ 2, then ch

′
(v) ≥ ch(v)−3×1−f3(v)× 3

2
− (6−f3(v))×1 = 1− 1

2
f3(v) ≥ 0. Suppose

f3(v) = 3, Then min{d(f4), d(f7)} = 3. Without loss of generality, suppose that d(f4) = 3,
then v sends at most 3

4
to f3 by Lemma 4. If d(f7) = 3, then ch

′
(v) ≥ ch(v) − 3 × 1 − 1 −

2 × 3
4
− 3 × 3

2
= 0. Otherwise, d(f4) = d(f5) = d(f6) = 3, then f5 is good by Fig. 1(5). So

ch
′
(v) ≥ ch(v)− 3× 1− 2× 1− 3

4
− 5

4
− 2× 3

2
= 0.

10



)
1
(
 )
4
(
)
3
(
)
2
(
 )
5
(
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3
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3
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1
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6
f

5
f


4
f

3
f
2
f


1
f
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f
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Fig. 7. n2(v) = 3

For Fig. 7(2), d(f1) ≥ 6, min{d(f2), d(f3), d(f4), d(f8)} ≥ 4 and f3(v) ≤ 3. If f3(v) ≤ 1,
then ch

′
(v) ≥ ch(v)− 3× 1− 3

2
− f3(v)× 3

2
− (5− f3(v))× 1 = 1

2
− 1

2
f3(v) ≥ 0 by Lemma 8.

If f3(v) = 3, then d(f5) = d(f6) = d(f7) = 3, so ch
′
(v) ≥ ch(v)− 3× 1− 3

2
− (11

4
+ 2× 5

4
) =

1
4
> 0 by Lemma 8 and Lemma 10. Suppose f3(v) = 2. If max{d(f4), d(f8)} ≥ 5, then

ch
′
(v) ≥ ch(v)− 3× 1− 3

2
− 2× 3

2
− 1

3
− 2× 1 = 1

6
> 0. Otherwise, without loss of generality,

suppose that d(f5) = 3. If d(f6) = 3, then f4 and f5 are good by Fig. 1(5) and Lemma 4.
So ch

′
(v) ≥ ch(v)− 3× 1− 3

2
− 3

4
− 5

4
− 3

2
− 2× 1 = 0. If d(f7) = 3, then f4 and f8 are good.

So ch
′
(v) ≥ ch(v)− 3× 1− 3

2
− 2× 3

4
− 2× 3

2
− 1 = 0.

For Fig. 7(3), d(f1) ≥ 6, min{d(f2), d(f4), d(f5), d(f8)} ≥ 4, and f3(v) ≤ 3. If f3(v) = 3,
then ch

′
(v) ≥ ch(v)− 3× 1− (11

4
+ 5

4
)− 11

4
= 1

4
> 0 by Lemma 10. Otherwise, f3(v) ≤ 2. If

d(f3) = 3, then ch
′
(v) ≥ ch(v) − 3 × 1 − 11

4
− max{15

4
, 4 × 1} = 1

4
> 0. If d(f3) ≥ 4, then

ch
′
(v) ≥ ch(v)− 3× 1− (3

2
+ 1)−max{11

4
+ 5

4
, 15

4
, 4× 1} = 1

2
> 0.

For Fig. 7(4), f3(v) ≤ 2. So ch
′
(v) ≥ ch(v)− 3× 1− 2× 3

2
−max{11

4
+ 5

4
, 15

4
, 4× 1} = 0.

For Fig. 7(5), f3(v) ≤ 2. So ch
′
(v) ≥ ch(v)− 3× 1− 3

2
− f3(v)× 11

4
− (2− f3(v))× (3

2
+1) =

1
2
− 1

4
f3(v) ≥ 0.

Case 7. n2(v) = 2. Then there are four possibilities in which 2-vertices are located. They
are shown as configurations in Fig. 8.

)
1
(
 )
4
(
)
3
(
)
2
(
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3
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7
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8
f
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f


4
f

3
f
2
f


1
f


7
f

8
f
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2
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1
f


7
f


Fig. 8. n2(v) = 2

For Fig. 8(1), note that d(f1) ≥ 5 and f3(v) ≤ 4. Suppose f3(v) = 4. Then without
loss of generality, let d(f3) = d(f4) = d(f7) = d(fi) = 3 (i ∈ {5, 6}). Then d(v4) ≥ 4 by
Fig. 1(5), and v sends at most max{1

3
+ 3

2
, 3
4
+ 5

4
} = 2 (in total) to f2 and f3. If d(f8) ≥ 5,

then ch
′
(v) ≥ ch(v) − 2 × 1 − 1

3
− 2 − 3 × 3

2
− 3

4
− 1

3
= 1

12
> 0 by Lemma 5. Otherwise,

d(f8) = 4, then d(v8) ≥ 4 by Lemma 4, it follows that f4 (if i = 5) or f7 (if i = 6) is good,
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and v sends at most max{3
2
+ 3

2
+ 1

3
, 3
2
+ 5

4
+ 3

4
} = 7

2
(in total) to f5, f6 and f7 (or f4). So

ch
′
(v) ≥ ch(v)− 2× 1− 1

3
− 2− 5

4
− 7

2
− 3

4
= 1

6
> 0.

Suppose f3(v) = 3. If f5+(v) ≥ 3, then ch
′
(v) ≥ ch(v) − 2 × 1 − f5+(v) × 1

3
− 3 ×

3
2
− (5 − f5+(v)) × 1 = 2

3
f5+(v) − 3

2
> 0. If f5+(v) = 2, then except f1, there is one

5+-face incident with v, and there is at least one good 4-face which incident with v. So
ch

′
(v) ≥ ch(v)− 2× 1− 2× 1

3
− 3× 3

2
− 3

4
− 2× 1 = 1

12
> 0. If f5+(v) = 1, then d(fi) ≤ 4

for 2 ≤ i ≤ 8. By symmetry, we need to consider the following cases in which 3-faces are
located.

First, suppose d(f3) = d(f4) = d(f5) = 3. Then min{d(v3), d(v4), d(v5)} ≥ 4 and
max{d(v6), d(v7), d(v8)} ≥ 4 by Fig. 1(5) and Lemma 4. So ch

′
(v) ≥ ch(v) − 2 × 1 −

1
3
− 2 × 5

4
− 3

2
− 2 × 3

4
− 2 × 1 = 1

6
> 0. Second, suppose d(f4) = d(f5) = d(f6) = 3. Then

min{d(v5), d(v6)} ≥ 4 by Fig. 1(5), max{d(v3), d(v4)} ≥ 4 and max{d(v7), d(v8)} ≥ 4 by
Lemma 4. So ch

′
(v) ≥ ch(v)−2×1− 1

3
−max{5

4
+2× 3

2
+3× 3

4
+1, 2× 5

4
+ 3

2
+2× 3

4
+2×1} =

1
6

> 0. Third, suppose d(f3) = d(f4) = d(f6) = 3. Then d(v4) ≥ 4 by Fig. 1(5),
d(v3) ≥ 4 and max{d(v7), d(v8)} ≥ 4 by Lemma 4, max{d(v5), d(v6)} ≥ 4 by Lemma
5. So ch

′
(v) ≥ ch(v) − 2 × 1 − 1

3
− 2 × 3

2
− 5

4
− 3 × 3

4
− 1 = 1

6
> 0. Fourth, suppose

d(f3) = d(f4) = d(f7) = 3. Then min{d(v3), d(v4), d(v8)} ≥ 4 by Fig. 1(5) and Lemma 4,
max{d(v5), d(v6), d(v7)} ≥ 4 by Lemma 5. So ch

′
(v) ≥ ch(v)−2×1− 1

3
−2× 3

2
− 5

4
−3× 3

4
−1 =

1
6

> 0. Fifth, suppose d(f4) = d(f5) = d(f7) = 3. Then d(v5) ≥ 4 by Fig. 1(5),
d(v8) ≥ 4 and max{d(v3), d(v4)} ≥ 4 by Lemma 4, max{d(v6), d(v7)} ≥ 4 by Lemma
5. So ch

′
(v) ≥ ch(v) − 2 × 1 − 1

3
− 2 × 3

2
− 5

4
− 3 × 3

4
− 1 = 1

6
> 0. Sixth, suppose

d(f3) = d(f5) = d(f7) = 3. Then f2, f4, f6 and f8 are good by Lemma 4 and Lemma 5, so
ch

′
(v) ≥ ch(v)− 2× 1− 1

3
− 3× 3

2
− 4× 3

4
= 1

6
> 0.

Suppose f3(v) = 2. Then without loss of generality, let d(fi) = d(fj) = 3 (3 ≤ i < j ≤ 7).
If f5+(v) ≥ 2, then ch

′
(v) ≥ ch(v)−2×1−f5+(v)× 1

3
−2× 3

2
−(6−f5+(v))×1 = 2

3
f5+(v)−1 ≥ 0.

Otherwise, d(ft) ≤ 4 for all 2 ≤ t ≤ 8. If there is at least one good 3-face in {fi, fj}, then each
face adjacent to good 3-face is good. So ch

′
(v) ≥ ch(v)−2×1− 1

3
− 5

4
− 3

4
− 3

2
−4×1 = 1

6
> 0.

Now we suppose both fi and fj are bad. If j = i+1, then i ̸∈ {3, 6} by Fig. 1(5) and Lemma
4. Without loss of generality, suppose i = 4. Then at least two faces in {f2, f3, f4} are good
by Fig. 1(5) and Lemma 4. So ch

′
(v) ≥ ch(v) − 2 × 1 − 1

3
− 3

2
− 3 × 1 − max{3

2
+ 2 ×

3
4
, 5
4
+ 3

4
+ 1} = 1

6
> 0. Otherwise, there are two 7+-vertices in {vi, vi+1, vj, vj+1}. So

ch
′
(v) ≥ ch(v)− 2× 1− 1

3
− 2× 3

2
− 2× 3

4
− 3× 1 = 1

6
> 0.

Suppose f3(v) ≤ 1. Then ch
′
(v) ≥ ch(v) − 2 × 1 − 1

3
− f3(v) × 3

2
− (7 − f3(v)) × 1 =

2
3
− 1

2
f3(v) ≥ 0.

For Fig. 8(2), note that f3(v) ≤ 3, and v sends at most 3
2

(in total) to f1 and f2 by
Lemma 8. Suppose f3(v) = 3, without loss of generality, let d(f4) = d(f5) = d(fi) = 3

(i ∈ {6, 7}). Then v sends at most max{3
2
+ 1

2
, 5
4
+ 3

4
} = 2 (in total) to f3 and f4, and v sends
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at most max{3
2
+ 3

2
+ 1+ 1

3
, 5
4
+ 3

2
+ 2× 3

4
, 5
4
+ 5

4
+ 3

4
+ 1} = 13

3
(in total) to f5, f6, f7 and f8

by Fig. 1(5), Lemma 4 and Lemma 5. So ch
′
(v) ≥ ch(v)− 2× 1− 3

2
− 2− 13

3
= 1

6
> 0.

Suppose f3(v) = 2. Then without loss of generality, let d(fi) = d(fj) = 3 (4 ≤ i < j ≤ 7).
If there is at least one 5+-face in {ft|3 ≤ t ≤ 8}, then ch

′
(v) ≥ ch(v) − 2 × 1 − 3

2
−

2 × 3
2
− 1

3
− 3 × 1 = 1

6
> 0. Otherwise, d(ft) ≤ 4 for all 3 ≤ t ≤ 8. If there is at

least one good 3-face in {fi, fj}, then each 4-face adjacent to good 3-face is good. So
ch

′
(v) ≥ ch(v) − 2 × 1 − 3

2
− 3

2
− 5

4
− 3

4
− 3 × 1 = 0. Now we suppose both fi and fj are

bad. If j = i + 1, then i = 5, f3, f4, f7, and f8 are good by Fig. 1(5) and Lemma 4. So
ch

′
(v) ≥ ch(v)− 2× 1− 3

2
− 4× 3

4
− 2× 3

2
= 1

2
> 0. Otherwise, there are two 7+-vertices in

{vi, vi+1, vj, vj+1}. So ch
′
(v) ≥ ch(v)− 2× 1− 3

2
− 2× 3

2
− 1

2
− 3× 1 = 0.

Suppose f3(v) ≤ 1. Then ch
′
(v) ≥ ch(v) − 2 × 1 − 3

2
− f3(v) × 3

2
− (6 − f3(v)) × 1 =

1
2
− 1

2
f3(v) ≥ 0.

For Fig. 8(3), note that f3(v) ≤ 4. If f3(v) = 4, then d(f2) = d(f5) = d(f6) = d(f7) = 3,
so ch

′
(v) ≥ ch(v)− 2× 1− 11

4
− (11

4
+ 2× 5

4
) = 0 by Lemma 10.

Suppose f3(v) = 3. If d(f2) ≥ 4, then d(f5) = d(f6) = d(f7) = 3, so ch
′
(v) ≥ ch(v) −

2 × 1 − (1 + 3
2
) − (11

4
+ 2 × 5

4
) = 1

4
> 0. If d(f2) = 3, then v sends at most 11

4
(in total)

to f1, f2 and f3 by Lemma 10. Without loss of generality, let d(f5) = 3. If d(f6) = 3,
then v sends at most 2 (in total) to f4 and f5, v sends at most 3

4
to f7. So ch

′
(v) ≥

ch(v)− 2× 1− 11
4
− 2− 3

2
− 3

4
− 1 = 0. If d(f7) = 3, then v sends at most 3

4
to f4, f6 and f8,

respectively. So ch
′
(v) ≥ ch(v)− 2× 1− 11

4
− 2× 3

2
− 3× 3

4
= 0.

Suppose f3(v) = 2. Then without loss of generality, let d(fi) = d(fj) = 3 (i < j). If
i = 2, then v sends at most 11

4
(in total) to f1, f2 and f3, v sends at most 3

4
to fj−1 or fj+1.

So ch
′
(v) ≥ ch(v)− 2× 1− 11

4
− 3

2
− 3

4
− 3× 1 = 0. Otherwise, v sends at most 5

2
(in total) to

f1, f2 and f3 by Lemma 8, without loss of generality, let i = 5. If j = 6, then v sends at most
2 (in total) to f4 and f5. So ch

′
(v) ≥ ch(v)− 2× 1− 5

2
− 2− 3

2
− 2× 1 = 0. If j = 7, then v

sends at most 3
4

to f4 and f8, respectively. So ch
′
(v) ≥ ch(v)−2×1− 5

2
−2× 3

4
−2× 3

2
−1 = 0.

Suppose f3(v) ≤ 1. If d(f2) = 3, then ch
′
(v) ≥ ch(v) − 2 × 1 − 11

4
− 5 × 1 = 1

4
> 0.

Otherwise, ch′
(v) ≥ ch(v)− 2× 1− 5

2
− 3

2
− 4× 1 = 0.

For Fig. 8(4), note that f3(v) ≤ 4. Suppose f3(v) = 4. Then d(f2) = d(f3) = d(f6) =

d(f7) = 3 and ch
′
(v) ≥ ch(v)− 2× 1− 2× (11

4
+ 5

4
) = 0 by Lemma 10. Suppose f3(v) = 3.

Then ch
′
(v) ≥ ch(v) − 2 × 1 − (11

4
+ 5

4
) − 15

4
= 1

4
> 0 by Lemma 9. Suppose f3(v) = 2. If

two 3-faces incident with v are adjacent, then ch
′
(v) ≥ ch(v)− 2× 1− (11

4
+ 5

4
)− 4× 1 = 0.

Otherwise, ch′
(v) ≥ ch(v) − 2 × 1 − 2 × 15

4
= 1

2
> 0. Suppose f3(v) ≤ 1. Then ch

′
(v) ≥

ch(v)− 2× 1− f3(v)× 15
4
− (2− f3(v))× (4× 1) = 1

4
f3(v) ≥ 0.

Case 8. n2(v) = 1. Without loss of generality, let v1 be the unique 2-vertex adjacent to v.
First, we consider the case that v1 is not incident with any 3-face. Note that f3(v) ≤ 5.
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Suppose f3(v) = 5. Then d(f2) = d(f3) = d(fi) = d(f6) = d(f7) = 3 (i ∈ {4, 5}), and at
least two faces in {f3, fi, f6} are good by Fig. 1(5) and Lemma 5. If min{f1, f8} ≥ 5, then
ch

′
(v) ≥ ch(v)− 1− 2× 1

3
− 3× 3

2
− 2× 5

4
− 1 = 1

3
≥ 0. Otherwise, min{f1, f8} ≤ 4, without

loss of generality, let d(f1) = 4. If d(v2) = 3, then f3, fi, f6 and f7 are good by Lemma 6, so
ch

′
(v) ≥ ch(v)− 1− 1− 3

2
− 4× 5

4
− 2× 3

4
= 0. If d(v2) ≥ 4, we may assume that d(f8) ≥ 5

or d(v8) ≥ 4, then ch
′
(v) ≥ ch(v)− 1− 3

4
− 3× 5

4
− 3

2
− 1−max{3

2
+ 1

3
, 5
4
+ 3

4
} = 0.

Suppose f3(v) = 4. Then there is at least one 3-face in {f2, f7}, without loss of generality,
let d(f2) = d(fi) = d(fj) = d(ft) = 3, where 2 < i < j < t and t ∈ {6, 7}. If f5+(v) ≥ 2, then
ch

′
(v) ≥ ch(v)−1−f5+(v)× 1

3
−4× 3

2
− (4−f5+(v))×1 = 2

3
f5+(v)−1 ≥ 0. Then f5+(v) ≤ 1.

We need to consider two cases. First, suppose there is one 5+-face in {f1}∪{fx|t+1 ≤ x ≤ 8},
then at least two faces in {f3, f4, f5, f6} are good by Fig. 1(5) and Lemma 5. So ch

′
(v) ≥

ch(v)− 1− 1
3
−max{2× 3

2
+2× 5

4
+3× 1, 3× 3

2
+ 5

4
+2× 1+ 3

4
, 4× 3

2
+1+ 2× 3

4
} = 1

6
> 0.

Second, suppose d(f1) = d(fx) = 4 for all t + 1 ≤ x ≤ 8. If d(v2) = 3 or d(vy) = 3

for all t + 1 ≤ y ≤ 8, then v is incident with at least three good 3-faces and one good
4-face by Lemma 6. So ch

′
(v) ≥ ch(v) − 1 − 3

2
− 3 × 5

4
− 3 × 1 − 3

4
= 0. Otherwise,

d(v2) ≥ 4 and max{d(vy)|t + 1 ≤ y ≤ 8} ≥ 4, that is, there are at least two good 4-faces in
{f1} ∪ {fx|t+ 1 ≤ x ≤ 8}. Then f5+(v) = 1 or at least two faces in {f3, f4, f5, f6} are good.
So ch

′
(v) ≥ ch(v) − 1 −max{4 × 3

2
+ 1 + 2 × 3

4
+ 1

3
, 2 × 3

2
+ 2 × 5

4
+ 2 × 1 + 2× 3

4
, 3 × 3

2
+

5
4
+ 1 + 3× 3

4
, 4× 3

2
+ 4× 3

4
} = 0.

Suppose f3(v) = 3. If f5+(v) ≥ 1, then ch
′
(v) ≥ ch(v)−1−f5+(v)× 1

3
−3× 3

2
−(5−f5+(v))×

1 = 2
3
f5+(v) − 1

2
≥ 0. Otherwise, at least two faces incident with v are good by Lemma 5

and Lemma 6. So ch
′
(v) ≥ ch(v)− 1−max{2× 3

2
+ 5

4
+ 3

4
+4× 1, 3× 3

2
+2× 3

4
+3× 1} = 0.

Suppose f3(v) ≤ 2. Then ch
′
(v) ≥ ch(v)− 1− f3(v)× 3

2
− (8− f3(v))× 1 = 1− 1

2
f3(v) ≥ 0.

Next, we consider the case that v1 is incident with a 3-face. Then f3(v) ≤ 6, and the
other 3-faces incident with v are good by Fig. 1(2). If f3(v) = 6, then d(f1) = d(f2) =

d(f3) = d(f5) = d(f6) = d(f7) = 3, v sends at most 1
2

to f4, and v sends at most 3
4

to
f8. So ch

′
(v) ≥ ch(v) − 1 − 3

2
− 5 × 5

4
− 1

2
− 3

4
= 0. Suppose f3(v) ≤ 5. If f5+(v) ≥ 1,

then ch
′
(v) ≥ ch(v) − 1 − 3

2
− 4 × 5

4
− f5+(v) × 1

3
− (3 − f5+(v)) × 1 = 2

3
f5+(v) − 1

2
≥ 0.

Otherwise, f5+(v) = 0. If f3(v) = 5, then at least two 4-faces incident with v are good. So
ch

′
(v) ≥ ch(v)−1− 3

2
−4× 5

4
−1−2× 3

4
= 0. If f3(v) ≤ 4, then at least one 4-face incident with

v is good. So ch
′
(v) ≥ ch(v)−1− 3

2
−(f3(v)−1)× 5

4
−(8−f3(v)−1)×1− 3

4
= 1− 1

4
f3(v) ≥ 0.

Case 9. n2(v) = 0. Note that f3(v) ≤ 6. If f3(v) ≤ 4, then ch
′
(v) ≥ ch(v) − f3(v) × 3

2
−

(8 − f3(v)) × 1 = 2 − 1
2
f3(v) ≥ 0. Suppose f3(v) = 5. Then without loss of generality, let

d(f1) = d(f2) = d(f4) = d(f5) = d(fi) = 3 (i ∈ {6, 7}). If min{d(v2), d(v5)} = 3, then v is
incident with at most four bad 3-faces by Lemma 7. So ch

′
(v) ≥ ch(v)−4× 3

2
− 5

4
−2×1− 3

4
=

0. Otherwise, min{d(v2), d(v5)} ≥ 4, then d(f3) ≥ 5 or max{d(v1), d(v3), d(v4)} ≥ 4 by
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Fig .1(6), so ch
′
(v) ≥ ch(v) − 4 × 3

2
− 5

4
− 2 × 1 − 3

4
= 0. Suppose f3(v) = 6. Then

without loss of generality, let d(f1) = d(f2) = d(f3) = d(f5) = d(f6) = d(f7) = 3. If
min{d(v2), d(v3), d(v6), d(v7)} = 3, then v is incident with at most four bad 3-faces by Lemma
7. So ch

′
(v) ≥ ch(v)−4× 3

2
−2× 5

4
−2× 3

4
= 0. Otherwise, min{d(v2), d(v3), d(v6), d(v7)} ≥ 4.

If max{d(v1), d(v4), d(v5), d(v8)} ≥ 4, then ch
′
(v) ≥ ch(v) − 3 × 3

2
− 3 × 5

4
− 1 − 3

4
= 0. If

d(v1) = d(v4) = d(v5) = d(v8) = 3, then min{d(v2), d(v3), d(v6), d(v7)} ≥ 7, so ch
′
(v) ≥

ch(v)− 4× 3
2
− 2× 1− 2× 1 = 0.

Hence we complete the proof of the theorem.
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