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Abstract

Let S be a linear space with 106 points, with lines of size 6, and let G be an
automorphism group of S. We prove that G cannot be point-transitive. In other
words, there exists no point-transitive 2-(106, 6, 1) designs.
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1 Introduction

For positive integers v and b satisfying b > v > 2, a finite linear space S is an incidence
structure (P ,L) consisting of a set P of v points and a collection L of b distinguished
subsets of P called lines, with sizes > 2 such that any two points are incident with exactly
one line. Let α be a point of P , and k be a positive integer. Then rkα denotes the number
of lines having size k through α, bk the number of lines of size k, and rα the number of
all lines through α, called the degree of α. If all lines have a constant size k, then we say
that S is regular, so it is a 2-(v, k, 1) design.

Let ∆ be a subset of P with |∆| > 2, L∆ = {λ ∩ ∆ : |λ ∩ ∆| > 2 for λ ∈ L}. Then
(∆,L∆) forms an incidence structure, and the induced structure is a linear space. We are
interested in the case that ∆ is Fix(g) (or Fix(H)), the set of fixed points of g ∈ G (or
H 6 G ) on P . An automorphism of S is a permutation of P which leaves L invariant.
The full automorphism group of S is denoted by Aut(S) and any subgroup of Aut(S)
is called an automorphism group of S. We say that the automorphism group G of S
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is point-transitive if G acts transitively on the set of points. Similarly, G is said to be
line-transitive if G acts transitively on the set of lines.

Four 2-(91, 6, 1) designs have been found by Mills, McCalla and Colbourn ([6, 7, 12]).
All of them have a cyclic automorphism group of order 91, and so they have point-
transitive automorphism groups. In 1989, Camina and Di Martino ([3]) proved that any
automorphism group of a point-transitive 2-(91, 6, 1) design is the natural split extension
of a cyclic group of order 91 by a cyclic group of order d, where d | 12. Later, Janko and
Tonchev ([10]) showed that any cyclic 2-(91, 6, 1) design (i.e. one having an automorphism
group of order 91) admitting an automorphism group whose order is larger than 91 is one
of the four known designs. Here we are going to discuss the 2-(106, 6, 1) designs, where the
number of points is also a product of two distinct primes, and 6 is the largest line-size for a
non-trivial regular linear space with 106 points ([8]). The only known 2-(106, 6, 1) design
found by Mills ([11]) is not point-transitive, which is one of Miscellaneous Constructions
([8]) and has a cyclic automorphism groups of order 53. It is a question whether there
exist point-transitive 2-(106, 6, 1) designs, just like the 2-(91, 6, 1) designs. In this paper,
we prove that there is no 2-(106, 6, 1) designs admitting a point-transitive automorphism
group.

Theorem 1. Let S be a 2-(106, 6, 1) design, and G be an automorphism group of S. Then
G cannot be transitive on points of S.

Our paper is organized as follows. Section 2 presents some preliminary results and
notation. In Section 3, by considering the number of fixed points of an involutive auto-
morphism, we bound the size of the 2-part of |Aut(S)|. In Section 4, we get a bound on
|Aut(S)| and prove Theorem 1.

2 Preliminary results and notation

Let S be a linear space with v points, K be a set of positive integers such that v > k for
every k ∈ K and the set of line-sizes of S is contained in K. Note that it is not required
that there is a line of size k for any k ∈ K. Let α be a point of P , then∑

k∈K

(k − 1)rkα = v − 1 (1)

and for each k ∈ K, ∑
α∈P

rkα = k · bk. (2)

In particular, if S is a non-trivial finite regular linear space, then the following result
is well-known.

Lemma 2. [5, Lemma 2.1] Let S be a non-trivial finite regular linear space. Then

r =
v − 1

k − 1
, b =

v(v − 1)

k(k − 1)
,
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and
k(k − 1) + 1 6 v,

where k is the line size of S, and r is the number of lines through a point.

The following results are very useful for the proof of Theorem 1.

Lemma 3. [4, Lemma 1] Let S be a finite regular linear space, G an automorphism group
of S, and H 6= 1 a subgroup of G. Then |Fix(H)| 6 r unless every point lies on a fixed
line and then |Fix(H)| 6 r + k − 3.

Lemma 4. [3, Lemma 1] Let S be a linear space, α a point of S, and rα be the degree of
α. Then all lines of size > rα contain α, and for any point β of P, β 6= α, the number of
lines of size > rα containing β is at most one.

Throughout this paper, we assume that the following hypothesis holds:
Hypothesis: Let S = (P ,L) be a 2-(106, 6, 1) design, and G be a point-transitive

subgroup of Aut(S). Let N : Q be the semidirect product of groups N by Q, N ×Q the
direct product of groups N and Q, |G|p the p-part of |G|, and |G|p′ the p′-part of |G|.

3 The 2-part of |Aut(S)|
In this section, our aim is to obtain the maximal size of the 2-part of |Aut(S)|. We begin
this section with some information given in [3] about the linear spaces. Assume that
2 | |Aut(S)| and t is an involution of Aut(S). Let D = (Fix(t),LFix(t)) be the linear space
induced by Fix(t) and K = {2, 4, 6} containing the set of its line sizes. In view of (1), we
get

r2
α + 3r4

α + 5r6
α = |Fix(t)| − 1, (3)

for each α ∈ Fix(t). Since a non-fixed point of t cannot be on two fixed lines of it, all the
non-fixed points t on its fixed lines of S are distinct. Thus

4b2 + 2b4 6 106− |Fix(t)|. (4)

Combing (2) and (4), we obtain

2
∑

α∈Fix(t)

r2
α +

1

2

∑
α∈Fix(t)

r4
α 6 106− |Fix(t)|. (5)

Now for each point α ∈ Fix(t), define the weight ([3]) ω(α) of α

ω(α) = 2r2
α +

1

2
r4
α.

So that (5) can be written as ∑
α∈Fix(t)

ω(α) 6 106− |Fix(t)|. (6)

If r2
α = x, r4

α = y and r6
α = z, then we say that α is of type (x, y, z).
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Lemma 5. Assume that the Hypothesis holds and let t be an involution of AutS. Then
|Fix(t)| 6= 18, 20 or 22.

Proof. We prove this Lemma by dealing with the three cases separately.

(1) If |Fix(t)| = 22, then according to inequality (6), Fix(t) has a point α0 such that
ω(α0) 6 106−22

22
= 42

11
. Thus

2r2
α0

+
1

2
r4
α0

6
42

11
.

Recall that for any α ∈ Fix(t), we have r2
α + 3r4

α + 5r6
α = 21 from (3). This implies that

α0 is of type (0, 7, 0), (0, 2, 3) or (1, 0, 4).
If α0 is of type (1, 0, 4), then α0 lies on all lines of size 6 and r6

α 6 1 for any other point
α ∈ Fix(t) by Lemma 4. Precisely, the 20 points on the lines of size 6 through α0 are
of type (x, y, 1), where x and y are non-negative integers. Thus all these 20 points have
weight > 9

2
, and they contribute at least 20 · 9

2
= 90 to the total weight, contradicting (6).

Similar discussion leads to have a contradiction for type (0, 2, 3). Therefore, there must
be a point α0 ∈ Fix(t) of type (0, 7, 0), but there is no point of type (0, 2, 3) or (1, 0, 4).
Moreover, ω(α) > 9

2
for any α ∈ Fix(t) with r6

α > 1.
If all points of Fix(t) are of type (0, 7, 0), then D is a 2-(22, 4, 1) design. But then

b = v(v−1)
k(k−1)

is not an integer. Thus, there exists a point β ∈ Fix(t) that is not of type

(0, 7, 0).

(1.1) Suppose that r6
β = 0. Then r2

β > 3 and ω(β) > 9. Let β1, β2 and β3 be three
distinct points such that {β, βi} (i = 1, 2, 3) are lines of size 2. For i = 1, 2 and 3, ω(βi) > 9
if r6

βi
= 0, and ω(βi) > 9

2
if r6

βi
6= 0. If r6

βi
= 0 for all i = 1, 2 and 3, then

∑
α∈Fix(t)

ω(α) > ω(α0) + ω(β) +
3∑
i=1

ω(βi) + 17 · 7

2
= 99,

contrary to inequality (6). If there exists one point, say β1, such that r6
β1
6= 0, let λ be a

line of size 6 through β1. Then ω(α) > 9
2

for all α ∈ λ. Hence∑
α∈Fix(t)

ω(α) > ω(α0) + ω(β) +
∑
α∈λ

ω(α) + 14 · 7

2
= 88 +

1

2
,

which is impossible.

(1.2) Suppose that r6
β 6= 0. If r2

β = 0, then β is of type (0, 2, 3), a contradiction. Thus
there is at least one line {β, β1} of size 2 and one line λ of size 6 through β. If r6

β1
6= 0,

let λ1 be a line of size 6 through β1. Then∑
α∈Fix(t)

ω(α) > ω(α0) +
∑

α∈λ∪λ1

ω(α) + 10 · 7

2
> 84,
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which is a contradiction. If r6
β1

= 0, then ω(β1) > 9 and∑
α∈Fix(t)

ω(α) > ω(α0) + ω(β1) +
∑
α∈λ

ω(α) + 14 · 7

2
= 88 +

1

2
,

which is impossible. Therefore, |Fix(t)| 6= 22.

(2) If |Fix(t)| = 20, then Fix(t) has a point α0 such that ω(α0) 6 106−20
20

= 43
10
. From

(3), we have α0 is of type (0, 3, 2) or (1, 1, 3).
If α0 is of type (0, 3, 2), then α0 lies on all lines of size 6 and r6

α 6 1 for any other
point α ∈ Fix(t) by Lemma 4. Exactly, the 10 points on the lines of size 6 through α0 are
of type (m,n, 1) having weight at least 6, and the 9 points on the lines of size 4 through
α0 are of type (x, y, 0) having weight at least 5, where m,n, x and y are non-negative
integers. Then ∑

α∈Fix(t)

ω(α) > ω(α0) + 10 · 6 + 9 · 5 = 106 +
1

2
,

and we have a contradiction. Similarly, we can prove that α0 is not of type (1, 1, 3).
Therefore, |Fix(t)| 6= 20.

(3) If |Fix(t)| = 18, then Fix(t) has a point α0 such that ω(α0) 6 106−18
18

= 44
9
.

According to equation (3), α0 is of type (0, 4, 1), (1, 2, 2) or (2, 0, 3).
If α0 is of type (0, 4, 1), then α0 lies on all lines of size 6 and r6

α 6 1 for any other
point α ∈ Fix(t) by Lemma 4. Or rather, the 5 points on the line of size 6 through α0 are
of type (m,n, 1) with weight > 2, and the 12 points on the lines of size 4 through α0 are
of type (x, y, 0) with weight > 13

2
, where m,n, x and y are non-negative integers. Then∑

α∈Fix(t)

ω(α) > 6 · 2 + 12 · 13

2
= 90,

a contradiction. Thus there is no point of type (0, 4, 1) and ω(α) > 15
2

for any α ∈ Fix(t)
with r6

α > 1.
If α0 is of type (1, 2, 2), then α0 lies on all lines of size 6 and r6

α 6 1 for any other point
α ∈ Fix(t) by Lemma 4. In particular, the 10 points on the lines of size 6 through α0 are
of type (m,n, 1) with weight > 15

2
, and the 7 points which do not lie on the lines of size

6 through α0 are of type (x, y, 0) with weight > 13
2
, where m,n, x and y are non-negative

integers. This implies ∑
α∈Fix(t)

ω(α) > 3 + 10 · 15

2
+ 7 · 13

2
= 123 +

1

2
,

which is impossible. Similarly, α0 cannot be of type (2, 0, 3). Thus |Fix(t)| 6= 18.

Lemma 6. Assume that the Hypothesis holds and let t be an involution of Aut (S). If
there is a line λ of S contained in Fix(t), then |Fix(t)| 6= 12, 14 or 16.
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Proof. Since there is a line λ ∈ S such that λ ⊆ Fix(t), the linear space D induced by
Fix(t) has at least one line of size 6.

(1) If |Fix(t)| = 16, then Fix(t) has a point α0 such that ω(α0) 6 106−16
16

= 45
8
. Thus

2r2
α0

+
1

2
r4
α0

6
45

8
.

Recall that r2
α + 3r4

α + 5r6
α = 15 for all α ∈ Fix(t) from equation (3). So α0 is of type

(0, 0, 3), (0, 5, 0), (1, 3, 1) or (2, 1, 2).
Since D has at least one line of size 6, there is no point of type (0, 5, 0) by Lemma 4.

If α0 is of type (0, 0, 3), then α0 lies on all lines of size 6 and r6
α = 1 for any other point

α ∈ Fix(t). More precisely, all the 15 points are of type (10, 0, 1) having weight 20. Then∑
α∈Fix(t)

ω(α) = 0 + 15 · 20 = 300,

which is impossible.
If α0 is of type (1, 3, 1), then α0 lies on all lines of size 6 and r6

α 6 1 for any other point
α ∈ Fix(t). In detail, the 5 points on the line of size 6 through α0 are of type (x, y, 1)
with weight > 7

2
, where x and y are non-negative integers. Let {α0, β0} be the line of size

2 through α0, and so ω(β0) > 8. If α 6= α0 lies on one of lines of size 4 through α0, then
r4
α 6 4 since there is no point of type (0, 5, 0), thus ω(α) > 8. Hence∑

α∈Fix(t)

ω(α) > 6 · 7

2
+ 10 · 8 = 101.

It follows that there is no point of type (1, 3, 1) and ω(α) > 9 for any α ∈ Fix(t) with
r6
α > 1. Similar analysis as above, we known that α0 cannot be of type (2, 1, 2). Therefore,
|Fix(t)| 6= 16.

(2) If |Fix(t)| = 14, then Fix(t) has a point α0 such that ω(α0) 6 106−14
14

= 46
7
.

According to (3), α0 is of type (0, 1, 2), (1, 4, 0), (2, 2, 1) or (3, 0, 2).
Recall that D has at least one line of size 6. Thus there is no point of type (1, 4, 0) by

Lemma 4. If α0 is of type (0, 1, 2), then α0 lies on all lines of size 6 and r6
α 6 1 for any

other point α ∈ Fix(t). Particularly, the 10 points on the lines of size 6 through α0 are of
type (8, 0, 1) with weight 16, and the 3 points on the line of size 4 through α0 are of type
(13, 0, 0) with weight 26. Then∑

α∈Fix(t)

ω(α) =
1

2
+ 10 · 16 + 3 · 26 = 238 +

1

2
,

which is impossible.
If α0 is of type (2, 2, 1), then α0 lies on all lines of size 6 and r6

α 6 1 for any other point
α ∈ Fix(t). Let α1 and α2 be the two points that joined to α0 form the two lines of size
2. Suppose that there is a line of D having size 4 not containing α0. Then this line must
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contain one point of {α1, α2}. Thus r4
α 6 2 for each point α which is on the line of size 6

through α0, and r4
α 6 3 for each point α which do not lie on the line of size 6 through α0.

This implies ∑
α∈Fix(t)

ω(α) > 5 + 5 · 5 + 8 · 19

2
= 106,

a contradiction.
If α0 is of type (3, 0, 2), then α0 lies on all lines of size 6 and r6

α 6 1 for any other point
α ∈ Fix(t). Let α1, α2 and α3 be the points each of which forms a line of size 2 with α0.
Suppose that there is a line of D having size 4. Then this line must contain two points of
{α1, α2, α3}. Thus r4

α 6 1 for each point α ∈ Fix(t). Hence∑
α∈Fix(t)

ω(α) > 6 + 10 · 21

2
+ 3 · 41

2
> 92.

Thus Fix(t) does not have a point of type of (3, 0, 2). It follows that |Fix(t)| 6= 14.

(3) If |Fix(t)| = 12, then Fix(t) has a point α0 such that ω(α0) 6 106−12
12

= 47
6
. So α0

is of type (0, 2, 1), (1, 0, 2), (2, 3, 0) or (3, 1, 1) from equation (3).
Since D has at least one line of size 6, there is no point of type (2, 3, 0) by Lemma 4.

If α0 is of type (0, 2, 1), then α0 lies on all lines of size 6, and r6
α 6 1 for any other point

α ∈ Fix(t). Precisely, the 5 points on the line of size 6 through α0 are of type (6, 0, 1)
having weight 12, and the 6 points on the lines of size 4 through α0 are of type (8, 1, 0)
having weight 33

2
. Then ∑

α∈Fix(t)

ω(α) = 1 + 5 · 12 + 6 · 33

2
= 160,

which is impossible.
If α0 is of type (1, 0, 2), then α0 lies on all lines of size 6 and r6

α 6 1 for any other
point α ∈ Fix(t). The 10 points which lie on the lines of size 6 through α0 are of type
(6, 0, 1) having weight 12, and the point α1 such that {α0, α1} is the line of size 2 is of
type (11, 0, 0) having weight 22. Then∑

α∈Fix(t)

ω(α) = 2 + 10 · 12 + 1 · 22 = 144,

a contradiction.
If α0 is of type (3, 1, 1), then α0 lies on all lines of size 6 and r6

α 6 1 for any other point
α ∈ Fix(t). Let α1, α2 and α3 be the points that joined to α0 form the there lines of size
2. Suppose that there is a line of size 4 not containing α0. Then this line must contain
two points of {α1, α2, α3}. Thus r4

α 6 1 for the point α which do not lie on one line of size
4 through α0, and r4

α 6 2 for the point α which lie on the line of size 4 through α0. Hence∑
α∈Fix(t)

ω(α) >
13

2
+ 5 · 13

2
+ 3 · 33

2
+ 3 · 11 > 94.

Thus Fix(t) does not have a point with type (3, 1, 1). Therefore |Fix(t)| 6= 12.
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Lemma 7. Assume that the Hypothesis holds and let T 6= 1 be a Sylow 2-subgroup of
Aut (S). Then |T | divides 215.

Proof. Since b = 371, then there exists a line λ ∈ L such that T fixes λ setwise. Thus
T/T(λ) 6 S6 and |T : T(λ)| divides 24. Assuming that S = T(λ) 6= 1, we obtain

100 =
r∑
i=1

|S : Sαi
|,

where α1, α2, . . . , αm are all the representatives of the orbits of S on P \λ. If S is semireg-
ular on P \ λ, then |S| divides 100, and hence |T | divides 24 · 22. If S is not semiregular
on P \ λ, then P \ λ has at least one point αj(1 6 j 6 m) such that Sαj

6= 1 and 26 is
divisible by |S : Sαj

|. In view of Lemmas 5 and 6, |Fix(Sαj
)| = 8, 10 or 24.

Let λ1 ∈ L be the line containing αj that has non-empty intersection with λ. Suppose
that 1 6= S0 is the kernel of the action of Sαj

on the points of λ1, then |Fix(S0)| = 24, 24 is
divisible by |Sαj

: S0| and S0 acts semiregularly on P \Fix(S0) since |Fix(t)| 6 24 for any
involution t of Aut(S). Thus |S0| divides 82, and it follows that |T | divides 24 · 26 · 24 · 2 =
215.

4 The 2′-part of |Aut(S)| and proof of Theorem 1

In this section, we prove a bound on the 2′-part of |Aut(S)|. First, we list a result which
is important for our discussion.

Lemma 8. [3] If S is a linear space having lines of size 3 and 6 (with at least one line of
size 3 and one line of size 6). Then v = 16 or 18, provided that v < 21.

Lemma 9. Assume that the Hypothesis holds. Then |Aut(S)|2′ divides 3a · 53 · 7 · 53,
where a is a non-negative integer. Furthermore, any element of order 53 in Aut(S) is
fixed-point-free.

Proof. Let p > 5 be a prime divisor of |Aut(S)|, and g an element of order p in Aut(S).
Then |Fix(g) ∩ λ| = 0, 1 or 6.

Suppose that Fix(g) is not contained in a line of S, then Fix(g) induces a regular
linear space 2-(|Fix(g)|, 6, 1). Thus |Fix(g)| > k(k − 1) + 1 = 31 by Lemma 2. But
|Fix(g)| 6 k + r − 3 = 24 according to Lemma 3, which is a contradiction. Hence there
exists a line λ ∈ L such that Fix(g) ⊆ λ and |Fix(g)| = 0, 1 or 6. Therefore, the possible
values of p are 5, 7 and 53 since 106− |Fix(g)| ≡ 0 (mod p).

Let P be a Sylow 5-subgroup of Aut(S) and P 6= 1. Then P fixes one line λ ∈ L and
|P | | 5 · |P(λ)| since P/P(λ) 6 S6. If P(λ) 6= 1, then P(λ) acts semiregularly on P \ λ. Thus
|P(λ)| | 100. So |P(λ)| | 52, and |P | | 53.

Let P be a Sylow p-subgroup of Aut(S), where p = 7 or 53. Suppose P 6= 1, then
|Fix(P )| = 1 if p = 7, and |Fix(P )| = 0 if p = 53. Moreover, P is semiregular on P\Fix(P ).
So |P | = 7 or 53.
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Lemma 10. Assume that the Hypothesis holds. Then |Aut(S)|3 divides 37.

Proof. If 1 6= T ∈ Syl3(G), then S has a line λ ∈ L such that T 6 Gλ since b = 371.
Thus T/T(λ) 6 S6 and |T | divides 32 · |T(λ)|. Let S = T(λ), then |Fix(S)| ≡ 1 (mod 3).

If S 6= 1, then Fix(S) induces a linear space D with sizes of lines from K = {3, 6}.
Since |Fix(S)| 6 24 by Lemma 3 and v > 31 for a 2-(v, 6, 1) design by Lemma 2, D has
at least one line of size 3 and one line of size 6. It follows that |Fix(S)| = 16 or 22 by
Lemma 8.

Suppose first that |Fix(S)| = 16. Then

90 =
r∑
i=1

|S : Sαi
|,

where α1, α2, . . . , αm are all the representatives of the orbits of S on P \ Fix(S). If S is
semiregular on P \ Fix(S), then |S| | 90, this implies that |S| divides 32. If there exists
αj ∈ P \ Fix(S)(1 6 j 6 m) such that Sαj

6= 1, then |Fix(Sαj
)| = 22 and Sαj

acts
semiregularly on P \Fix(Sαj

). Hence |Sαj
| divides 3, so |S| divides 35 since 34 is divisible

by |S : Sαj
|.

Now suppose that |Fix(S)| = 22. Then S is semiregular on P \ Fix(S). Hence |S|
divides 3. Therefore, |T | divides 37.

According to the discussion above, we have |G| divides 215 · 37 · 53 · 7 · 53.

Lemma 11. Assume that the Hypothesis holds. If N is a minimal normal subgroup of
G, then N = Soc(G) ∼= Z53.

Proof. Since N E G and G is point-transitive, N is 1
2
-transitive on P , and the common

length of orbits is 2, 53 or 106. Assume that N is not elementary abelian. Then N ∼= T `

is a direct product of ` > 1 copies of non-abelian simple groups T. So |N | is divisible by 3
or 5 ([9, Remarks 3.7 a)]). Suppose that the orbit-length of N on the points is 2 and let
g ∈ N be of order 3 or 5. Then g fixes every orbit of N on P , which implies |Fix(g)| = 106,
a contradiction. Thus the common length must be divisible by 53, so 53 divides |N | and
N = T = Soc(G) is simple since 532 - |G|.

Using the list of non-abelian simple groups, it is easy to check that there is no non-
abelian simple group N such that 53 divides |N | and |N | divides 215 · 37 · 53 · 7 · 53. Hence
N is abelian and N ∼= Z53.

Lemma 12. Assume that the Hypothesis holds. Then G is solvable and G ∼= Z53 : Z4.

Proof. According to Lemma 11, N = Soc(G) ∼= Z53.
If N 6= CG(N), then by Schur-Zassenhaus’theorem, CG(N) has a normal subgroup

M such that CG(N) = M × N, since N is a normal Hall-subgroup of CG(N). Since M
is characteristic in CG(N) and CG(N) E G, then there exists another minimal normal
subgroup of G contained in M, but this is impossible. Therefore N = CG(N), and
G/CG(N) . Aut(N) ∼= Z52. This implies that G is solvable and G . Z53 : Z4 since
13 - |G|.

If |G| = 106, then G is regular on P . Thus any involution of G has no fixed point.
This implies that k | v, a contradiction. Therefore, G ∼= Z53 : Z4.
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Proof of Theorem 1. According to Lemma 12, G ∼= Z53 : Z4 which is a metacyclic group.
Let G = 〈x, y|x53 = 1, y4 = xh, xy = x`〉, where h and ` are non-negative integers satisfying

`4 ≡ 1 (mod 53), h(`− 1) ≡ 0 (mod 53)

by [1]. It follows that ` ≡ 1, 23, 30 or 52 (mod 53). If ` ≡ 1 (mod 53), then h ≡ 1
(mod 53) and if ` ≡ 23, 30 or 52 (mod 53), then h ≡ 0 (mod 53). Suppose first ` ≡ 1 or 52
(mod 53), then G has a normal subgroup of order 2, a contradiction.

For the cases ` ≡ 23 and 30 (mod 53), the groups are the same up to isomorphic.
Without loss of generality we assume that ` ≡ 23 (mod 53) in the following. Since G
has only one conjugacy class of involutions, G has exactly one transitive permutation
representation on 106 points, which is equivalent to the permutation representation of G
on H = 〈y2〉.

Since G = {xmyn|0 6 m 6 52, 0 6 n 6 3}, the right cosets of H in G are H, Hx,
Hx2,. . ., Hx52, Hy, Hxy, . . ., Hx52y. Let Hxm = im+1, Hx

my = jm+1, where 0 6 m 6
52. Then the permutation representation of G on P = {i1, i2, · · · , i53, j1, j2, · · · , j53} is
P (G) = 〈g1, g2〉, where

g1 = (i1i2 · · · i53)(j53j52 · · · j1)

and
g2 = (i1j1)(i2j2i53j53)(i3j3i52j52) · · · (i27j27i28j28).

Assume that λ is the line through i1 and j1. Then λg2 = λ. It follows that λ is a union
of orbits of g2 on P . Thus there exists an integer e (2 6 e 6 27) such that

λ = {i1, j1, ie, je, i55−e, j55−e}.

However, λg
54−e
1 = {i55−e, je, i1, j2e−1, i56−2e, j1}, which is impossible. This completes the

proof of Theorem 1.
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