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Abstract

The popularity of a pattern p in a set of permutations is the sum of the number
of copies of p in each permutation of the set. We study pattern popularity in the
set of 132-avoiding permutations. Two patterns are equipopular if, for all n, they
have the same popularity in the set of length-n 132-avoiding permutations. There is
a well-known bijection between 132-avoiding permutations and binary plane trees.
The spines of a binary plane tree are defined as the connected components when all
edges connecting left children to their parents are deleted, and the spine structure
is the sorted sequence of lengths of the spines. Rudolph shows that patterns of
the same length are equipopular if their associated binary plane trees have the same
spine structure. We prove the converse of this result using the method of generating
functions, which gives a complete classification of 132-avoiding permutations into
equipopularity classes.

1 Introduction

Let σ = σ1 · · ·σn be a permutation in the symmetric group Sn. The permutation σ
contains the pattern p = p1 · · · pk ∈ Sk if there is a subsequence σi1 · · ·σik of σ, 1 6 i1 <
· · · < ik 6 n, such that σis < σit if and only if ps < pt, for 1 6 s, t 6 k. If σ does not
contain p, we say that σ avoids p. The set of all σ ∈ Sn which avoids p is denoted by
Sn(p).
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Note that σ may contain multiple copies of p, for example 43152 contains two copies
of the pattern 312, one at indices 2,3,5, and another at indices 1,3,5. We use f(σ, p) to
denote the number of copies of p that σ contains.

Definition 1. The popularity PS(p) of a pattern p in a set S of permutations is defined
as

PS(p) =
∑
σ∈S

f(σ, p) . (1)

If S = Sn, then patterns of the same length k have the same popularity n!
k!

(
n
k

)
, using

the linearity of expectation. The interesting problem arises when S = Sn(τ) for some
pattern τ . Joshua Cooper [4] first posed the problem: given permutations τ and σ, what
is the expected number of copies of σ in a permutation chosen uniformly at random from
Sn(τ)? In this paper, we study the equivalent question: for given permutations τ and σ,
what is the popularity of σ in Sn(τ)?

For the remainder of this paper, we consider only popularity in 132-avoiding permu-
tations. For two permutations p and q such that PSn(132)(p) = PSn(132)(q) for all n, we say
that p and q are equipopular.

In [2], Bóna used generating functions to show that, for permutation patterns of length
k, the increasing pattern 12 · · · k has the lowest popularity and the decreasing pattern
k(k − 1) · · · 1 has the highest popularity in 132-avoiding permutations. In other words,
for any length-k permutation p,

PSn(132)(12 · · · k) 6 PSn(132)(p) 6 PSn(132)(k(k − 1) · · · 1) . (2)

Bóna extended this result in [3] to show that, for length-3 patterns, the patterns 213,
312 and 231 are equipopular, while 123 and 321 are the least popular and most popular
respectively.

In [5], Rudolph uses binary plane trees to generalize Bóna’s result from [3]. There is
a well-known bijection between 132-avoiding permutations of length n and binary plane
trees with n vertices, which are rooted unlabeled trees in which each vertex has at most
two children, and each child is designated as either the left or right child of its parent. For a
132-avoiding permutation p, its corresponding binary plane tree T (p) can be constructed
recursively. The root of T (p) is the entry n of p, the left (right) subtree of the root
corresponds to the entries of p to the left (right) of n. If p is the empty sequence, then
T (p) is the empty tree.

Note that since p is 132-avoiding, the entries of p to the left of n must all be greater
than the entries to the right of n. Thus given a binary plane tree, we label the root with
n, and if the left subtree has i vertices, then the values n− i, . . . , n− 1 must be in the left
subtree, and the values 1, . . . , n − i − 1 must be in the right subtree. We can thus label
the tree recursively, and the permutation it corresponds to can be recovered by doing an
in-order reading of the vertices (left subtree, root, right subtree). An example is given in
Figure 1.

In [5], Rudolph defines the spines of a binary tree T (p) to be the connected components
of T (p) when all edges connecting left children to their parents are deleted, and the length
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Figure 1: Diagram of the binary plane tree corresponding to the permutation 5634271.

of a spine as the number of nodes in the spine. She also defines the spine structure as the
sequence of lengths of spines sorted in descending order. Rudolph extended the results of
Bóna to show the following.

Theorem 2 (Rudolph). Given 132-avoiding permutations p and q, if T (p) and T (q) have
the same spine structure, then p and q are equipopular.

In [5], Rudolph also conjectured that the converse of Theorem 2 is true, and verified
it numerically for all patterns of length less than or equal to 7.

Conjecture 3 (Rudolph). If the 132-avoiding permutations p and q are equipopular,
then T (p) and T (q) have the same spine structure.

Aisbett proved a related result in [1], based on another conjecture by Rudolph in [5].

Theorem 4 (Aisbett). Given 132-avoiding permutations p and q, if the spine structure
of T (p) is less than or equal to the spine structure of T (q) in refinement order, then for
all n, PSn(132)(p) 6 PSn(132)(q).

In this paper, we prove Conjecture 3, by using the method of generating functions.
This gives a complete classification of 132-avoiding permutations into equipopularity
classes.

Section 2 consists of preliminary definitions and known results about generating func-
tions. We focus in particular on the work of Bóna on the generating functions for the
popularity of the increasing and decreasing patterns. Section 3 expands further upon
these results in the case of the decreasing pattern. In Section 4, we prove Conjecture 3
by deriving an expression for the generating function for the popularity of a pattern with
a given spine structure, and then applying the results from Section 3. We show that if
two patterns have different spine structures, then the associated generating functions are
different.

2 Preliminaries

In this section, we state preliminary definitions and known results about generating func-
tions, focusing in particular on the generating functions for the popularity of the increasing
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and decreasing patterns. These definitions and results are used in our work in subsequent
sections.

In [2], Bóna finds equations for the generating functions for the popularity of increasing
and decreasing patterns in 132-avoiding permutations. Let an,k be the popularity of
12 · · · k in Sn(132), and let the generating function be Ak(x) =

∑
n>0 an,kx

n. Let C(x) be
the generating function for the Catalan numbers:

C(x) =
∑
n>0

cnx
n =

1−
√

1− 4x

2x
. (3)

Theorem 5 (Bóna). For all positive integers k > 1, we have

A1(x) =

(∑
n>1

ncnx
n

)
=

1√
1− 4x

− C(x) (4)

Ak(x) = A1(x)

(
xC(x)

1− 2xC(x)

)k−1
. (5)

For decreasing patterns, let dn,k be the popularity of k(k− 1) · · · 1 in Sn(132), and let
Dk(x) =

∑
n>0 dn,kx

n. According to Bóna, dn,1 = an,1 = ncn, hence D1(x) = A1(x), and
for larger values of k, we have the recurrence relation:

dn,k =
k−1∑
j=1

n∑
i=1

di−1,jdn−i,k−j +
n∑
i=1

ci−1dn−i,k−1 + 2
n∑
i=1

ci−1dn−i,k . (6)

This leads to the generating function identity:

Dk(x) =
xC(x)Dk−1(x) +

∑k−1
j=1 xDj(x)Dk−j(x)

1− 2xC(x)
. (7)

In order to derive bounds for Dk(x), we define some notation regarding generating
functions used by Bóna.

Definition 6. Let G(x) =
∑

n>0 gnx
n and H(x) =

∑
n>0 hnx

n be two power series. If
gn 6 hn for all n > 0, we say that G(x) 6 H(x).

Proposition 7 (Bóna). Let G(x), H(x) and W (x) be three power series with non-negative
real coefficients, such that G(x) 6 H(x). Then

G(x)W (x) 6 H(x)W (x) . (8)

Bóna showed the following useful results.

Corollary 8 (Bóna). For k > 2, we have

D2(x) =
xD1(x)

1− 4x
, (9)

Dk(x) >
xDk−1(x)

1− 4x
. (10)
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3 Generating function for the decreasing pattern

In this section, we expand Bóna’s work to prove more results on the generating function
for the decreasing pattern Dk(x). These results are used in our proof of Conjecture 3 in
Section 4.

Lemma 9. For positive integers k > 2, there is a constant αk > 1 independent of x such
that

Dk(x) 6
αkx

1− 4x
Dk−1(x) . (11)

Proof. We prove this by induction. For k = 2, this holds trivially by Equation 9. We
assume that Lemma 9 holds for all m such that 2 < m 6 k − 1. Then there are positive

constants γm =
m∏
i=2

αi > 1 such that

Dm(x) 6 γm

(
x

1− 4x

)m−1
D1(x) .

Corollary 8 also implies that, for 1 6 j < m,

Dm(x) >

(
x

1− 4x

)j
Dm−j(x) .

We can use these inequalities to bound the sum in Equation 7.

Dk(x) 6

(
x√

1− 4x

)(
C(x)Dk−1(x) +

k−1∑
j=1

γj

(
x

1− 4x

)j−1
D1(x)Dk−j(x)

)

6

(
x√

1− 4x

)(
C(x)Dk−1(x) +

k−1∑
j=1

γjD1(x)Dk−1(x)

)
.

If we let αk =
∑k−1

j=1 γj > 1, then since C(x) +D1(x) = 1√
1−4x , we have

Dk(x) 6

(
x√

1− 4x

)(
αk√

1− 4x
− (αk − 1)C(x)

)
Dk−1(x)

6
αkx

1− 4x
Dk−1(x) .

The last inequality follow from Proposition 7 because 1√
1−4x , C(x) and Dk−1(x) have

non-negative real coefficients.

The following proposition is immediate from Corollary 8 and Lemma 9.
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Proposition 10. For positive integers k > 2 and some positive constant γk > 1, we have
the following bounds on Dk(x):(

x

1− 4x

)k−1
D1(x) 6 Dk(x) 6 γk

(
x

1− 4x

)k−1
D1(x) . (12)

Note that Proposition 10 implies that Dk(x) = Θ
((

x
1−4x

)k−1
D1(x)

)
, where we use

the Θ notation to mean that the coefficients are bounded above and below by a constant
factor independent of x.

To get an explicit expression for Dk(x), we define

D(x, y) =
∑
k>1

Dk(x)yk . (13)

Letting E(x) = x
1−2xC(x)

= x√
1−4x , it follows from Equation 7 that

D(x, y) = D1(x)y + E(x)C(x)yD(x, y) + E(x)D2(x, y) . (14)

To simplify the notation, we do not explicity write the dependence on x and y of the
generating functions and functions used. We can solve Equation 14 to get

D =
1

2E

(
1− yEC ±

√
(yEC − 1)2 − 4ED1y

)
. (15)

Proposition 11. For positive integers n > 1, we have

Dn(x) =

(
−
√

1− 4x

2x

)(
−1−

√
1− 4x

1− 4x

)n bn/2c∑
m=0

(
1/2

n−m

)(
n−m
m

)(
1− 4x

4

)m
. (16)

Proof. From Equation 15, we can expand the square root as follows:√
(yEC − 1)2 − 4ED1y

=
(
1 + (C2E2y2 − 2Ey(C + 2D1))

)1/2
=
∞∑
k=0

(
1/2

k

)
(Ey)k(C2Ey − 2(C + 2D1))

k

=
∞∑
k=0

k∑
m=0

(
1/2

k

)(
k

m

)
C2mEk+m(−2)k−m(C + 2D1)

k−myk+m

=
∞∑
k=0

2k∑
n=k

(
1/2

k

)(
k

n− k

)
(−CE)n

(
2√

1− 4x

)2k−n

yn .
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Substituting this into Equation 15, we note that the negative root should be chosen, and
for n > 1, the coefficient of yn in D(x, y) is given by

Dn(x) =

(
− 1

2E

) n∑
k=dn/2e

(
1/2

k

)(
k

n− k

)
(−CE)n

(
2√

1− 4x

)2k−n

=

(
− 1

2E

)(
−xC

2

)n n∑
k=dn/2e

(
1/2

k

)(
k

n− k

)(
4

1− 4x

)k

=

(
− 1

2E

)(
−xC

2

)n bn/2c∑
m=0

(
1/2

n−m

)(
n−m
m

)(
4

1− 4x

)n−m

=

(
− 1

2E

)(
−1−

√
1− 4x

1− 4x

)n bn/2c∑
m=0

(
1/2

n−m

)(
n−m
m

)(
1− 4x

4

)m
.

4 Arguments using generating functions

With the preliminary definitions and results on generating functions in Sections 2 and 3,
we now prove our main result, Conjecture 3, in this section. To do this, we first derive an
expression for the generating function for the popularity of a pattern with a given spine
structure. We then show that, if two patterns have different spine structures, then the
generating functions for their popularity are different.

In her proof of Theorem 2, Rudolph defines a left-justified tree to be one in which
every node that is a right child of its parent does not have a left child. She showed that
every tree can be transformed into a left-justified tree with the same spine structure, while
preserving the popularity.

Thus to prove Conjecture 3, without loss of generality, we can consider only permu-
tations q such that T (q) is left-justified. For convenience, we can also assume that the
spines are in sorted order by length, with the longer spines closer to the root. Any other
permutation p with the same spine structure would have the same popularity as q.

We consider the structure of such left-justified, sorted binary trees, as shown in Fig-
ure 2. Let q be a 132-avoiding permutation of length k, and let the spine structure of q
be {s1, . . . , sr}, with s1 > · · · > sr. We first consider the case where there is a smallest
index t such that st+1, . . . , sr are all 1, and 0 6 t 6 r − 1. Since q is 132-avoiding,
all the entries to the left of k must be greater than all entries to the right of k. Using
this fact, we can determine that q starts with an ascending sequence of length r − t + 1:
k− r+ 1 · · · k− t+ 1, followed by a descending sequence of length st− 1, and so on. This
is illustrated in Figure 3.

Since q has length k, we can write q = q1kq2 = q′q2. Note that if q2 is empty, then
q is just the increasing pattern 12 · · · k, and the generating function for the popularity is
Ak(x). Similarly, if q1 is empty, then q is the decreasing pattern k(k − 1) · · · 1, and the
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k

1

s1 − 1

s1
s2

st

k − 1

k − t+ 1

k − t

k − r + 1

· · ·

Figure 2: Diagram of a left-justified binary tree, with spine structure {s1, . . . , sr} and
spines in sorted order.

generating function is Dk(x). Assume that q1 and q2 are nonempty. We first consider
q′. Let hn(q′) be the popularity of q′ in Sn(132), and let Hq′(x) =

∑
n>0 hn(q′)xn. We

similarly define hn(q1) and Hq1(x).

k − r + 1

k − t+ 1

k − r

st − 1

k − t+ 2

k

s1 − 1 1

· · ·

Figure 3: Diagram of the permutation corresponding to the binary tree in Figure 2.

Lemma 12. For a 132-avoiding permutation q′ = q1k which ends in k, the following
generating function identity holds

Hq′(x) =
xC(x)Hq1(x)

1− 2xC(x)
. (17)

Proof. According to Bóna [2], if a 132-avoiding permutation p of length n has an occur-
rence of q′, then since q′ = q1k, one of the following must hold.
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1. q′ occurs entirely to the left of n.

2. q′ occurs entirely to the right of n.

3. q1 occurs to the left of n, and k occurs as n.

We thus have the recurrence relation

hn(q′) = 2
n∑
i=1

hn−i(q
′)ci−1 +

n∑
i=1

hn−i(q1)ci−1 ,

which leads to the desired generating function identity.

We now consider patterns q such that T (q) is left-justified with sorted spines. Given
a spine structure {s1, . . . , sr}, let gn({s1, . . . , sr}) be the popularity of a pattern p with
the given spine structure in Sn(132), and let t be the smallest index such that st+1, . . . , sr
are all 1. Let the generating function be Gs1,...,sr(x) =

∑
n>0 gn({s1, . . . , sr})xn. Observe

that in this notation, hn(q1) = gn({s2, . . . , sr}) and Hq1(x) = Gs2,...,sr(x).

Theorem 13. The following generating function identity holds

Gs1,...,sr(x) =

(
x (1− xC(x))

(1− 2xC(x))2

)t
Ds1−1(x) · · ·Dst−1(x)Ar−t(x) . (18)

Proof. If a 132-avoiding permutation p of length n has an occurrence of q, then by a result
of Bóna [2], one of the following must hold.

1. q occurs entirely to the left of n.

2. q occurs entirely to the right of n.

3. q′ occurs on the left of n and q2 occurs on the right of n.

4. q1 occurs on the left of n, q2 occurs on the right of n, and k occurs as n.

We thus have the recurrence relation

gn({s1, . . . , sr}) = 2
n∑
i=1

gn−i({s1, . . . , sr})ci−1 +
n∑
i=1

hi−1(q
′)dn−i,s1−1

+
n∑
i=1

gn({s2, . . . , sr})dn−i,s1−1 .

This leads to the generating function identity

Gs1,...,sr(x) = 2xGs1,...,sr(x)C(x) + xHq′(x)Ds1−1(x) + xGs2,...,sr(x)Ds1−1(x) . (19)
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Using Lemma 12, we get

Gs1,...,sr(x) =
x(1− xC(x))

(1− 2xC(x))2
Ds1−1(x)Gs2,...,sr(x)

=

(
x(1− xC(x))

(1− 2xC(x))2

)t
Ds1−1(x) · · ·Dst−1(x)Gst+1,...,sr(x) .

Note that since st+1 = · · · = sr = 1, the pattern corresponding to the spine structure
{st+1, . . . , sr} is the increasing pattern of length r − t. Thus Gst+1,...,sr(x) = Ar−t(x), and
we have the desired generating function identity.

For the case where q has no spine of length 1, we can repeat the analysis above to get

Gs1,...,sr(x) =

(
x (1− xC(x))

(1− 2xC(x))2

)r
Ds1−1(x) · · ·Dsr−1(x) . (20)

In order to prove Conjecture 3, it thus suffices to show that, for different spine struc-
tures, the generating functions are different. Letting s = s1 + · · ·+ st, from Corollary 10,
we know that

Gs1,...,sr(x) = Θ

((
x

1− 4x

)s−2t
Dt+1

1 (x)

(
x (1− xC(x))

(1− 2xC(x))2

)t(
xC(x)

1− 2xC(x)

)r−t−1)

= Θ

(
xs−t−1

(
1√

1− 4x
− 1

)r+1
1

√
1− 4x

2s−2t−1

)
.

Letting F (x) = (1− 4x)−1/2, we can write this as

Gs1,...,sr(x) = Θ
(
xs−t−1 (F (x)− 1)r+1 (F (x))2s−2t−1

)
. (21)

From this expression, we want to show that two generating functions can only be equal
if s− t and r each have the same value for both. To do this, we first prove some bounds
on the function F (x).

Lemma 14. For k > 1, we can write

F k(x) =
∞∑
n=0

(
2n

n

)
fnx

n , (22)

where for large n, fn = Θ
(
n

k−1
2

)
.

Proof. Note that for k > 1, the binomial coefficients are given by(−k/2
n

)
=

{
1 if n = 0
(−1)nk(k+2)···(k+2(n−1))

2nn!
if n > 1 .

(23)
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We can write the binomial expansion of F k(x) as follows.

F k(x) = (1− 4x)−k/2

=
∞∑
n=0

(−k/2
n

)
(−4x)n

=
∞∑
n=0

2nk(k + 2) · · · (k + 2(n− 1))

n!
xn

=
∞∑
n=0

2 · 4 · · · 2n
(n!)2

k(k + 2) · · · (k + 2(n− 1))xn

=
∞∑
n=0

(
2n

n

)
k(k + 2) · · · (k + 2(n− 1))

1 · 3 · · · (2n− 1)
xn .

We define

fn =
k(k + 2) · · · (k + 2(n− 1))

1 · 3 · · · (2n− 1)
.

If k is odd, then we can write

fn =
(2n+ 1)(2n+ 3) · · · (2n+ k − 2)

1 · 3 · · · (k − 2)
.

The expression on the right is a polynomial in n of degree k−1
2

, hence fn = Θ
(
n

k−1
2

)
.

If k is even, then we can write

fn =

(
k

k + 1

k + 2

k + 3
· · · 2n− 2

2n− 1

)
2n(2n+ 2) · · · (2n+ k − 2)

1 · 3 · · · (k − 1)
.

For large n, the expression on the right is a polynomial in n of degree k
2
, and we can

bound the expression in parentheses as(
k

k + 1

k + 2

k + 3
· · · 2n− 2

2n− 1

)2

6
k

k + 1

k + 1

k + 2
· · · 2n− 1

2n
=

k

2n
.

Similarly, we have (
k

k + 1

k + 2

k + 3
· · · 2n− 2

2n− 1

)2

>
k − 1

2n− 1
.

Thus the expression in parentheses is Θ(n−1/2) for large n, and fn = Θ
(
n

k−1
2

)
as desired.

Lemma 14 implies that, for large n, the coefficients of xn in F k(x) are Θ
((

2n
n

)
n

k−1
2

)
.

We next prove a related result for (F (x)− 1)k.
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Lemma 15. For k > 1, if we let (F (x)− 1)k =
∑∞

n=0 f
′
nx

n, then for large n, f ′n =

Θ
((

2n
n

)
n

k−1
2

)
.

Proof. We first note that F (x) is the generating function for the central binomial coeffi-
cients, and

F (x)− 1 =
∞∑
n=1

(
2n

n

)
xn

= x
∞∑
n=0

(
2n+ 2

n+ 1

)
xn

> xF (x) .

Because 0 6 F (x)− 1 6 F (x), we have

xkF k(x) 6 (F (x)− 1)k 6 F k(x) .

The coefficient of xn in xkF k(x) is Θ
((

2(n−k)
n−k

)
(n− k)

k−1
2

)
= Θ

((
2n
n

)
n

k−1
2

)
for large n,

hence the lemma holds.

We now prove a result about the generating function for the spine structure. Recall
the notation for Gs1,...,sr(x) such that s1, . . . , st are all the spines greater than 1, and
s = s1 + · · ·+ st.

Lemma 16. If two generating functions Gs1,...,sr(x) and Gs′1,...,s
′
r′

(x) are equal, then s = s′,
t = t′ and r = r′.

Proof. We refer back to Equation 21, restated here for convenience.

Gs1,...,sr(x) = Θ
(
xs−t−1 (F (x)− 1)r+1 (F (x))2s−2t−1

)
. (24)

From Lemmas 14 and 15, we know that for large n and k > 1, the coefficient of xn in
(F (x)− 1)k and F k(x) have the same behavior as k varies. It follows that if we consider
the coefficient of xn for large n in Gs1,...,sr(x), it should depend only on 2s − 2t + r.
Hence if two generating functions Gs1,...,sr(x), Gs′1,...,s

′
r′

(x) are equal, then we must have
2s− 2t+ r = 2s′− 2t′+ r′. Note that s− t+ r = s1 + · · ·+ sr = s′− t′+ r′ holds trivially,
thus this implies that s− t = s′ − t′ and r = r′.

We now show that s = s′ and t = t′ must also hold if two generating functions are
equal. Since s − t = s′ − t′ and r = r′, from Equation 18, we can cancel out common
factors on both sides of the equality Gs1,...,sr(x) = Gs′1,...,s

′
r′

(x) to get

(
(1 +

√
1− 4x)2

4
√

1− 4x

)t−t′
Ds1−1(x) · · ·Dst−1(x) = Ds′1−1(x) · · ·Ds′

t′−1
(x) . (25)
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Defining

En(x) =

bn/2c∑
m=0

(
1/2

n−m

)(
n−m
m

)(
1− 4x

4

)m
, (26)

we can restate Equation 16 as follows:

Dn(x) =

(
−
√

1− 4x

2x

)(
−1−

√
1− 4x

1− 4x

)n
En(x) . (27)

Substituting this into Equation 25 and simplifying, we get(
−(1 +

√
1− 4x)2

8x

)t−t′
Es1−1(x) · · ·Est−1(x) = Es′1−1(x) · · ·Es′

t′−1
(x) .

Observe that for the expression on the left, the term of lowest degree in x has degree
t′ − t, whereas the lowest degree term in the expression on the right is a constant. Hence
we must have t = t′, from which it follows that s = s′.

We now know that if two generating functions are the same, then s, t, r are the same.
In order to prove Conjecture 3, it suffices to show the following.

Proposition 17. Let s1, . . . , st and u1, . . . , ut be integers > 1 such that s = s1+ · · ·+st =
u1 + · · ·+ ut, and

Ds1(x) · · ·Dst(x) = Du1(x) · · ·Dut(x) . (28)

Then {s1, . . . , st} = {u1, . . . , ut}.

From Equation 27, Proposition 17 can be simplified to a product of the polynomials
En defined in Equation 26. We first show that the En can be written in a simpler form.

Lemma 18. For n > 2, we have

En(x) =

(
−1

2

)n−1
x

bn/2c−1∑
k=0

ck

(
n− 2

2k

)
xk . (29)

Proof. We first define the two-variable generating function E(x, y) as follows.

E(x, y) =
∞∑
n=0

En(x)yn

=
∞∑
k=0

∞∑
m=0

(
1/2

k

)(
k

m

)(
1− 4x

4

)m
yk+m

=

(
1 + y +

(
1

4
− x
)
y2
)1/2

,
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where the last line follows from the identity

(1 + z + w)a =
∞∑
b=0

(
a

b

)
(z + w)b

=
∞∑
b=0

∞∑
c=0

(
a

b

)(
b

c

)
zcwb−c .

We denote the coefficient of yn in E(x, y) by [yn]E(x, y). Observe that if x = 0, then

E(0, y) =
((

1 + 1
2

)2)1/2
= 1 + 1

2
y, hence for n > 2 we have

En(0) = [yn]

(
1 +

1

2
y

)
= 0 .

This implies that En(x) has constant term zero for n > 2. Next, we find the coefficient
of xk in En(x) for k > 1.

[xkyn]E(x, y) = [xkyn]

((
1 +

1

2
y

)2

− y2x
)1/2

= [yn]

(
1/2

k

)
(−1)k

y2k(
1 + 1

2
y
)2k−1

=

(
1/2

k

)(
1− 2k

n− 2k

)
(−1)k

2n−2k

=

(
−1

2

)n−1
ck−1

(
n− 2

2k − 2

)
.

The last line follows from
(
1/2
k

)
= (−1)k−1

22k−1 ck−1 and
(
1−2k
n−2k

)
= (−1)n

(
n−2
2k−2

)
. Summing this

for k > 1, we get the expression for En(x) in Lemma 18.

Next we define the polynomials

Fn(x) =

bn/2c∑
k=0

ck

(
n

2k

)
xk . (30)

From Lemma 18, we have

En(x) =

(
−1

2

)n−1
xFn−2(x) . (31)

Hence to prove Proposition 17, it suffices to show that for n > 2, Fn has a root which
is not shared with any Fm for m < n. This would imply that if we have an equality
Fs1 · · ·Fst = Fu1 · · ·Fut , then the largest of the si’s must be equal to the largest of the
ui’s, and repeating this argument would give that {s1, . . . , st} = {u1, . . . , ut} as desired.
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Let αn be the largest real root of Fn. It is sufficient to show that the αn form a strictly
increasing sequence. Based on numerical computation, this can be verified for n < 40.
Moreover, we observe that αn is negative, and Fn(0) = 1 for all n. Hence to show that
αn+1 > αn, it suffices to show that Fn+1(x) − Fn(x) < 0 for x ∈

(
− 4
n2 , 0

)
, and Fn has

a root in
(
− 4
n2 , 0

)
. Together, along with the fact that Fn(0) = 1, these imply that the

largest root of Fn+1(x) in the interval (− 4
n2 , 0) is greater than the largest root of Fn(x) in

this interval. We next prove these two steps for all n > 40, thus proving Proposition 17.

Lemma 19. For all x ∈
(
− 4
n2 , 0

)
, and n > 40, we have Fn+1(x)− Fn(x) < 0.

Proof. We substitute x = − b
n2 for 0 < b < 4 and claim that

Fn+1

(
− b

n2

)
− Fn

(
− b

n2

)
=

b(n+1)/2c∑
k=1

ck

(
n

2k − 1

)(
− b

n2

)k

=

b(n+1)/2c∑
k=1

(−1)kbk

(k − 1)!(k + 1)!

2

n

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− 2k − 2

n

)

<
4∑

k=1

(−1)kbk

(k − 1)!(k + 1)!

2

n

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− 2k − 2

n

)
.

To prove the above inequality, we prove that the total sum is less than the sum of the first
four terms by showing that the sum of the remaining terms is negative. To this end, we
pair up the 5th and 6th terms of the sum, the 7th and 8th terms, and so on, and we show
that the sum of each pair is negative. Note that if

⌊
n+1
2

⌋
is odd, then the last term in

the sum is negative; and if
⌊
n+1
2

⌋
is even, we pair the last term with the preceding term.

Hence it suffices to show that for k > 5, the following sum is negative.

− bk

(k − 1)!(k + 1)!

(
1− 1

n

)
· · ·
(

1− 2k − 2

n

)
+

bk+1

k!(k + 2)!

(
1− 1

n

)
· · ·
(

1− 2k

n

)
= − bk

(k − 1)!(k + 1)!

(
1− 1

n

)
· · ·
(

1− 2k − 2

n

)(
1− b

k(k + 2)

(
1− 2k − 1

n

)(
1− 2k

n

))
This sum is negative if

b

k(k + 2)

(
1− 2k − 1

n

)(
1− 2k

n

)
<

b

k(k + 2)
< 1 ,

which holds when 0 < b < 4 and k > 5.
Hence in order to show that Fn+1

(
− b
n2

)
− Fn

(
− b
n2

)
< 0, it suffices to show that the

sum of the first four terms, which we denote by β, is negative. We can bound β as follows.

β <
1

n

(
−b+

b2

3
− b3

24

(
1− 1

n

)
· · ·
(

1− 4

n

)
+

b4

360

)
< 0 .
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As n increases, the product
(
1− 1

n

)
· · ·
(
1− 4

n

)
increases, and the middle expression be-

comes smaller. Hence if we prove the inequality for some n = a, then it holds for all n > a.
If we fix n = 40, the term in parentheses is a polynomial in b, and we can numerically
compute its roots to verify that the inequality holds for 0 < b < 4. Thus the desired
inequality holds for n > 40.

Lemma 20. For n > 3, Fn has a root in
(
− 4
n2 , 0

)
.

Proof. Since Fn(0) = 1, in order to prove Lemma 20 it suffices to show that Fn
(
− 4
n2

)
< 0.

We substitute x = − 4
n2 in Fn(x) and claim that

Fn

(
− 4

n2

)
=

bn/2c∑
k=0

ck

(
n

2k

)(
− 4

n2

)k

= 1 +

bn/2c∑
k=1

(−1)k4k

k!(k + 1)!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− 2k − 1

n

)

6 1 +
4∑

k=1

(−1)k4k

k!(k + 1)!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− 2k − 1

n

)
.

The above inequality is obvious when 3 6 n 6 9, so assume n > 10. To prove the
above inequality, it suffices to show that the total sum is less than the sum of the first
four terms or equivalently, the sum of the remaining terms is negative. In order to show
this, we pair up the 5th and 6th terms, the 7th and 8th terms, and so on, and show that
the sum of each pair is negative. If

⌊
n
2

⌋
is odd, then the last term is negative; if

⌊
n
2

⌋
is

even, we can pair it with the term preceding it. Thus it is enough to show that, for k > 5,
the following sum is negative.

− 4k

k!(k + 1)!

(
1− 1

n

)
· · ·
(

1− 2k − 1

n

)
+

4k+1

(k + 1)!(k + 2)!

(
1− 1

n

)
· · ·
(

1− 2k + 1

n

)
= − 4k

k!(k + 1)!

(
1− 1

n

)
· · ·
(

1− 2k − 1

n

)(
1− 4

(k + 1)(k + 2)

(
1− 2k

n

)(
1− 2k + 1

n

))
This sum is negative if

4

(k + 1)(k + 2)

(
1− 2k

n

)(
1− 2k + 1

n

)
<

4

(k + 1)(k + 2)
< 1 ,

which holds for k > 5.
Thus in order to show that Fn

(
− 4
n2

)
< 0, it suffices to show the following inequality.

1− 2

(
1− 1

n

)
+

4

3

(
1− 1

n

)(
1− 2

n

)(
1− 3

n

)
−4

9

(
1− 1

n

)
· · ·
(

1− 5

n

)
+

4

45

(
1− 1

n

)
· · ·
(

1− 7

n

)
< 0 .

The sum on the left is a polynomial in 1
n
, and by numerically computing its roots, we can

verify this inequality for n > 3.
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5 Conclusion

In this paper we proved Rudolph’s conjecture in [5]. This implies that in the set of 132-
avoiding permutations, for patterns p, q of length k, the corresponding binary plane trees
T (p) and T (q) have the same spine structure if and only if p, q are equipopular. This
gives a complete classification of 132-avoiding permutations into equipopularity classes.

It would be interesting to study whether there is an analogous characterization of the
equipopularity classes in 123-avoiding permutations, as well as in the sets of permutations
which avoid patterns of lengths greater than 3.
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[2] Miklos Bóna. The absence of a pattern and the occurrences of another. Discrete
Mathematics & Theoretical Computer Science, 12(2) (2010).
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