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Abstract

We get four quartered Aztec diamonds by dividing an Aztec diamond region by
two zigzag cuts passing its center. W. Jockusch and J. Propp (in an unpublished
work) found that the number of tilings of quartered Aztec diamonds is given by
simple product formulas. In this paper we present a simple proof for this result.
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1 Introduction

In this paper a (lattice) region is a connected union of unit squares in the square lattice.
A domino is the union of two unit squares that share an edge. A (domino) tiling of a
region R is a covering of R by dominos such that there are no gaps or overlaps. Denote
by T(R) the number of tilings of the region R.

The Aztec diamond of order n is defined to be the union of all the unit squares with
integral corners (x, y) satisfying |x|+ |y| 6 n+1. The Aztec diamond of order 8 is shown
in Figure 1(a). In [3] it was shown that the number of tilings of the Aztec diamond of
order n is 2n(n+1).

We are interested in three related families of regions first introduced by Jockusch and
Propp [5] as follows. Divide the Aztec diamond of order n into two congruent parts
by a zigzag cut with 2-unit steps (see Figure 1(b) for an example with n = 8). By
superimposing two such zigzag cuts that pass the center of the Aztec diamond we partition
the region into four parts, called quartered Aztec diamonds. Up to symmetry, there are
essentially two different ways we can superimpose the two cuts. For one of them, we
obtained a fourfold rotational symmetric pattern, and four resulting parts are congruent.
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(a) (b)

Figure 1: The Aztec diamond region of order 8, and its division into two congruent parts.

Denote by R(n) these quartered Aztec diamonds (see Figure 2(a)). For the other, the
obtained pattern has Klein 4-group reflection symmetry and there are two different kinds
of quartered Aztec diamonds (see Figure 2 (b)); they are called abutting and non-abutting
quartered Aztec diamonds. Denote by Ka(n) and Kna(n) the abutting and non-abutting
quartered Aztec diamonds of order n, respectively.

R(8)

R(8)

R(8)

R(8)

(a) (b)

K (8)na

K (8)na

K (8)aK (8)a

Figure 2: Three kinds of quartered Aztec diamonds of order 8.

The number of tilings of a quartered Aztec diamond is given by the theorem stated
below.

Theorem 1 (Jockusch and Propp [5]). For any positive integer n

T(R(4n+ 1)) = T(R(4n+ 2)) = 0, (1)

T(R(4n)) = 2n T(R(4n− 1)) = 2n(3n−1)/2
∏

16i<j6n

2i+ 2j − 1

i+ j − 1
, (2)

T(Ka(4n− 2)) = T(Ka(4n)) = 2n(3n−1)/2
∏

16i<j6n

2i+ 2j − 3

i+ j − 1
, (3)
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T(Ka(4n− 1)) = T(Ka(4n+ 1)) = 2n(3n−3)/2
∏

16i6j6n

2i+ 2j − 1

i+ j − 1
, (4)

T(Kna(4n)) = T(Kna(4n+ 2)) = 2n(3n−1)/2
∏

16i6j6n

2i+ 2j − 1

i+ j − 1
, (5)

T(Kna(4n− 3)) = T(Kna(4n− 1)) = 2n(3n−3)/2
∏

16i<j6n

2i+ 2j − 3

i+ j − 1
. (6)

Juckusch and Propp [5] presented a proof for Theorem 1 by investigating properties
of antisymmetric monotone triangles. In this paper, we prove Theorem 1 by a visual way
using a certain factorization theorem due to Ciucu [1].

2 Proof of Theorem 1

We have 4 recurrences that were proved by Ciucu in [2], Theorem 4.1.

Lemma 2. For all n > 1

T(R(4n)) = 2n T(R(4n− 1)), (7)

T(Kna(4n+ 1)) = 2n T(Kna(4n)), (8)

T(Kna(4n)) = 2n T(Ka(4n− 1)), (9)

T(Ka(4n− 2)) = 2n T(Kna(4n− 3)). (10)

A perfect matching of a graph G is a collection of edges such that each vertex of G is
adjacent to exactly one selected edge. Denote by M(G) the number of perfect matchings
of G.

The dual graph of a region R (on the square lattice) is the graph whose vertices are
unit square in R and whose edges connect precisely two unit squares sharing an edge. By
a well-known bijection between tilings of a region and perfect matchings of its dual graph,
we enumerate perfect matchings of the dual graph of a region rather than enumerating
its tilings directly. Since we are considering only regions in the square lattice, one can
view the dual graphs of those regions as subgraphs of the infinite square grid Z

2.
An edge in a graph G is called a forced edge, if it is in every perfect matching of G.

One can remove some forced edges and the vertices incident to them from a graph to get
a new graph with the same number of perfect matchings. We have the following lemma
by considering forced edges in the dual graphs of quartered Aztec diamonds.

Lemma 3. For any n > 1

T(Ka(4n− 2)) = T(Ka(4n)), (11)

T(Ka(4n− 1)) = T(Ka(4n+ 1)), (12)

T(Kna(4n)) = T(Kna(4n+ 2)), (13)

T(Kna(4n+ 1)) = T(Kna(4n+ 3)). (14)
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Proof. Instead of comparing the numbers of tilings of the regions, we compare the numbers
of perfect matchings of their dual graphs. In each of the four identities, the dual graph
of the region on the left hand side is obtained from the dual graph of the region on the
right hand side by removing forced edges and the vertices incident to them. The proofs of
the identities (11)-(14) are illustrated by Figures 3 (a)-(d), respectively. In these figures,
the forced edges are represented by the bold horizontal edges, and the dual graph of the
region on the left hand side of each identity is represented by the graph consisting of
shaded unit squares.

(a) (b)

(c) (d)

Obtaining

from

K

(9)

a (6)

Ka (8)

Ka

Ka

(7)

(9)

K (8)na

Kna (10)
Kna

Kna (11)

the dual graph of

the dual graph of

Obtaining

from

the dual graph of

the dual graph of

Obtaining

from

the dual graph of

the dual graph of
Obtaining

from

the dual graph of

the dual graph of

Figure 3: Illustrating the proof of Lemma 3.

Next, we consider a well-known family of graphs as follows. Consider a (2m + 1) ×
(2n + 1) rectangular chessboard and suppose that the corners are black. The m × n
Aztec rectangle is the graph whose vertices are the white square and whose edges connect
precisely those pairs of white squares that are diagonally adjacent (see Figure 4(a) for
an example with m = 3 and n = 5). We are interested in the the number of perfect
matchings of two families of holey Aztec rectangles as follows.

Lemma 4 (see [1], (4.4); or [6], Lemma 1). Denote by ARm,n({a1, . . . , ak}) the graph
obtained from the m × n Aztec rectangle by removing all the vertices in the bottom-most
row, except for the a1-st, the a2-nd, . . . , and the am-th vertex (see Figure 4(b) for an
example with m = 3, n = 5, a1 = 1, a2 = 3, a3 = 5). Then

M(ARm,n({a1, . . . , ak})) = 2m(m+1)/2
∏

16i<j6m

aj − ai
j − i

. (15)
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(a) (b) (c)

Figure 4: The Aztec rectangle and two holey Aztec rectangles of order 3× 5. The white
circles indicate the vertices removed.

Next, we consider a variant of the lemma above.

Lemma 5 (see [4], Lemma 2; or [6], Lemma 2). Denote by ARm,n({a1, . . . , ak}) the graph
obtained from the m × n Aztec rectangle by removing all the vertices in the bottom-most
row, and removing the a1-st, the a2-nd, . . . , and the am-th vertex in the next row (see
Figure 4(c), for and example with m = 3, n = 5, a1 = 3, a2 = 4,a3 = 6). Then

M(ARm,n({a1, . . . , ak})) = 2m(m−1)/2
∏

16i<j6m

aj − ai
j − i

. (16)

Next, we quote a useful result due to Ciucu [1]. However, we need some new definitions
and terminologies before presenting the statement of the result.

Consider a weighted graph G (i.e. a graph with a weight assignment on its edges). We
define the weight of a perfect matching of G to be the product of weights on its constituent
edges. We define the operation M(G) in this case to be the sum of the weights of all perfect
matchings of G. We call M(G) the matching generating function of G. We notice that
if all edges of G have weight 1, the matching generating function M(G) is exactly the
number of perfect matchings of G. In other words, the matching generating function is a
generalization of the number of perfect matchings.

Let G be weighted (reflectively) symmetric graph that is also bipartite. Without loss
of generality, we always assume in this paper that the symmetry axis ℓ of G is horizontal.
Assume that the vertices of G lying on ℓ form a cut set (i.e. the removal of those vertices
separates G into two disconnected parts). We say ℓ separates G. Color the vertices in
two vertex classes of the bipartite graph G black and white, so that the leftmost vertex
of G lying on ℓ is black. We define two subgraphs G+ and G− of G as follows.

It is easy to see that if G has perfect matchings, then G must have an even number
of vertices on the symmetry ℓ (otherwise, the numbers of vertices of two vertex classes of
G are different, and G does not have any perfect matchings). Therefore, we assume that
the number of vertices of G lying on ℓ is 2w(G), for some integer w(G) ( w(G) was called
the width of G in [1]). Assume a1, b1, a2, b2, . . . , aw(G), bw(G) are the vertices of G lying on
ℓ as they occur from left to right. Going along the line ℓ from left to right, we delete
the edges of G that touch white ai ’s and black bi’s from above, and delete the edges of
G that touch black ai’s and white bi’s from below (see Figure 5 for an example). We
notice that this process yields deletions of the same kind at the endpoints of each edge
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lying on ℓ. We reduce the weights of those edges by half, and leave the weights of other
edges unchanged. Since ℓ separates G, the resulting graph is disconnected into two parts.
Denote by G+ and G− the part above and below ℓ, respectively.

Theorem 6 (Factorization Theorem, Ciucu [1]). Let G be a bipartite weighted symmetric
graph separated by its symmetry axis. Then

M(G) = 2w(G) M(G+)M(G−). (17)

(a) (b)

ℓ a1 b1

a2 b2

a3

b3

ℓ

1/2 1/2 1/2

G
G+

G−

Figure 5: A symmetric graph G (a), and two graphs G+ and G− after the deleting process
(b).

By applying the Factorization Theorem, we get new properties of quartered Aztec
diamonds as follows.

Lemma 7. For n > 1

M(AR2n,4n(Bn)) = 2n T(R(4n)) T(Ka(4n)), (18)

M(AR2n,4n(An)) = 2n T(R(4n)) T(Kna(4n)), (19)

M(AR2n,4n−1(An)) = 2n T(R(4n− 1)) T(Ka(4n− 1)), (20)

M(AR2n,4n−1(Bn)) = 2n T(R(4n− 1)) T(Kna(4n− 1)), (21)

where An = {1, 3, . . . , 2n− 1} ∪ {2n+ 2, 2n+ 4, . . . , 4n} and where
Bn = {2, 4, . . . , 2n} ∪ {2n+ 1, 2n+ 3, . . . , 4n− 1}.
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(a) (b)

Figure 6: Illustrating the proofs of the equalities (18) and (19) in Lemma 7. The white
circles indicate the vertices removed in the holey Aztec rectangle, and the red dotted
edges indicate the edges deleted.

Proof. Apply the Factorization Theorem to the graph G obtained from AR2n,4n(Bn) by
rotating it 900 clockwise. G has a horizontal symmetry axis ℓ. There are 2n vertices of G
on ℓ, so w(G) = n. We notice that in this case all vertices of G on ℓ are black, and there
are no edges of G lying on ℓ. It is easy to see that G+ is isomorphic to the dual graph
of Ka(4n), and G− is isomorphic to the dual graph of R(4n) (see Figure 6(a) for the case
n = 2). Then by Factorization Theorem, we get

M(AR2n,4n(Bn)) = M(G)

= 2w(G) M(G+)M(G−)

= 2nM(Ka(4n))M(R(4n)). (22)

This implies (18).
Again, we apply the Factorization Theorem to the graph G obtained from AR2n,4n(An)

by rotating 900 clockwise. G has also a horizontal symmetry axis ℓ′. It is easy to see that

G
+
is isomorphic to the dual graph of R(4n), and G

−
is isomorphic to the dual graph

of Kna(4n) (the case n = 2 is illustrated in Figure 6(b)). Moreover, it is easy to see
w(G) = n, all vertices of G on ℓ′ are black, and there are no edges of G lying on ℓ′. Thus,
we obtain

M(AR2n,4n(An)) = M(G)

= 2w(G) M(G
+
)M(G

−
)

= 2n M(R(4n))M(Kna(4n)), (23)
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(a) (b)

Figure 7: Illustrating the proofs of the equalities (20) and (21) in Lemma 7. The white
circles indicate the vertices removed in the holey Aztec rectangle, and the red dotted
edges indicate the edges deleted.

which implies (19).
Similarly, two equalities (20) and (21) can be obtained from applying the Factorization

Theorem to the graphs AR2n,4n−1(An) and AR2n,4n−1(Bn) (after rotated 900 clockwise).
The proofs of the two equalities are illustrated in Figures 7(a) and (b), respectively. In
particular, in Figure 7(a), the part above the symmetry axis is isomorphic to the dual
graph of Ka(4n−1) and the part below the symmetry axis is isomorphic to the dual graph
of R(4n− 1), for n = 2. In Figure 7(b), the part above the symmetry axis is isomorphic
to the dual graph of R(4n − 1) and the part below the symmetry axis is isomorphic to
the dual graph of Kna(4n− 1), for n = 2.

Let S = {s1, s2, . . . , st} be a nonempty finite set of real numbers, we define the operator
∆ by

∆(S) :=
∏

16i<j6t

(sj − si).

Lemma 8. Let An and Bn be two sets defined in Lemma 7. For any n > 1

∆(An)

∆(Bn)
=

∏

16i,j6n

2n+ 1 + 2j − 2i

2n− 1 + 2j − 2i
. (24)

Proof. We can partition An = Cn ⊔ Dn, where Cn = {1, 3, . . . , 2n− 1} and where
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Dn = {2n+ 2, 2n+ 4, . . . , 4n}. Therefore

∆(An) =
∏

i<j∈Cn

(j − i)
∏

i<j∈Dn

(j − i)
∏

i∈Cn,j∈Dn

(j − i) (25)

=
∏

16i<j6n

((2j − 1)− (2i− 1))
∏

16i<j6n

((2j + 2n)− (2i+ 2n))

×
∏

16i,j6n

((2j + 2n)− (2i− 1)) (26)

=
∏

16i<j6n

2(j − i)
∏

16i<j6n

2(j − i)
∏

16i,j6n

(2n+ 1 + 2j − 2i) (27)

= 2n(n−1)

(

∏

16i<j6n

(j − i)

)2
∏

16i,j6n

(2n+ 1 + 2j − 2i). (28)

Similarly, we have a partition of Bn = C ′
n ⊔ D′

n, where C ′
n = {2, 4, . . . , 2n} and D′

n =
{2n+ 1, 2n+ 3, . . . , 4n− 1}. We also get

∆(Bn) =
∏

i<j∈C′

n

(j − i)
∏

i<j∈D′

n

(j − i)
∏

i∈C′

n
,j∈D′

n

(j − i) (29)

=
∏

16i<j6n

((2j)− (2i))
∏

16i<j6n

((2j − 1 + 2n)− (2i− 1 + 2n))

×
∏

16i,j6n

((2j − 1 + 2n)− 2i) (30)

=
∏

16i<j6n

2(j − i)
∏

16i<j6n

2(j − i)
∏

16i,j6n

(2n− 1 + 2j − 2i) (31)

= 2n(n−1)

(

∏

16i<j6n

(j − i)

)2
∏

16i,j6n

(2n− 1 + 2j − 2i). (32)

Then the equality (24) follows.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Since the dual graph G of R(n) is a bipartite graph, the numbers
of vertices in two vertex classes of G must be the same if G admits perfect matchings.
Let us color the vertices in the two vertex classes of G black and white. For definiteness,
we always color the vertex on the northwestern side of the dual graph of R(n) white (see
Figures 8(a) and (b) for the colorings of R(4n+1) and R(4n+2), for n = 2, respectively).

By enumerating particularly, the dual graph of R(4n+1) has (2n+1)2− (n+1) white
vertices and (2n+1)2−n black vertices; the dual graph of R(4n+2) has (2n+1)(2n+2)−n
white vertices and (2n + 1)(2n + 2)− (n + 1) black vertices. It means that the numbers
of vertices in two vertex classes of R(4n + 1) (resp., of R(4n + 2)) are not the same,
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Figure 8: The dual graphs of R(9) and R(10) with two vertex classes (black and white).

so R(4n + 1) (resp., R(4n + 2)) does not have any perfect matchings. This implies the
equality (1).

Next, we prove five equalities (2)-(6) by induction on n > 1.

It is easy to verify those formulas for n = 1. Assume that the formulas hold for some
n > 1, we will show that they hold also for n+ 1.

We have from Lemmas 2 and 3, and induction hypothesis

T(Ka(4n+ 4)) = T(Ka(4n+ 2)) (by Eq. (11))

= 2n+1 T(Kna(4n+ 1)) (by Eq. (10)) (33)

= 22n+1 T(Kna(4n)) (by Eq. (8)) (34)

= 22n+12n(3n−1)/2
∏

16i6j6n

2i+ 2j − 1

i+ j − 1
(by Eq. (5) for n) (35)

= 2(3n
2+3n+2)/2

∏

16i6j6n

(

i+ (j + 1)− 1

i+ j − 1
·
2i+ 2(j + 1)− 3

i+ (j + 1)− 1

)

(36)

= 2(n+1)(3n+2)/22−n
∏

16i6j6n

i+ j

i+ j − 1

∏

16i<j6n+1

2i+ 2j − 3

i+ j − 1
(37)

= 2(n+1)(3(n+1)−1)/22−n

n
∏

j=1

2j

j

∏

16i<j6n+1

2i+ 2j − 3

i+ j − 1
(38)

= 2(n+1)(3(n+1)−1)/2
∏

16i<j6n+1

2i+ 2j − 3

i+ j − 1
. (39)

It means that (3) holds for n+ 1.
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By Lemmas 5, 7 and 8, and the induction hypothesis (equality (5) for n), we obtain

T(Ka(4n+ 5)) = T(Ka(4n+ 3)) (by Eq. (12))

= T(Kna(4n+ 3))
T(Ka(4n+ 3))

T(Kna(4n+ 3))
(40)

= T(Kna(4n+ 1))
T(Ka(4n+ 3))

T(Kna(4n+ 3))
(by Eq. (14)) (41)

= 2n T(Kna(4n))
T(Ka(4n+ 3))

T(Kna(4n+ 3))
(by Eq. (8)) (42)

= 2n T(Kna(4n))
M(AR2n+2,4n+3(An+1))

M(AR2n+2,4n+3(Bn+1))
(by Eqs. (20) and (21)) (43)

= 2n T(Kna(4n))
∆(An+1)

∆(Bn+1)
(by Lemma 5) (44)

= 2n T(Kna(4n))
∏

16i,j6n+1

2n+ 3 + 2j − 2i

2n+ 1 + 2j − 2i
(by Lemma 8) (45)

= 2n

(

2n(3n−1)/2
∏

16i6j6n

2i+ 2j − 1

i+ j − 1

)

∏

16i,j6n+1

2n+ 3 + 2j − 2i

2n+ 1 + 2j − 2i
(46)

= 2n

(

2n(3n−1)/2

∏

16i6j6n+1
2i+2j−1
i+j−1

∏

16i6n+1
2i+2n+1

i+n

)

∏

16j6n+1

2n+ 1 + 2j

2j − 1
(47)

= 2n

(

2n(3n−1)/2
∏

16i6j6n+1

2i+ 2j − 1

i+ j − 1

)

∏

16j6n+1

j + n

2j − 1
(48)

= 2n

(

2n(3n−1)/2
∏

16i6j6n+1

2i+ 2j − 1

i+ j − 1

)

(2n+ 1)!/n!

(2n+ 1)!/(2nn!)
(49)

= 2(n+1)(3(n+1)−3)/2
∏

16i6j6n+1

2i+ 2j − 1

i+ j − 1
. (50)

This implies that (4) holds for n+ 1.

We verify next the equality (5) for n+ 1.

T(Kna(4n+ 6)) = T(Kna(4n+ 4)) (by Eq. (13)) (51)

= 2n+1 T(Ka(4n+ 3)) (by Eq. (9)) (52)

= 2n+1

(

2(n+1)(3(n+1)−3)/2
∏

16i6j6n+1

2i+ 2j − 1

i+ j − 1

)

(by Eq. (4) for n+ 1)

(53)

= 2(n+1)(3(n+1)−1)/2
∏

16i6j6n+1

2i+ 2j − 1

i+ j − 1
. (54)
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Similarly, we can get the equality (6) for n+ 1, as follows:

T(Kna(4n+ 3)) = T(Kna(4n+ 1)) (by Eq. (14)) (55)

= 2−(n+1) T(Ka(4n+ 2)) (by Eq. (10)) (56)

= 2−(n+1)

(

2(n+1)(3(n+1)−1)/2
∏

16i<j6n+1

2i+ 2j − 3

i+ j − 1

)

(by Eq. (3) for n+ 1)
(57)

= 2(n+1)(3(n+1)−3)/2
∏

16i<j6n+1

2i+ 2j − 3

i+ j − 1
. (58)

Finally, we verify the equality (2) for n+ 1.
Denote by [n] := {1, 2, 3, . . . , n} the set of the first n positive integers. Similar to

the proof of Lemma 8, we partition [2n + 2] = En ⊔ Fn, where En = [n + 1] and Fn =
{n+ 2, n+ 3, . . . , 2n+ 2}, and obtain

∆([2n+ 2]) =
∏

i<j∈En

(j − i)
∏

i<j∈Fn

(j − i)
∏

i∈En,j∈Fn

(j − i) (59)

=
∏

16i<j6n+1

(j − i)
∏

16i<j6n+1

((n+ 1 + j)− (n+ 1 + i))

×
∏

16i,j6n+1

((n+ 1 + j)− i) (60)

=

(

∏

16i<j6n+1

(j − i)

)2
∏

16i,j6n+1

(n+ 1 + j − i). (61)

Thus, by Lemmas 4 and 8, we get

M(AR2n+2,4n+4(An+1)) = 2(2n+2)(2n+3)/2 ∆(An+1)

∆([2n+ 2])
(62)

= 2(2n+2)(2n+3)/2

×
2(n+1)n

(

∏

16i<j6n+1(j − i)
)2
∏

16i,j6n+1(2n+ 3 + 2j − 2i)
(

∏

16i<j6n+1(j − i)
)2
∏

16i,j6n+1(n+ 1 + j − i)
(63)

= 2(2n+2)(2n+3)/22(n+1)n
∏

16i,j6n+1

2n+ 3 + 2j − 2i

n+ 1 + j − i
(64)

= 2(2n+2)(2n+3)/22(n+1)n
∏

16t,j6n+1

2t+ 2j − 1

t+ j − 1
(let t := n+ 1− i) (65)

= 2(n+1)(3n+3)
∏

16i,j6n+1

2i+ 2j − 1

i+ j − 1
(let i := t). (66)

(67)
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By (7) and (19), together with the above formula for M(AR2n+2,4n+4(An+1)), we get

2n+1 T(R(4n+ 3)) = T(R(4n+ 4)) (by Eq. (7)) (68)

= 2−(n+1)M(AR2n+2,4n+4(An+1))

T(Kna(4n+ 4))
(by Eq. (19)) (69)

= 2−(n+1)
2(n+1)(3n+3)

∏

16i,j6n+1
2i+2j−1
i+j−1

2(n+1)(3(n+1)−1)/2
∏

16i6j6n+1
2i+2j−1
i+j−1

(by Eq. (5) for n+ 1) (70)

= 2(n+1)(3(n+1)−1)/2
∏

16j<i6n+1

2i+ 2j − 1

i+ j − 1
(71)

= 2(n+1)(3(n+1)−1)/2
∏

16i<j6n+1

2i+ 2j − 1

i+ j − 1
(let i := j and j := i). (72)

This verifies that the equality (2) holds for n+1, and the theorem follows from induction
principle.
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