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Abstract

In a projective plane II; of order ¢, a non-empty point set S; is a t-semiarc if
the number of tangent lines to &; at each of its points is t. If S; is a t-semiarc in
Il;, t < g, then each line intersects S; in at most ¢ + 1 — ¢ points. Dover proved
that semiovals (semiarcs with ¢t = 1) containing ¢ collinear points exist in II, only
if ¢ < 3. We show that if ¢ > 1, then ¢-semiarcs with ¢ + 1 — ¢ collinear points
exist only if t > /¢ — 1. In PG(2, q) we prove the lower bound ¢ > (¢ — 1)/2, with
equality only if S; is a blocking set of Rédei type of size 3(¢ + 1)/2.

We call the symmetric difference of two lines, with ¢ further points removed from
each line, a Vj-configuration. We give conditions ensuring a t-semiarc to contain a V;-
configuration and give the complete characterization of such t-semiarcs in PG(2, ).

Keywords: collineation group; blocking set; semioval

1 Introduction

Semiarcs are natural generalizations of arcs. Let II, be a projective plane of order q. A
non-empty point set S; C Il is called a t-semiarc if for every point P € S; there exist
exactly t lines ¢y, 0y, ..., ¢; such that S; N ¢; = {P} for i = 1,2,...,t. These lines are
called the tangents to S; at P. If a line ¢ meets S; in k > 1 points, then ¢ is called a
k-secant of S;. The classical examples of semiarcs are the semiovals (semiarcs with ¢ = 1)
and point sets of type (0,1,n) (i.e. point sets meeting each line in either 0, or 1, or n
points, in this case t = ¢+ 1 — (s — 1)/(n — 1), where s denotes the size of the point set).
Arcs, unitals, and subplanes are semiarcs of the latter type. For more examples, see [1],
[5] and [10].

*Author was supported by the Hungarian National Foundation for Scientific Research, Grant No. K
81310.
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Because of the huge diversity of the geometry of semiarcs, their complete classification
is hopeless. In [7] Dover investigated semiovals with a ¢-secant and semiovals with more
than one (g—1)-secant. The aim of this paper is to generalize these results and characterize
t-semiarcs with long secants.

Many of the known t-semiarcs contain the symmetric difference of two lines, with ¢ fur-
ther points removed from each line. We will call this set of 2(¢g—t) points a V;-configuration.
Recently in [5] it was proved that in PG(2,¢) small semiarcs with a long secant neces-
sarily contain a Vj-configuration or can be obtained from a blocking set of Rédei type.
Here we give another condition ensuring a t-semiarc to contain a V;-configuration and we
give the complete characterization of such ¢-semiarcs in PG(2,¢). To do this we use the
classification of perspective point sets in PG(2,¢). This is a result due to Korchmdros
and Mazzoca [11] and it is related to Dickson’s classification of the subgroups of the affine
group on the line AG(1, q).

Using a result of Weiner and Szonyi, that was conjectured by Metsch, we prove that
t-semiarcs in PG(2, ¢) with g+ 1 —¢ collinear points exist if and only if t > (¢—1)/2. The
case of equality is strongly related to blocking sets of Rédei type, we also discuss these
connections.

Ift=qg+1,qor ¢g—1, then & is single point, a subset of a line or three non-collinear
points respectively. To avoid trivial cases, we may assume for the rest of this paper that
t<q—1.

2 Semiarcs with one long secant

If S, is a t-semiarc in II,, ¢ < g, then each line intersects &, in at most ¢ + 1 — ¢ points.
In this section we study t-semiarcs containing g + 1 — ¢ collinear points. The following
lemma gives an upper bound for the size of such t-semiarcs.

Lemma 1. If S; is a t-semiarc in I, and ¢ is a (¢+ 1 —t)-secant of S, then |S;\ ¢| < q.

Proof. Let U = &, \ ¢ and let D = ¢\ S;. Through each point of U there pass exactly
t tangents to S; and each of them intersects ¢ in D. This implies t|U| < ¢|D|. Since
|D| = t, we have |U| < q. O

In [7] Dover proved that semiovals with a g-secant exist in II, if and only if ¢ < 3. Our
first theorem generalizes this result and shows that if S; has a (¢ + 1 — t)-secant, then ¢
cannot be arbitrary. For related ideas of the proof, see the survey paper by Blokhuis et.
al. [3], Theorem 3.2.

Theorem 2. If S, is a t-semiarc in 11, with a (¢ + 1 —t)-secant, thent =1 and ¢ < 3 or
t>+q—1.

Proof. Let ¢ be a line that satisfies |S;N¢| =g+ 1 —t and let U = &; \ £. The size of U
has to be at least ¢ — t, otherwise the points of / N'S; would have more than ¢ tangents.
This and Lemma 1 together yield:

g—t<|Ul<q (1)
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Let ¢ — t + k be the size of U, where 0 < k < t. Let 6 be the number of lines that do
not meet U and denote by Ly, Lo, ..., L1 441-s the lines that meet U. For these lines let
e; = |L; N U|. The standard double counting argument gives:

@*+q+1-6

S e=(g-t+ha+1), 2)

=1

¢*+q+1-6
Y oelei—1)=(g—t+k)(g—t+k-1). (3)
i=1
If a line ¢ intersects U in more than one point, then @) := ¢ N { is in S;, otherwise
the points of ¢ N U would have at most ¢ — 1 tangents. The point @) € S; has at least
g—1—(q—t+k—0'NU|)=t—1—k+|¢'nU| tangents, hence |’ NU| < k + 1. This
implies e; < k+ 1, fori=1,2,...,¢> +q+ 1 —J, thus the following holds:

¢*+q+1-6 a*+q+1-6

Y ele=1) < (k1) D (e=1) = (k+D((g—t+k)(g+1) = (¢ +g+1-0)). (4)

=1 =1

The line ¢ does not meet U and the other lines that do not meet U fall into two classes:
there are (¢+ 1 —t)t of them passing through /NS, (the tangents to S; through the points
of /(NS;) and there are tg— (g —t+k)t of them passing through ¢\ S; (the lines intersecting
¢\ S; minus the tangents to S; through the points of U). This implies § = t(¢+1—k)+1,
hence we can write (4) as:

(q=t+k)g—t+k-1)<(k+D(g—t+E)(g+1) = (" +q +tg+1-k)). (5)
Rearranging this inequality we obtain:
C—qt+1—k+ )+ kP —kt—2k+12+1t<0.

The discriminant of the left-hand side polynomial is k* — 2k3 +3k?> +6k+1. If k = 0,1, 2,
then we get ¢ < t+1,t+2,t+4 respectively. Otherwise, we have k* —2k3 +3k? +6k+1 <
(k? — k + 3)2, which yields ¢ < t + k? — k + 1. The maximum value of k is ¢, therefor
g <t>+ 1 follows for k > 3. If t =1, then k < 1, hence ¢ < t+2 = 3. If t = 2, then
k < 2, hence ¢ < t+ 4 = 6. Since there is no projective plane of order 6, in this case we
get ¢ < 5. If t >3 and k < 3, then ¢ <t+4 <t + 1 and this completes the proof. [

Before we go further we need some definitions about blocking sets. A blocking set of
a projective plane is a point set B that intersects every line in the plane. A blocking set
is minimal if it does not contain a smaller blocking set and it is non-trivial if it does not
contain a line. If B is a non-trivial blocking set, then we have |¢ N B| < |B| — ¢ for every
line ¢. If there is a line ¢ such that |¢ N B| = |B| — ¢, then B is a blocking set of Rédei
type and the line ¢ is a Rédei line of B.

In PG(2, ¢q) we can improve the bound in Theorem 2. To do this we use the following
result, conjectured by Metsch [13] and proven by Weiner and Szényi in [15, 16].
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Theorem 3 ([15, 16]). Let U be a point set in PG(2,q), P a point not in U and assume
that there pass exactly r lines through P meeting U. Then the total number of lines
meeting U is at most 1 +rq+ ([U| —7)(g+1—1).

Theorem 4. Let S; be a t-semiarc in PG(2,q). If & has a (¢ + 1 — t)-secant, then
t > (q—1)/2. In the case of equality, S; is a blocking set of Rédei type and its (q+1—1t)-
secants are Rédet lines.

Proof. Let £ be a (¢ + 1 —t)-secant of S; and let U = &; \ £. From Lemma 1, we have:
Ul <q. (6)
The following statements are easy to check:

e the lines intersecting U in more than one point intersect ¢ in £ N &;,
e through each point of /N S; there pass exactly r = ¢ — t lines meeting U,

e the total number of lines meeting U is 6 = |U|t + (¢+ 1 —t)(q — 1).
Applying Theorem 3 for the point set U and for a point P € { N S;, we obtain:

0=[Ult+(g+1=8)(g—1) <1+ (g=t)g+ (Ul —g+ )t +1). (7)

After rearranging, we get:

2¢—2t — 1 < |U|. (8)
Equations (6) and (8) together imply ¢ > (¢ — 1)/2. If t = (¢ — 1)/2, then |U| = g and
there are § = (3¢ + 2q + 3)/4 lines meeting U and (¢ + 1 — t)t = (¢* + 2q¢ — 3)/4 lines
meeting £ N S; but not U. Together with the line ¢ we get the total number of lines in
PG(2,q), thus S; is a blocking set of Rédei type and ¢ is a Rédei line of S;. O

The following result by Blokhuis yields another connection between blocking sets and
semiarcs.

Theorem 5 ([2]). If B is a minimal non-trivial blocking set in PG(2,p), p > 2 prime,
then |B| = 3(p + 1)/2. In the case of equality there pass exactly (p — 1)/2 tangent lines
through each point of B.

Example 6 ([9], Lemma 13.6). Denote by C the set of non-zero squares in GF(q), ¢ odd,
and let S; = {(¢,0,1),(0,—c¢,1),(c,1,0): c € C}U{(1,0,0),(0,1,0),(0,0,1)}. This point
set is called projective triangle and it is a t-semiarc with three (¢ + 1 — t)-secants, where
t = (¢ — 1)/2. This example shows the sharpness of Theorems 4 and 5.

In PG(2,q), g prime, Lovasz and Schrijver proved that blocking sets of Rédei type
of size 3(q + 1)/2 are projectively equivalent to the projective triangle, see [12]. Gécs,
Lovész, and Sz6nyi proved the same if ¢ is a square of a prime, see [8]. These results and
Theorem 4 together yield the following:

Corollary 7 ([8, 12]). Let S; be a t-semiarc in PG(2,q) with a (¢ + 1 — t)-secant. If
t =(q—1)/2 and q = p or ¢ = p*, p prime, then S is projectively equivalent to the
projective triangle.
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3 Semiarcs with two long secants

Throughout the paper, if A and B are two point sets in II,, then AAB denotes their
symmetric difference, that is (A\ B) U (B \ A).

Definition 8. A V;-configuration is the symmetric difference of two lines, with ¢ further
points removed from both lines. Semiarcs containing a V;-configuration fall into two types.
Let S; be a t-semiarc and suppose that there are two lines, ¢; and /5, such that (¢;Aly)NS;
is a Vj-configuration, then:

o S, isof VP typeif 1Nty ¢ S;,
L] St is of ‘/t. type if 61 N 62 € St-
For semiovals, Dover proved the following characterization:

Theorem 9 ([7], Lemma 4.1, Theorem 4.2). Let S be a semioval in I1,. If S is of
V° type, then it is contained in a vertexless triangle. If ¢ > 5 and S; has at least two
(q — 1)-secants, then Sy is of V° type.

As the above result suggests, the characterization of t-semiarcs with two (¢ — t)-
secants works nicely only for semiarcs of V,° type. In Proposition 11 we generalize the
last statement of the above result, but the characterization of V,° type semiarcs seems to
be hopeless in general. In Proposition 12 we consider the case when ¢t = 2, but for larger
values of ¢ we deal only with the Desarguesian case, see Section 4.

Lemma 10. Let S; be a t-semiarc in I1,, t < q, and suppose that there exist two lines, ¢,
and Uy, with their common point in Sy such that |[(1\ (S;Uly)| = n and |€3\ (S¢Uly)| = m.
Then g < t+1+nm/t and |S;\ (€1 Uly)| = q— 1 —t in the case of equality.

Proof. Since S; is not contained in a line, we have n,m > t. If one of n or m is equal to
q, then ¢ < g+t +1<t+ 14 nm/t and the assertion follows. Thus we can assume that
{1 and {5 are not tangents to S;. Let X = &; \ (¢; Uly). Through the point ¢; N ¢5 there
pass exactly ¢ tangents to S;, hence ¢ — 1 — ¢t < |X|. Through the points of X there pass
| X|t tangents to S;, each of them intersects ¢; and ¢ off S;, hence | X |t < nm. These two
inequalities imply ¢ <t + 1+ nm/t and | X| = ¢ — 1 — ¢ in the case of equality. O

Proposition 11. Let S; be a t-semiarc in I1,. If S; has at least two (q — t)-secants and
q > 2t + 3, then S; is of V,° type. If S; has at least two (¢ — t + 1)-secants, then S; is of
Vi® type.

Proof. If S; has at least two (¢ — t)-secants with their common point in &;, then Lemma
10 implies ¢ <t + 1+ (¢t + 1)?/t = 2t + 3+ 1/t. If ¢ > 2t + 3, then this is only possible
when t = 1 and ¢ = 6, but there is no projective plane of order 6. Hence the common
point of the (¢ — t)-secants is not contained in &;, which means that S; is of V;° type. The
proof of the second statement is straightforward. m

Proposition 12. Let S; be a t-semiarc of V,° type in 11,. Then the following hold.
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(a) |Si| # 2q — 2t + 1.
(b) Ift =2, then S; is a Va-configuration or |S;| = 2q — 2 and §; = ({1 U ly) Ally, where

{1 and Uy are two lines in 1y, that is a Fano subplane contained in II,.
(c) If t > 1, then |S;| < 2q —t.

Proof. Let S; be a t-semiarc of V;° type and let ¢; and 5 be two (¢ — t)-secants of S; such
that P := ¢; N {y is not contained in &;. Denote the points of ¢, \ (S; U P) by Ay, ..., A,
the points of 5 \ (S; U P) by By,...,B;. Let X = &\ (¢; U/3) and define the line set
L:={A;B;: 1<1i,j <t} of size t*. Through each point ) € X there pass exactly ¢ lines
of L, otherwise there would be an index i € {1,2,...,t} for which the line QA; meets /5
in S;. But then there would be at most ¢ — 1 tangents to S; through the point QA; N ¢s,
a contradiction.

Suppose, contrary to our claim, that X consists of a unique point denoted by ). Then
@ would have t 4+ 1 tangents: the t lines of £ that pass through @) and the line PQ.

If t = 2, then exactly two of the points of II, \ (¢; U ¢3) are contained in two lines
of L. These are )1 := A1 B; N AyBy and Q2 := A1 By N AyBy. Since | X| > 1, we have
X ={Q1,Qs}. If P were not collinear with @); and @5, then PQ); would be a third tangent
to S at @, for i = 1,2. It follows that the point set Iy := {P, Ay, Ag, By, Ba, Q1, @2} is
a Fano subplane in II,.

To prove (c), define Y C X as YV := {A: A € X, |[APN S| = 1}. The line set £
contains |Y|(t — 1) tangents through the points of Y and (|X| — |Y|)t tangents through
the points of X \ Y, hence

(XI(t=1) < [X[t = Y] = L] -0 <2, (9)

where 0 denotes the number of non-tangent lines in £. Because of (b), we may assume
t > 2, hence | X| < t?/(t — 1) < t + 2 follows. To obtain a contradiction, suppose that
| X| = t+ 1. If this is the case, then (9) implies ¢t < |Y|. If |Y| = ¢, then X \ Y consists of
a unique point, but this contradicts the definition of Y. If |Y| =¢ + 1, then X =Y and
through each point of X there pass a non-tangent line, which is in £. Thus if 6 = 1, then
the points of X are contained in a line £ € £. We may assume that ¢ = A;B;. Then we can
find 2(¢ — 1) other non-tangent lines in £, these are A;B; and B;A; for i =1,2,...,t— 1.
On the other hand § > 1 contradicts (9) and this contradiction proves |X| < ¢. O

The following result shows some kind of stability of semiarcs containing a V;-configu-
ration.

Theorem 13. Let S; be a t-semiarc in 1, t < q, and suppose that there exist two lines,
0y and Uy, such that |01\ (S Uls)| =n and |ly \ (St U b)) = m.

1 IftyNly ¢ S, t > 1 and ¢ > min{n,m} + 2nm/(t — 1), then S; is of V° type.
2. If tyNly € S and g > min{n,m}+nm/t, thent = (¢—1)/2, |Si| =3(q¢+1)/2 and
S; is of V* type.
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We have n = m =t in both cases.

Proof. We may assume m > n. In part 1, we have n > ¢ —1, with equality only if /5 is not
a secant of Sy, i.e. when m € {¢ — 1,¢}. The assumption ¢ > min{n, m} + 2nm/(t — 1)
implies n,m < g — 1, hence this is not the case. It follows that n,m > t holds. In part
2, we have n,m > t, hence the assumption implies n, m < ¢ or, equivalently, the lines ¢,
and /5 are secants of S;. First we show n = m =t in both cases. From this, part 1 follows
immediately.

Suppose, contrary to our claim, that m > t + 1. Denote by P the intersection of
¢, and ly. Let N = {Ny, Na,...N,_,} be the set of points of (¢, \ P)NS; and M =
{My, My, ... My} be the set of points of ¢5 \ (S; U P). Let X = &; \ (¢4 U¥y). Through
each point N; € N there pass exactly m — ¢ non-tangent lines that intersect ¢y in M.

Each of these lines contains at least one point of X. Denote the set of these points by
X (N;). Then we have the following:

o [ X(N)|=zm—t, fori=1,2...,q—n,
o X DUTX(N),

e if P ¢ S, then each point of X is contained in at most m — t 4+ 1 point sets of
{X(N1),..., X(Nyn)},

o if P € §;, then each point of X is contained in at most m — t point sets of

{X(NVy),..., X(Ny—n)}-
In part 1, we have the following lower bound for the size of X:

(g —n)(m —1t)
m—t+1

< | X (10)
On the other hand, through each point of X there pass at least t —1 tangents that intersect
both ¢, \ (S; U P) and M. Hence we have:

nm
X < ——. 11
X< (1)
Summarizing these two inequalities we get:

nm . nm +2nm
N+ —0,
t—1 (m—-t)(t—1) t—1

that is a contradiction.

In part 2, observe that Lemma 10 and ¢ > min{m,n} + nm/t together imply n = t.
If m > t+ 1, then similarly to (10) and (11), we get (¢ — t)(m — t)/(m —t) < |X|
and | X| < mt/t respectively. These two inequalities imply ¢ < ¢ + m, contradicting our
assumption ¢ > min{n, m} + nm/t = t + m, hence m = t follows. If n = m = ¢, then
Lemma 10 implies ¢ < 2t 4+ 1 while our assumption yields ¢ > 2¢, thus t = (¢ — 1)/2.
Since in this case there is equality in Lemma 10, we have |S;| =3¢ —3t =3(¢+1)/2. O
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Let a,, and f,,, denote the lower bounds on ¢ in part 1 and in part 2 of Theorem
13, respectively. The following example shows that the weaker assumptions «,, ., < 3¢
and f3,,,, < 2q, respectively, do not imply the existence of a V;-configuration contained in
the semiarc.

Example 14. We give two examples for t-semiarcs, S;, such that they do not contain a
Vi-configuration and there exist two lines, 1 and 5, with ¢1\ (/,US;) = t and £;\ ((2US;) =
t + 1. To do this, choose a conic C in II;, that is a projective plane of order s > 3. Let
()1 and )5 be two points of C and proceed as follows.

1. Let ¢; be the tangent of C at the point Q);, for = 1,2, and denote ¢1N¢; by P. Take a

point Z € Q1Q9 such that PZ is a secant of C. Then Sy := (£;UlLUCU{Z})\{P, Q2}
is a point set without tangents. Now, if II, is contained in II,, then Sy C Il is a
t-semiarc in II,, with ¢ = ¢ — s. We have {1 N {5 ¢ S; and

(g—s+1)(g—s)
q—s—1

a1 = (¢ — ) +2 < 3q.

2. Let ¢; be the tangent of C at Q1 and let /5 be the line Q1Q)>. Take a point Z €
0\ (¢1UL3), where £ denotes the tangent of C at Q2. Then Sy := (¢;UlLUCU{Z})\{Q2}
is a point set without tangents. As before, if I, is contained in II,, then Sy C Il is
a t-semiarc in Il,, with ¢ = ¢ — s. We have ¢, N/, € §; and

(q—s+1)(qg—s)
q— S

Brir1 = (g —s) + < 2q.

The next example is due to Suetake and it shows that when ¢t = 1, then there is no
analogous result for part 1 of Theorem 13.

Example 15 ([14], Example 3.3). Let A be a proper, not empty subset of GF(q) \ {0},
such that A = —A :={—a:a € A} and |A| > 2. Let B = GF(q) \ (AU {0}) and define
the following set of points in PG(2, q):

S :={(0,a,1),(b,0,1),(c,c,1),(m,1,0): a € A, b€ B, ec,m € GF(q) \ {0}, m # 1}.

Then &; is a semioval with a (¢ — 1)-secant, X = Y, and a (¢ — 2)-secant, Z = 0,
intersecting each other not in S;. Also, &; is not of V° type.

When A = GF(q) \ {0} in the above example, then &) is a vertexless triangle with one
point deleted from one of its sides. This example exists also in non-Desarguesian planes,
but it is a semioval of V° type.

Semiarcs that properly contain a Vj-configuration exist in I, whenever II, contains
a subplane. Some of the following examples were motivated by an example due to Ko-
rchmdros and Mazzocca (see [11], pg. 64).
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Example 16. Let I1°, TTI', ... TI"! be subplanes of II* := II, such that II'"! C II* for
i=1,...,s. Denote by r the order of II° and let ¢; and /5 be two lines in this plane. Let
P =/, N/{y and set

S(0) := (41 Uly) N (MY \ P), S(j) := (L Uly) NIV \ TV, forj =1,...,s.
By I we denote a subset of {1,2,...,s}. We give four examples.

1. Let £ be a line in IT° passing through P and let Z be a subset of (¢ N1I1°) \ {P} of
size at least two. If [ is not empty, then S; := U;e;5(j) U Z is a t-semiarc of V°

type with t = ¢ — %Zje[ 1S()I-

2. Let ¢ be a line in II° that does not pass through P and let Z be a subset of
((NTI°) \ (£1 U Ly) of size at least two. If I is not empty, then S; := U;erS(j) U Z is
a t-semiarc of V,° type with t = ¢ — 3 > jer 1S

3. Let Z be a subset of TI° \ (¢; U ¢3) such that there is no line in 1% passing through
P and meeting Z in exactly one point. If I is a proper subset of {1,2,..., s}, then
S =U,erS(j) U Z U S(0) is a t-semiarc of V,° type with t = ¢ —r — %Eje[ 1S(5)]-

4. Let Z be a subset of TI°\ (¢; U £3) such that for each line ¢ # ¢, (5 through P, { is
a line in I1°, we have [¢ N Z| > 1. Then S; := {P} U S(0) U Z is a t-semiarc of V,*
type with t =q —r.

4 Semiarcs containing a V;-configuration in PG(2, q)

In this section our aim is to characterize t-semiarcs containing a Vj-configuration in
PG(2,q). We will need the following definition.

Definition 17. Let ¢; and /5 be two lines in a projective plane and let P denote their
common point. We say that X; C ¢;\ P and X5 C /5 \ P are two perspective point sets if
there is a point () such that each line through @ intersects both X; and X, or intersects
none of them. In other words, there is a perspectivity which maps X; onto Xj.

Lemma 18. Let S; be a t-semiarc in 11, and suppose that (€1 02)NS; is a Vi-configuration
for some lines (y and ly. If S; L €1 ULy, then S;N (6 \ l) and S;N (2 \ (1) are perspective
point sets and each point of S; \ (€1 U {y) is the centre of a perspectivity which maps
St N (61 \ 62) onto St N (gg \61)

Proof. Let X =8, \ ({1 U/ly) and X; = S, N (¢; \ {;), for {i,j} = {1,2}. For each Q € X,
if there were a line ¢ through @) intersecting X; but not X, then the point N X; € S,
would have at most ¢ — 1 tangents. This shows that each point of X is the centre of a
perspectivity which maps X; onto Xs. If §; € ¢; U/, then X is not empty, hence X; and
X, are perspective point sets. 0
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The following theorem characterizes perspective point sets in PG(2,¢). This result
was first published by Korchmaros and Mazzoca in [11] but we will use the notation of
[4] by Bruen, Mazzocca and Polverino.

Theorem 19 ([4], Result 2.2, Result 2.3, Result 2.4, see also [11]). Let ¢; and {3 be
two lines in PG(2,q), ¢ = p", and let P denote their common point. Let X; C {1 \ P
and Xy C Uy \ P be two perspective point sets. Denote by U the set of all points which
are centres of a perspectivity mapping X1 onto Xo. Using a suitable projective frame in

PG(2,q), there exist an additive subgroup B of GF(q) and a multiplicative subgroup A of
GF(q) such that:

(a) B is a subspace of GF(q) of dimension hy considered as a vectorspace over a subfield
GF(q) of GF(q) with ¢ = p® and d|r. This implies that B is an additive subgroup of
GF(q) of order p" with h = dh,.

(b) A is a multiplicative subgroup of GF(q1) of order n, where n|(p® —1). In this way, B
is invariant under A, i.e. B= AB :={ab: a € A, b € B}.

(c) If G; denotes the full group of affinities of ¢; \ P preserving the set X;, i = 1,2, then
Gi=2G,=2G=GAB)={g:9(y) =ay+b,ac A, be B} <X, where ¥ is the
full affine group on the line AG(1,q).

(d) X; is a union of orbits of G; on ¢;\ P, i = 1,2, and |U| = |G| = np".

(e) For every two integers n, h, such that n|(p® — 1) and d| ged(r, h), there exists in ¥ a
subgroup of type G = G(A, B) of order np", where A and B are multiplicative and
additive subgroups of GF(q) of order n and p", respectively.

(f) G has one orbit of length p" on AG(1,q), namely B, and G acts reqularly on the
remaining orbits, say Oq,00s, ..., O,,, where

:q_ph:pr—h_l
nph n

m

In the sequel we denote by B' the orbit of G; on ¢; \ P corresponding to B and by
0,04, ...,0! the remaining orbits, for i = 1,2. With this notation B' is the image
of B* under the perspectivities with centre in U and also O is the image of Oj for
7 =12,...,m and vice versa.

(9) B* C Xy if and only if B> C X5 and the same holds for the other orbits, i.e. 0]1 C X,
if and only if OF C Xy, for j=1,2,...,m.

(h) If a line £ not through P meets U in at least two points, then { intersects both B! and
B2

Ezactly one of the following cases must occur.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(1) (2014), #P1.60 10



1. Both A and B are trivial. Then U consists of a singleton.

2. A is trivial and B is not trivial. Then U is a set of p* points all collinear with the
point P.

3. B s trivial and A is not trivial. Then U is a set of n points on a line not through
P.

4. A and B are the multiplicative and the additive group, respectively, of a subfield
GF(p") of GF(q). Then

UuB'UB*U{P} =PG(2,p").

5. None of the previous cases occur. Then U is a point set of size np" and of type
(0,1,n,p"), i.e. 0, 1, n, p are the only intersection numbers of U with respect to
the lines in PG(2,q). In addition, using the fact that |U| = np",

o there are exzactly n lines intersecting U in exactly p" points and they are all
concurrent at the common point P of {1 and {5,

e cach line intersecting U in exactly n points meets both B* and B2.

Lemma 20 ([6], Proposition 3.1). If S; is a (¢ — 2)-semiarc in I1,, then it is one of
the following three configurations: four points in general position, the six vertices of a
complete quadrilateral, or a Fano subplane.

In the next theorems we will use the notation of Theorem 19.

Theorem 21. Let S; be a t-semiarc in PG(2,q), ¢ = p", and suppose that ((;Al)NS; is a
Vi-configuration for some lines 1 and ly. To avoid trivial cases, suppose that S; € €1 Uls.

Let X; = 0;N Sy, fori=1,2, and let X = &;\ ({1 Uly). Also let P = {1 N{5. Because
of Lemma 18 we have that X, and X, are perspective point sets and X C U, where U 1is
the set of all points which are centres of a perspectivity mapping X1 onto Xo. Choose a
suitable coordinate system as in Theorem 19 and suppose that the size of G = G(A, B) is
np", i.e. |A| =n and |B| = p", where A and B are the multiplicative and the additive
subgroup of GF(q) associated to the perspective point sets Xy and Xs.

(I) If P ¢ S, i.e. S; is of V) type, then one of the following holds.
(i) X is contained in a line through P that meets U in p" points, h > 1, and we
have 2 < | X| < pt,

(i) X is contained in a line not through P that meets U in n > 2 points and we
have 2 < | X| < n,

(111) | X| > 2 and X is a subset of U such that there is no line through P that
meets X in exactly one point.
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In the first two cases X; = Uj610§ for some not empty subset I C {1,2,...,m} and for
i=1,2. We have t = q — knp", where k = |I| and 1 < k < m, where m = (p"~" —1)/n.

In the third case X; = Uje[O;' U B for some proper subset I C {1,2,...,m} and for
i=1,2. We have t = q— knp" — p", where k =|I|, h>1 and 0 < k <m — 1.

(II) If P € S, i.e. S; is of V* type, then one of the following holds.

(i) S; consists of the siz vertices of a complete quadrilateral or Sy is a Fano
subplane. We have t = q — 2 in both cases.

(ii) €1 and Uy are lines in the subplane PG(2,p") and
S, =PG(2,p" )N (Lul) U X,

where X is a subset of PG(2,p") \ ({1 U ly) such that for each line ¢ # {1, {y
through P, ( is a line in PG(2,p"), we have [{NX| > 1. In this case t = q—p".

(i11) S; is projectively equivalent to the following set of 3(n + 1) points:
Si :={(a,0,1),(0,—a,1),(a,1,0): a € A} U{(1,0,0),(0,1,0),(0,0,1)},
In this case t = q— 1 —n, wheren | q— 1.

The converse is also true, if X1 and Xs are perspective point sets and X is as in one of
the three cases in (I), then X U X1 U Xy is a t-semiarc of V,° type. If S; is as in one of
the three cases in (II), then S; is a t-semiarc of V,* type.

Proof. We begin by proving (I). First assume B' C ¢;\ X;. Then Theorem 19 (g) implies
B? C 0, \ X,. Suppose that there exist three non-collinear points in X, say L, M and N.
Then between the lines LM, LN and M N there are at least two, say LM and LN, not
through P. Theorem 19 (h) and X C U imply that these two lines intersect both B! and
B?. But then through L there pass at most t — 1 tangents, a contradiction. It follows
that X is contained in a line and hence it is as in one of our first two cases. The condition
| X | > 2 comes from Proposition 12 (a).

Now asume B! C X; and hence B? C X,. In this case for every two points M, N € X,
the line M N intersects ¢; in X;, for ¢ = 1,2. Thus the number of tangents through a
point L € X is t if and only if the line LP contains at least one other point of X. Case 3
of Theorem 19 shows that this is not possible when B is trivial, i.e. when A = 0. Hence
X is as in our third case.

Now we prove (II). First assume B! C ¢; \ X; and hence B% C {, \ X,. Suppose that
there exist two points in X, say M and N, not collinear with P. Then the line M N
intersects ¢; and /5 not in S;. But then the number of tangents through M is at most
t — 1, a contradiction. Thus X is contained in a line through P and through P there pass
exactly ¢ — 2 tangents. So S; is a (¢ — 2)-semiarc. According to Lemma 20, S; is as in
(I ().

Now assume B! C X; and hence B> C X,. In this case t = ¢ — knp" — p" for some
k€ {0,1,...,m — 1}, where m is the number of orbits of G of size np" on AG(1,q) \ B.
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Since P has exactly t tangents, there are ¢+ 1 —t non-tangent lines through P. According
to Theorem 19, we have ¢ — 1 — ¢t < n and hence knp" + p" — 1 < n. We distinguish two
subcases.

If h > 0, then n|p" — 1 implies n < p* — 1 and hence knp" = 0. This occurs only if
k=0 and n =p"—1. But n divides p? — 1, where d|h and B is a subspace over the field
GF(p?). This implies d = h, thus B is a subfield and U is as in case 4 of Theorem 19.
This is only possible if &; is as in our second case.

If h =0, then kn < n and U is as in case 3 of Theorem 19. If £ =0, then t = ¢ — 1,
which we excluded. Thus we have £ =1 and ¢t = ¢ —n — 1. This occurs only if &, is as in
our third case (see [4], pg. 56-57). O

Theorem 22. Let S; be a t-semiarc of V,° type in PG(2,q), ¢ = p". Then the following
hold.

(a) If ged(q,t) =1 and ged(q — 1,t — 1) =1, then S; is a Vi-configuration.
(b) If ged(q,t) = 1, then S; is contained in a vertezless triangle.

(c) If ged(q — 1,t) = 1, then S; is contained in a vertezless triangle or in the union of
three concurrent lines without their common point.

Proof. We have p|t in all three cases of Theorem 21 (I), where p" is the size of B. Hence
ged(g,t) = 1 implies p* = 1, i.e. h = 0. This occurs only in the second case of Theorem
21 (I) and this proves (b).

In the first two cases of Theorem 21 (I) we have n|(t — 1) and hence also n|ged(q —
1,t — 1), where n is the size of A. We have seen previously that ged(q,t) = 1 can hold
only in the second case of Theorem 21 (I). But in that case we have n > 2, which is a
contradiction when ged(q — 1, — 1) = 1. This proves (a).

If S; is as in one of the first two cases of Theorem 21 (I), then we are done. So to prove
(c), it is enough to consider Theorem 21 (I)(iii). In this case t = (¢ — 1) — nkp" — (p" — 1)
and hence n|ged(¢—1,t). If ged(g—1,t) =1, then n = 1, i.e. Ais trivial. If this happens,
then case 2 of Theorem 19 implies that S; is contained in the union of three concurrent
lines without their common point. O
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