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A simplicial cell complex K of dimension d is a poset isomorphic to the face poset X of a
d-dimensional simplicial CW-complex X. The topological space X is called the geometric
carrier of K and is also denoted by |K|. If a topological space M is homeomorphic to
|K|, then K is said to be a pseudotriangulation of M. For d > 1, a (d + 1)-colored
contracted graph I' = (V| F) with an edge coloring v : £ — {1,...,d + 1} determines a
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Abstract

We have introduced the weight of a group which has a presentation with number
of relations is at most the number of generators. We have shown that the number
of facets of any contracted pseudotriangulation of a connected closed 3-manifold
M is at least the weight of the fundamental group of M. This lower bound is
sharp for the 3-manifolds RP3, L(3,1), L(5,2), S* x ST x S, §2 x S, §2x S and
S3/Qs, where Qg is the quaternion group. Moreover, there is a unique such facet
minimal pseudotriangulation in each of these seven cases. We have also constructed
contracted pseudotriangulations of L(kq — 1,q) with 4(q + k — 1) facets for ¢ > 3,
k > 2 and L(kq + 1,q) with 4(q + k) facets for ¢ > 4, k > 1. By a recent result
of Swartz, our pseudotriangulations of L(kq + 1,q) are facet minimal when kq + 1
are even. In 1979, Gagliardi found presentations of the fundamental group of a
manifold M in terms of a contracted pseudotriangulation of M. Our construction
is the converse of this, namely, given a presentation of the fundamental group of
a 3-manifold M, we construct a contracted pseudotriangulation of M. So, our
construction of a contracted pseudotriangulation of a 3-manifold M is based on a
presentation of the fundamental group of M and it is computer-free.
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d-dimensional simplicial cell complex /C(I") whose vertices have one to one correspondence
with the colors 1, ...,d+1 and the facets have one to one correspondence with the vertices
in V. If (I') is a pseudotriangulation of a space M then (I',7) is called a crystallization
of M. So, if (I',7) is a crystallization of a d-manifold M then the number of vertices in
the pseudotriangulation (') of M is d + 1. In [15], Pezzana showed the following.

Proposition 1 (Pezzana). Every connected closed PL-manifold admits a crystallization.

Thus, every connected closed pl d-manifold has a contracted pseudotriangulation, i.e., a
pseudotriangulation with d+1 vertices. In this article, we are interested in crystallizations
of connected closed 3-manifolds with minimum number of vertices.

In [6], Epstein proved that the fundamental group of a 3-manifold has a presentation
with the number of relations less than or equal to the number of generators. For such a
group G, we define the weight 1)(G) of G in Definition 10 below. The weight of the trivial
group is 2 and ¥ (G) > 8 for any non-trivial group G as we see later.

Definition 2. For a connected closed 3-manifold M, let (M) be the weight ¢ (7 (M, x))
of the group 7(M, z) for some z in M.

If M and N are homeomorphic then clearly (M) = )(N). Thus, ¥»(M) is a topologi-
cal invariant. Clearly, ¢(S?®) = 2 and, in view of Perelman’s theorem (Poincaré conjecture)
[14], (M) > 8 for M # S®. Here, we have the following.

Lemma 3. Let (M) be as above and let Qg be the quaternion group {£1,+i, +j, +k}.
Then (RP?) = ¢(52x S1) = (S?x S1) = 8, ¢(L(3,1)) = 12, %(L(5,q)) = 16, ¥(53/Qs)
=18, (ST x St x S1) =24 for 1 < ¢ < 2.

For a d-dimensional simplicial cell complex K, let f;(K) denote the number of j-

cells of K for 0 < j < d. Let go(K) == fi(K) — (d + 1) fo(K) + (*1?) and hy(K) =

fi(K) — dfo(K) + (dgl). For a connected simplicial cell complex K, let m(K) be the

minimal number of generators of 7(| K|, *). For a connected closed pl d-manifold M, let

V(M) =min{m : M has a crystallization with m vertices}

= min{ f4(K) : K is a contracted pseudotriangulation of M }.

In [11], Klee proved that ho(K) > (dgl)m(K ) for any d-dimensional normal pseudo-

manifold K whose edge graph is (d + 1)-colorable. Here we have the following.

Theorem 4. Let M be a connected closed 3-manifold. If (I',v) is a crystallization of M
then T has at least (M) vertices. Equivalently, if X is a contracted pseudotriangulation
of M then f5(X) > $(M).

Corollary 5. Let M be a connected closed 3-manifold M and F be a field. If X is a
contracted pseudotriangulation of M then go(X) = ho(X) 2 Y (M) =2 2 (M) -2 >
6m(M) = 651 (M;F).
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Consider the contracted pseudotriangulation K; := K(J;) of S? x S* corresponding
to the crystallization i in Fig. 2 below. Since f35(K;) = 8, it follows that fo(K;) = 16
and hence fi(K;) = 12. Therefore, go(K;) = 12 — 16 + 10 = 6 = 63,(S? x S'; Q). Thus,
the inequalities in Corollary 5 are equalities and (hence) the lower bound is sharp.

From the complete enumeration (obtained by using high-powered computers) of crys-
tallizations of prime 3-manifolds with at most 30 vertices, we know W (M) for all closed
prime 3-manifolds M with (M) < 30 (cf. [3, 12]). In particular, we know that the min-
imal crystallizations of several 3-manifolds are unique and there are 3-manifolds which
have more than one minimal crystallizations (see Remark 25 below). We have proved the
existence and the uniqueness of some crystallizations using presentations of the funda-
mental groups. Consider a group GG which has a presentation with number of relations
is at most the number of generators. From Theorem 4 we know that the number of ver-
tices in any crystallization (I",y) of a closed connected 3-manifold M, whose fundamental
group is G, is at least ¢(G). We have constructed crystallizations on ¢ (G) vertices which
yield presentations of G as mentioned at the end of Section 2.4. We have considered the
groups Z, Zs, Zs, Zs, Z2 and Qg and have obtained such crystallizations. Generalizing
some of these constructions, we have constructed two infinite families of crystallizations
of lens spaces. More explicitly, we have the following.

Theorem 6. (i) If M = RP?, S? x S', S?x S*, L(3,1), L(5,2), S*/Qs or S* x S* x S*
then W(M) = 1(M) and M has a unique contracted pseudotriangulation with (M)
facets.

(ii) Let X be a contracted pseudotriangulation of a connected closed 3-manifold M. If
f3(X) < 8 then M is (homeomorphic to) S, RP?, S? x S' or S?x S*.

Corollary 7. Let X be a contracted pseudotriangulation of a closed 3-manifold M. If M
is S%/Qg, ST x St x S or L(p,q) for some p > 3 then hy(X) > 6m(M).

Theorem 8. (i) V(L(kq—1,q)) <4(k+q—1) fork,q =2 and
(i) W(L(kq+1,q)) < 4(k+q) fork,q>1.

Remark 9. Recently, Swartz proved that W(L(kq + 1,q)) > 4(k + ¢) whenever k, q are
odd ([16]). Thus, ¥(L(kq+1,q)) = 4(k + q) for odd positive integers k,q. We found that
U(L(5,1)) =20 = W(L(7,2)). So, Swartz’s bound is also valid for L(5,1) and L(7,2).
We also found that ¢(Z4) = 14 and ¢ (Z¢) = 1(Z7) = 18. Proofs of these are in earlier
versions of this article in the arXiv (arXiv:1308.6137). We have omitted these proofs
from this version for the sake of brevity.

2 Preliminaries

2.1 Colored Graphs

All graphs considered here are finite multigraphs without loops. If I' = (V| F) is a graph
and U C V then the induced subgraph I'[U] is the subgraph of I" whose vertex set is U and
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edges are those edges of I' whose end points are in U. For n > 2, an n-cycle is a closed
path with n distinct vertices and n edges. If vertices a; and a;,, are adjacent in an n-cycle
for 1 < i < n (addition is modulo n) then the n-cycle is denoted by Cy,(ay,as, ..., a,). A
graph I' is called h-regular if the number of edges adjacent to each vertex is h.

An edge coloring of a graph I' = (V| E) is a map v: E — C such that y(e) # v(f)
whenever e and f are adjacent (i.e., e and f are adjacent to a common vertex). The
elements of the set C are called the colors. If C has h elements then (I',v) is said to be
an h-colored graph.

Let (I',y) be an h-colored graph with color set C. If B C C with k elements then the
graph (V(I'),y'(B)) is a k-colored graph with coloring 7|,-1(). This colored graph is
denoted by I'p. Let (I',7) be an h-colored connected graph with color set C. If T'cyf¢ is
connected for all ¢ € C then (I',v) is called contracted.

Let Ty = (W1, E1) and T’y = (V3, E5) be two disjoint h-regular h-colored graphs with
same color set {1,...,h}. For 1 < i < 2, let v; € V;. Consider the graph I'" which
is obtained from (I'; \ {v1}) U (T's \ {v2}) by adding h new edges e, ..., e, with colors
1,..., h respectively such that the end points of e; are u;; and u;2, where v; and u;; are
joined in T'; with an edge of color j for 1 < j < h, 1 <i < 2. (Here T;\{v;} = Ty[Vi\{v:}].)
The colored graph I is called the connected sum of I'y, I'y; and is denoted by I'y#,,4,[s.

Let I' = (V, E) be a (d + 1)-regular graph with a (d + 1)-coloring v: E — C. Let
x,y € V be joined by k edges e;,..., e, where 1 < k < d. Let B=C\~v({e1,...,ex}).
Let X (resp., Y) be the components of ' containing x (resp., y). If X # Y then I'[{z, y}]
is called a d-dimensional dipole of type k. Dipoles of types 1 and d are called degenerate
dipoles.

Let I' = (V, E) be a (d + 1)-regular graph with a (d + 1)-coloring v: F — C and a
dipole I'l{z, y}] of type k. Let B, X and Y be as above. A (d + 1)-regular graph (I",')
with same color set C' is said to obtained from I' by cancelling the dipole T'[{z,y}] if (i)
I['; is obtained from I'p by replacing X UY by X#,,Y, and (ii) two vertices u,v of I”
are joined by an edge of color ¢ € B if and only if the corresponding vertices of I" are so
(cf. [7]). For standard terminology on graphs see [2].

2.2 Presentation of Groups

Given a set S, let F'(S) denote the free group generated by S. So, any element w of F(.S)
is of the form w = z{'---x5™, where xq,...,2, € S and ¢; = £1 for 1 < i < m and
(j41,€j41) # (xj,—¢;) for 1 < j < m—1. For R C F(S), let N(R) be the smallest
normal subgroup of F(S) containing R. Then the quotient group F(S)/N(R) is denoted
by (S| R). So, (S|T) = (S| R)if N(T) = N(R). We write (S; | R1) = (S2 | R2) only when
F(S1) = F(S) and N(Ry) = N(Rz). For wy,wy € F(5), if wyN(R) = waN(R) € (S| R)
then we write w; = wy (mod R). Two elements wy, we € F(S) are said to be independent
(resp., dependent) if N({w1}) # N({ws}) (resp., N({w:1}) = N({ws})).
For a finite subset R of F(S), let

R:={we N(R) : N(R\ {r})uU{w}) = N(R) for each r € R}. (2.1)
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Observe that §} = () and if R # 0 is a finite set then w := [[,_,7 € R and hence R # (.
Also, {wrw™",wr—w™" : w e F(S)} C {r} for r € F(S).
For w=xa("---25m € F(S), m > 1, let
c(w) = 0 if m=1,
) Jer—eo|+ o F |Emer —Em| +lEm — e i m > 2.

Consider the map \: F(S) — Z* define inductively as follows.

2 if w=40,
AMw) =< 2m—ce(w) if w=a7"- 25, (Tm,em) # (21, —€1), (2.2)
Aw') if w=azT'waz .

Since |e; —¢;| = 0 or 2, e(w) is an even integer and hence A(w) is also even. For w € F'(5),
A(w) is said to be the weight of w. Observe that A(wyws) = A(wqwy) for wy, we € F(S).

Let S = {z1,...,zs} and R = {ry,...,rt} C F(S), where t < s. Let r;;; be an
element in R of minimum weight. Let

O(S, R) == A1) + -+ Ar) + AMregr) + 2(s — 1). (2.3)
For a finitely presented group GG and a non-negative integer ¢, we define
Py(G) :={(S|R) =G : #(R) < #(5) < q}-

For a finitely presented group G, let m(G) be the minimum number of generators of G.
Here, we are interested on those groups G for which P,(G) # 0 for some ¢. Let

w(G) :=min{q : P,(G) # 0}, (2.4a)
U(G;q) == min{p(S, R) : (S|R) € Py(G)} for ¢ = u(G). (2.4b)

Clearly, u(G) = m(G) and ¥(G, q) < ¢(G, u(G)) for all ¢ > p(G). Let
p(G) :==min{g = p(G) : ¥(G;q) <6(g+1)}. (2.5)
So, p(G) is the smallest integer ¢ such that ¥(G;q) < 6(q + 1).

Definition 10. Let GG be a group which has a presentation with the number of relations
less than or equal to the number of generators. Let u(G), ¥(G;q) and p(G) be as above.
Then ¢(G) = max{y(G; p(GQ)),6u(G) + 2} is a positive even integer. The integer ¥ (G)
is said to be the weight of the group G.

Remark 11. Observe that min{p(S,R) : (S|R) = Z, #(R) < #(5) < oo} = 4 =
W(Z,p(Z)) < 8 = Y(Z) (see the proof of Lemma 3). In general, we have min{y(S, R) :
(S R) = G, #(R) < #(5) < oop = min{min{p(S, R) : (S[R) € Py(G)} : w(G) < g <
oo} = min{y)(G;q) : u(G) < ¢ < oo} < Y(G;p(G)) < Y(G).
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2.3 Lens Spaces

Consider the 3-sphere S3 = {(z1,22) € C? : |z1]* + |22]*> = 1}. Let p and ¢ be relatively
prime integers. Then the action of Z, = Z/pZ on S® generated by e*™/P . (2, 2,) =
(e2mi/P 2, €2™4/P ) is free and hence properly discontinuous. Therefore the quotient space
L(p,q) := S3/Z, is a 3-manifold whose fundamental group is isomorphic to Z,. The
3-manifolds L(p,q) are called the lens spaces. It is a classical theorem of Reidemeister
that L(p,q’) is homeomorphic to L(p, q) if and only if ¢’ = +¢*! (mod p).

If Ty, Ty are two solid tori (i.e., each T} is homeomorphic to {(z,w) € C? : |z| =
1, |U)| < 1}) such that (1) T1 ﬂTQ = 8(T1) = (9(T2) = Sl X Sl, (11) 7T1(T1 N TQ,I) =
(o, B|aBa=tp=1), (iii) m(T1,z) = {a) and (iv) m(Ty, z) = (o, B aBa 371 aPB?) (=
(a™mp™), where m,n € Z such that mq — np = 1), for x € Ty N T, then T} U T; is
homeomorphic to L(p, q).

2.4 Crystallizations

A CW-complex X is said to be regular if the attaching maps which define the incidence
structure of X are homeomorphisms. Given a regular CW-complex X, let X be the set
of all closed cells of X together with the empty set. Then X is a poset, where the partial
ordering is the set inclusion. This poset X is said to be the face poset of X. Clearly, if X
and Y are two finite regular CW-complexes with isomorphic face posets then X and Y
are homeomorphic. A regular CW-complex X is said to be simplicial if the boundary of
each cell in X is isomorphic (as a poset) to the boundary of a simplex of same dimension.
A simplicial cell complex K of dimension d is a poset isomorphic to the face poset X of a
d-dimensional simplicial CW-complex X. The topological space X is called the geometric
carrier of K and is also denoted by |K|. If a topological space M is homeomorphic to
| K|, then K is said to be a pseudotriangulation of M. A simplicial cell complex K is said
to be connected if the topological space | K| is path connected (see [1, 13] for more).

Let K be a simplicial cell complex with partial ordering <. If § < a € K then we say
B is a face of a. For aw € K, the set 0o := {7y € K : o # v < a} is a subcomplex of K
with induced partial order and is said to be the boundary of a. If O« is isomorphic to the
boundary complex of an i-simplex then we say that « is an i-cell or a cell of dimension 1.
For 5 € K, the set {o € K : 8 < ¢} is also simplicial cell complex and is said to be the
link of o in K and is denoted by lkg(«).

If all the maximal cells of a d-dimensional simplicial cell complex K are d-cells then
it is called pure. Maximal cells in a pure simplicial cell complex K are called the facets
of K. Clearly, if K is pure of dimension d and « is an i-cell then lky(a) is (d — i — 1)-
dimensional and pure. A pure d-dimensional simplicial cell complex K is said to be a
normal pseudomanifold if each (d — 1)-cell is a face of exactly two facets and the link of
each cell of dimension < d— 2 is connected. Clearly, a pseudotriangulation of a connected
manifold is a normal pseudomanifold.

The 0-cells in a simplicial cell complex K are said to be the vertices of K. If u is a face
of a and u is a vertex then we say u is a vertexr of . Clearly, a d-dimensional simplicial
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cell complex X has at least d + 1 vertices. If a d-dimensional simplicial cell complex X
has exactly d + 1 vertices then X is called contracted.

Let X be a pure d-dimensional simplicial cell complex. Consider the graph A(X) whose
vertices are the facets of X and edges are the ordered pairs ({1, 02}, 7), where o1, 04 are
facets, v is a (d — 1)-cell and is a common face of o1, oo. The graph A(X) is said to be
the dual graph of X. Observe that A(X) is in general a multigraph without loops. On the
other hand, for d > 1, if (I, y) is a (d+ 1)-colored graph with color set C'={1,...,d + 1}
then we define a d-dimensional simplicial cell complex K(I') as follows. For each v € V/(I')
we take a d-simplex o, and label its vertices by 1,...,d 4+ 1. If u,v € V(I') are joined by an
edge e and y(e) = i, then we identify the (d— 1)-faces of o, and o, opposite to the vertices
labelled by i, so that equally labelled vertices are identified together. Since there is no
identification within a d-simplex, this gives a simplicial CW-complex W of dimension d.
So, the face poset (denoted by IC(I")) of W is a pure d-dimensional simplicial cell complex.
We say that (I',v) represents the simplicial cell complex K(I'). Clearly, the number of
i-labelled vertices of C(I') is equal to the number of components of I'cy (3 for each i € C.
Thus, the simplicial cell complex IC(I") is contracted if and only if I' is contracted (cf. [8]).

A crystallization of a connected closed d-manifold M is a (d + 1)-colored contracted
graph (I',7) such that the simplicial cell complex K(I') is a pseudotriangulation of M.
Thus, if (I',7) is a crystallization of a d-manifold M then the number of vertices in IC(I")
is d+ 1. On the other hand, if K is a contracted pseudotriangulation of M then the dual
graph A(K) gives a crystallization of M. Clearly, if (I',7) is a crystallization of a closed
d-manifold M then either T' has two vertices (in which case M is S?) or the number of
edges between two vertices is at most d — 1. From [5], we know the following.

Proposition 12 (Cavicchioli-Grasselli-Pezzana). Let (I',7y) be a crystallization of an n-
manifold M. Then M is orientable if and only if I' is bipartite.

For k> 2, let 1,...,k be the colors of a k-colored graph (I',7). For 1 <i# j <k, [';;
denote the graph I'y; ;; and g;; denote the number of connected components of the graph
[;;. In [9], Gagliardi proved the following.

Proposition 13 (Gagliardi). Let (I',7) be a contracted 4-colored graph with m vertices.
Then (I',~y) is a crystallization of a connected closed 3-manifold if and only if

(1) gij = gm for every permutation ijkl of 1234, and
(i) g1z + g13 + g1a = 2+ m/2.

Let (I',7y) be a crystallization (with the color set C') of a connected closed n-manifold
M. So, I' is an (n + 1)-regular graph. Choose two colors, say, i and j from C. Let
{G1,...,Gsi1} be the set of all connected components of I'cvg; ;3 and {Hy,..., Hyyq}
be the set of all connected components of I';;. Since I' is regular, each H), is an even
cycle. Note that, if n = 2, then I';; is connected and hence H; = I';;. Take a set

S = {z1,..., 25,2511} of s+ 1 elements. For 1 < k < ¢+ 1, consider the word 7 in F(§)
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%

: _ i Ty o0 i J
as follows. Choose a vertex vy in Hy. Let Hy = viejvaeyvselvy - - - €5 vyeyv1, where €

and eg are edges with colors ¢ and j respectively. Define

RPN P PN R G|
Fr 1= Ty, Ty, Ty, Ty Ty (2.6)

where Gy, is the component of I'c (5 ;3 containing vy,. For 1 < k < t+1, let r; be the word

obtained from 7, by deleting 23!, ’s in 7. So, ry is a word in F(S), where S = S\ {zgi1}-

In [10], Gagliardi proved the following.

Proposition 14 (Gagliardi). For n > 2, let (I',v) be a crystallization of a connected
closed n-manifold M. For two colors i,j, let s, t, x,, v, be as above. If m (M, x) is the
fundamental group of M at a point x, then

o (@, | ) if n=2,
7Tl(Z\/j’JE)_{ (1,29, ... xs | 11, ) if n >3,

3 Proofs of Lemma 3, Theorem 4 and Corollary 5

Lemma 3 follows from the next lemma.

Lemma 15. (i) ©(Z) = ¢(Zy) = 8, (ii) ¥(Z3) = 12, (iii) ¥(Zs) = 16, (iv) ¥(Qs) = 18
and (v) ¥(Z?) = 24.

Proof. Any presentations of Z must have at least one generator and (x) is a presentation of
Z. So, (Z) = 1. If (S|R) = Z with #(S) = 1, then R = () and hence, by the definition (see
(2.3)), (S, R) = A0)+2(1—-0) =2+2=4 <12 =6(u(Z) + 1). Therefore, ¥(Z;q) < 4
for all ¢ > 1. Thus, ¥(Z) = max{y(Z, p(Z)),61(Z) + 2} = max{y)(Z, p(Z)),8} = 8.

Let p > 2 be an integer. Since any presentations of Z, must have at least one generator
and (x| 2P) is a presentation of Z,, it follows that u(Z,) = 1. Clearly, if (S = {2} |R =
{r}) is a presentation of Z,, then r; = 2*?. Let 5 € R be of minimum weight. Since
(z|rq) is also a presentation of Z,, r, = x*P. Therefore, by (2.3),

(S, R) = A(r1) + A(r2) = (2p — &(r1)) + (2p — (r2)) = 4p. (3.1)

First assume that p < 3. Since, (S| R) € Pi(Z,) implies (up to renaming) (S, R) =
({z},{z?P}) or ({z},{z7P}), it follows that (Z,;1) = p({z},{z*F}) = 4 < 12 =
6(1(Z,) + 1). This implies that p(Z,) = wu(Z,) = 1. Thus, ¥(Z,y;p(Z,)) = 4p > 8 =
61(Z,) + 2. Therefore, 1)(Z,) = 4p. This proves parts (i) and (ii).

Now, assume p = 5. By the similar arguments as for p < 3, (S| R) € P1(Zs) implies
©(S, R) = 4p = 20. Therefore, ¢(Zs;1) = 20 > 12 = 6(u(Zs) + 1) and hence p(Z;) >
w(Zs) = 1. If we take S = {1, 15} and R = {r; = 2225, ry = 2327} then ¢(S, R) < 16
(since r3 = z122 € R is of weight 6) and (S| R) € Pa(Zs) \ P1(Zs). Thus, 1(Zs;2) < 16 <
18 = 6(2 + 1). Therefore, p(Zs) = 2 and hence (Z;) < 16.

Now, let (S|R) € Pa(Z5) \ P1(Zs) with ¢(S, R) < 16. Since there is no presentation
(S| R) of Zs with (#(95),#(R)) = (2,1), it follows that #(R) = #(S) = 2. Let S =
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{x1,25} and R = {ry,ro}. If \(r;) = 2, then r; must be of the form z' or wix; < for
some j # i € {1,2} and ¢ = £1. Since (S|R) = Zs, it follows that ry = :zcj[‘r’ (mod
{r1}). This implies that A(ry) > )\(x]ﬂ’) = 10. Let r3 € R be of minimum weight.
Then (xq,x9|ry,r3) is also a presentation of Zs and hence (by the same arguments)
A(r3) = 10. Thus, ¢(S, R) = X(r1) + A(r2) + A(r3) = 2+ 10 + 10 = 22, a contradiction.
So, A(r;) = 4 for 1 < i <2 Let A= {wx, 2% 22 225" 227" vy w2y '} and let
A7l ={w™ : w € A}. Then A is a set of pairwise independent elements of weight 4 in
F(S) and w € F(S) is an element of weight 4 imply that w is dependent with an element
of A. Note that Z; has no presentation (S| R) € Py(Zs) \ P1(Zs) with R C AU A™L.
So, at most one of 1, ry, r3 has weight 4 and the weights of other two are at least 6.
Therefore, ¢(S, R) > 16. This implies that 1)(Zs) = 16. This proves part (iii).

Clearly, u(Qg) = 2. If we take S = {x1, 75} and R = {zoz 207", 212007175} then
(S|R) € P2(Qg) and ©(S, R) < 18 (since 2227? € R is of weight 6). Thus ¥(Qg;2) <
18 = 6(2 + 1). Therefore, p(Qs) = 2 and hence 1(Qs) < 18.

Now, let ¢(S,R) < 18, where S = {x;,z2} and (S|R) € P3(Qs). Note that
B = {z12, x%, x%, x%x;l, x%xfl, xlxz_lxlx;l, x%xl, x?x;l, x§$f1x2xf1, x%xQ, x%xfl, x:f, x%,
x%x;lxlxgl, mlatgxlmgl, mgxlxgxl_l, a:lxglxlx;lxla:;l, xlxga:flxgl, a:%ml_Q} is a set of pair-
wise independent elements of weight 4 or 6 in F'(S). It is not difficult to see that w € F'(5)
and 4 < A(w) < 6 imply w is dependent with an element of B. Let B™' = {w™! : w € B}.
Then R C BUB™!. Clearly, the only possible choices of {r{*,r3'} are {z3x]?, x129m125 '},
{22272, 2oz 20x7 '} and {zoz 12027, 212071251}, Then A(r) > 6 for r € RU R. Thus,
©(S, R) > 18. Therefore, 1(Qs) = 18. This proves parts (iv).

Clearly, u(Z*) = 3. If Sy = {a1, 22, 23} and Ry = {wszja; 'z, © 1 <i < j <3} then
(So | Ro) € P3(Z?) and ¢(Sp, Ry) < 24 (since zy25 w3y "wozs b € Ry is of weight 6). Thus
(73 3) < 24 = 6(3 + 1). Therefore, p(Z*) = 3 and hence ¥(Z?) < 24.

Claim. If w € N(Rp) is not the identity then A(w) > 6.

If w € N(Ry) is not the identity then clearly A\(w) # 2. Observe that, if w € F(Sy) with
A(w) = 4, then w is dependent with an element of the set C' = {a?a; ", zoa; 'wsa; ', 2f, i,
:Bixj_lxix,;l . ijk is a permutation of 123}. Since none of the element in C' is in N(Ry),
it follows that N(Ry) has no element of weight 4. This proves the claim.

Now, let ¢(S, R) < 24, where S = {zy, 72,23} and (S| R) € P3(Z®). Then N(R) =
N(Rp) and hence, by the claim, weight of each element of R is at least 6. This implies
©(S,R) > 24 and hence ¢(S,R) = 24. Therefore, (Z*) = 24. This completes the

proof. O

Proof of Theorem 4. Let G = w(M,z) for some x € M. To prove the theorem, it is
sufficient to show that any crystallization of M needs at least (M) = ¢ (G) vertices.

Let (I',v) be a crystallization of M with m vertices and let {1,2,3,4} be the color
set. Then, by Proposition 14, we know that G has a presentation with g;; — 1 generators
and < g;; — 1 relations. Therefore, by the definition of 4(G) (in (2.4a)), u(G) < gi; — 1.
Then, by part (ii) of Proposition 13,

m = 2(g1s + g1 + gua) — 4 > 6(u(G) +1) — 4 = 6u(G) + 2. (3.2)
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From the definition of p(G) (in (2.5)), 6(p(G) + 1) > ¥(G; p(G)). Therefore, m >
6(p(G) + 1) implies m > ¥(G; p(G)). Thus, if m > 6(p(G) + 1) then the result follows
from this and Eq. (3.2).

Now, assume that m < 6(p(G) + 1). Then, by part (ii) of Proposition 13, gi2 + g13 +
g1 < 2+ 3(p(G) + 1). This implies, g1; < p(G) + 1 for some j € {2,3,4}. Assume,
without loss, that g12 < p(G) + 1.

As in Subsection 2.4, let Gy, ..., G441 be the components of I'y, and Hy, ..., Hyq be
the components of I'sy, where ¢ + 1 = g34 = g12 < p(G) + 1. By Proposition 14, G has
a presentation of the form (z1,zo,...,2,|7r1,79,...,7,), Wwhere z;, corresponds to G}, and
71, corresponds to Hy as in Subsection 2.4. Let S = {z1,xa,...,2,} and R = {ry,...,r,}.

For 1 <i < g, let vy = 25! - 27", where x;,,...,2;, € {71,...,2,} and ¢; = £1 for
1<j<n, (Tij,,,541) # (25, —¢;) for 1 < j <n—1and (zi,,en) # (25,, —€1)-

Claim. For 1 < i < g, the length of the cycle H; is at least A(r;).

Consider the word 7; (in F/({x1,..., x4, ¥4+1}) which is obtained from r; by the follow-
ing rules: if ¢; = £;41 for 1 < j < n — 1, then replace xfj by xfjxqfi in r; and if e, = &1,
then replace x;" by x;"x 71 in r;. Observe that 7; is non empty (since 7; is non empty)
and the number of letters in 7; is same as A(r;) (see (2.6) and (2.2)). The claim follows
from this.

Let 7441 be a word corresponding to H,; in I'sy. Then, any ¢q of the relations from the
set {r1,72,...,7q, Tqt1} together with the generators xy, zo, . . ., ¥, give a presentation of G.
This implies, 7,11 € R. Thus, m = A(r1) + A(r2) + - + A(rge1) = 0(S, R) = ¥(G; p(Q)).
Therefore, m > max{y(G; p(G)),6a(G) + 2} = ¢(G). This proves the theorem. O

Proof of Corollary 5. Let f; be the number of i-cells in X. So, fy = 4. Therefore,
g(X)=fi—164+10=fi —6 = fi — 12+ 6 = ho(X). Since |X| is a closed 3-manifold,
each 2-cell is a face of two 3-cells and each 3-cell has four 2-dimensional faces. This implies
that 2f2 = 4f3 Then, 0= f() - f1 + f2 - f3 =4 — f1 + 2f3 - f3. r]:‘hU_S7 f1 = fg + 4 and
hence ¢2(X) = ho(X) = f3 — 2. Therefore, by Theorem 4, g2(X) = ho(X) = f3—2 >
W(M)—=2= (M) —2.

From the definition of ¢(G), ¥(G) = 6u(G)+2 = 6m(G)+2. So, (M) = (n(M, *))
> 6m(m(M,*)) + 2. Since any presentation of m(M, %) has at least §;(M;F) generators,
it follows that m(M) = m(n(M,*)) > 51(M;F). The corollary now follows. O

Remark 16. If a crystallization (I',v) yields a presentation (S| R) then, from the proof
of Theorem 4, we get (S, R) < the number of vertices of I'.

Remark 17. We found that p(Z?*) = 3 and ¢(S, R) = 24, where (S| R) € P3(Z?*). On the
other hand, if S’ = {xy,..., 25} and R’ = {wyx; w523, mywsy , mawgzy ' w2y w52y
rsr1wy ) then (S7| R') € Ps(Z%) \ Py(Z?) with ¢(S’, R') = 24. So, the minimum weight

presentation of Z? is not unique. This is true for most of the groups.
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4 Uniqueness of some crystallizations

Here, we are interested on crystallizations of 3-manifolds M with ¢ (M) vertices. For seven
3-manifolds, we show that there exists a unique such crystallization for each of them.

Throughout this section and behind, 1,2, 3, 4 are the colors of a 4-colored graph (T, )
and g;; is the number of components of I';; = I'y; ;1 for i # j.

Let X be the pseudotriangulation of a connected closed 3-manifold M determined by
a crystallization (I', 7). So, (I',y) is contracted, i.e., I'y; j 1} is connected for 7, j, k distinct.
For 1 < i < 4, we denote the vertex of X corresponding to the color i by v;. We identify
a vertex u of I' with the corresponding facet o, of X. For a facet u (= o,) of X, the
2-face of u not containing the vertex v; will be denoted by w;. Similarly, the edge of u
not containing the vertices v;, v; will be denoted by w;;. Clearly, if Cor(ul, u?, ..., u?) is
a 2k-cycle in I with colors ¢ and j alternately, then uj; = uf;, = --- = u?F in X.

Lemma 18. Let " be a crystallization of a connected closed 3-manifold M with m vertices.
If T has a 2-cycle, then either M has a crystallization with m — 2 vertices or m (M, x)
(for x € M) is isomorphic to the free product Z x H for some group H.

Proof. Without loss of generality, assume that I" has a 2-cycle with color 1 and 2, i.e.,
I'12 has a component of length 2. If this 2-cycle touches two different components of I's4
(say, at vertices v and w, respectively), then I'[{v, w}] is a 3-dimensional dipole of type 2.
Therefore, the crystallization I' can be reduced to a crystallization I' of M with vertex
set V(') \ {v,w} so that T'{, (resp., I's,) has one less components than T'15 (resp., ['34) as
in Fig. 1 (see [7]). Thus, M has a crystallization (namely, T'') with m — 2 vertices.

.\ o o o O o o o ° ’p
v, ' S '
‘..D - 'S .".. 1 oo
N
v 2 —
—_ ’| 3 .........
LR
- o -
. Q . e
(f, ° ° ° \b d, ° ° ° \‘
r It

Figure 1: Cancellation of a dipole of type 2

So, assume that the 2-cycle (say Gy) touches only one component (say, Hy) of I'sy. Let
G, ...,Ggy1 be the components of I'1g and Hy, ..., Hyy 1 be the components of I's4, where
qg+1=gi2 = gsa. Let zy,...,2441 and ry,...,7441 be as in Proposition 14. Then, by
Proposition 14, 7 (M, z) has a presentation of the form (zy,z9,..., 2|72, 73, .., 7¢41)-
Since G touches only Hj, from the definition of 7 in Eq. (2.6), 7, does not contain zi*
for k # 1. Therefore, (x1,xa, ..., xq| T2, ..., Tgr1) = (x1) * (T2, ..., T4| T2, ..., Tgs1). This
proves the lemma. O
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Lemma 19. There exist exactly three 8-vertex crystallizations of non-simply connected,
connected, closed 3-manifolds. Moreover, these three are crystallizations of S? x S*,
S2x S' and RP? respectively.

Proof. Let (I',v) be an 8-vertex crystallization of a non simply connected, connected,
closed 3-manifold M. By Proposition 13, g12 + ¢13 + 914 = 8/2 + 2 = 6 and g¢;; = gy for
i,j, k, [ distinct. Since 71 (M, %) has at least one generator, g;; > 2 for 1 <14 # j < 4. This
implies that g;; = 2 and hence I';; is of the form Cy U Cg or C, L Cy for 1 <@ # 7 < 4.

Case 1: Suppose (I',y) has a 2-cycle. Since M is not simply connected, M has no
crystallization with less than 8 vertices. Therefore, by Lemma 18, (M, x) must have
a torsion free element. Again, g;; = 2 implies m (M, %) is generated by one element and
hence isomorphic to Z. Therefore, M = S? x S or S?x S'. Assume, without loss,
'y = G1 U Gy, where Gy = Cy(vs,v4), Go = Cg(vy,v2, 05,06, v7,08). Then there is no
edge between v3 and vy of color 3 or 4 and (see the proof of Lemma 18), Gy touches only
one component of I'sy. Let I'sy = H; U Hy, where Gy N H; = (0. Let x and y be the
generators corresponding to the components GGy and Gy respectively. If H, is a 4-cycle
then H, represents zy lxy~' by choosing some vy, i,j as in Eq. (2.6). But zylay™!
does not give identity relation by deleting x or y. Therefore, Hs is a 6-cycle and hence
H, is a 2-cycle. Similarly, Go N Hy = (). Since the number of edges between any pair of
vertices is at most 2, we can assume that H; = C(vy,v6). Assume, without loss, that
there is an edge of color 4 between v, and vs. Since I'y4 has two components, this implies
[oy = Cy(vyg, v3,v9,v5) U Cy(vs, v1,v6,v7). So, there exists an edge of color 4 between v,
and vs (resp. v; and vg). Since Hy is a 6-cycle on the vertex set {vy,...,vs} \ {v1, vs},
this implies that Hy = Cg(ve, v3, s, v7, V4, v5) or Cg(ve, v3, V7, Vs, Vg, v5). In the first case,
(I',y) = J1 and in the second case, (I',v) = J, given in Fig. 2 (a) and (b) respectively.
In the first case, I' is bipartite. Therefore, M is orientable and hence equal to S? x S*.
In the second case, I' is not bipartite. Therefore, M is non-orientable and hence equal to
S?x St

Figure 2: Crystallizations J;, J» and Ko

Case 2: Suppose (I',y) has no 2-cycle. So, I is a simple graph. Then, I';; = Cy U C} for
1 <i# 7 <4 Let Gy = Cyay, by, as,by) and Gy = Cy(cy,dy, ¢o, dy) be the components of
[y If ajaq is an edge of color 3 then (since I'y3 = Cy U Cy) bibe must be an edge of color
3. Then I'y93 is disconnected. This is not possible. So, ajas cannot be an edge of color 3.
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Similarly, a;as cannot be an edge of color 4. These imply, a;as can not be an edge of I'.
Assume, without loss, aqc; is an edge of color 4. Then ascs, bidy, bady are edges of color
4 (since 'y = C, U Cy for 1 <@ < 2). If aid; is an edge of color 3, then Cy(by, a1, dy, ;)
would be a component of I'93. This implies I'[{aq, by, ¢1, d; }] would be proper component
of I't234y. This is not possible since (I',7) is a contracted graph. Thus, a;d; is not an
edge of color 3. Similarly, a;ds is not an edge of color 3. These imply a;cs is an edge of
color 3. Similarly, bidy, asc; and bed; are edges of color 3. Then, (I',y) = Ky given in
Fig. 2 (¢). Since G1 = Cy(aq, by, az,be) and Hy = Cy(dy, b, ds, by) is a component of I'sy,
(M, %) = (x| 2?) = Z,. This implies that M = RP?. This completes the proof. O

Lemma 20. There ezists a unique 12-vertex crystallization of L(3,1).

Proof. By Lemma 15 and Theorem 4, L(3,1) has no crystallization with less than 12
vertices. Let (I',7) be a 12-vertex crystallization of L(3,1). Since m(L(3,1),*) (= Zs)
has no torsion free element, by Lemma 18, (I',y) has no 2-cycle. So, I' is a simple graph.
This implies that g;; < 3 for ¢ # j. Also (since Zs has at least one generator) g;; > 2.
By Proposition 13, gi2 + ¢13 + g14 = 12/2 4+ 2 = 8 and g;; = gy for ¢, 7, k, [ distinct. So,
without IOSS, we can assume that gi12 = g34 = 2, gi13 = g4 = 3. Then Fij = C4 LJ 04 LJ C4
for 1 <i<2,3<j <4 Let Gy, Gy be the components of '\, and Hy, Hy be the
components of I'sy such that x;,zs represent the generators corresponding to G, Gs
respectively Since (z; | %) is the only presentation in P (Zs), H; must yield the relations

3 for 1 <i,j < 2. Therefore, G; and H; are 6-cycles. Let G1 Cs(ay, by, ..., a3, bs) and
G2 Ce(ci,dy, . .., c3,d3). Assume, without loss, ajc; € y71(4). Then Cy(bs, ay, ¢, dz) C
I'y4 and hence b3d3 € v~1(4). Similarly, ascs, bads, ascs, bidy € v~ 1(4). Now, ayd; € v71(3)
- C4(G1,d1,01, b1> Clyy = F[{al,bl,cl,dl}] is a component of P{27374}. This is not
possible since I is a contracted graph. So, a;d; & v~1(3). Similarly, a;ds € v~ 1(3). Again,
ajdy € ’}/71(3) — 04(61,1, dg, Ca, bl) CI'y3 = b € ’771(3) — 04(612, bl, Ca, dl) CTl3—
['[{ag, b1, ¢, d1}] is a component of I'yq 543, a contradiction. So, aids & v~*(3). Therefore,
up to an isomorphism, ajco € v71(3). Then bids, ascs, bads, azcy, bsdy € v1(3) and
hence (I',y) = K51 given in Fig. 3 (a). Since Hy = Cg(dy, b1, da, ba, d3, b3) is one of the
two components of I's4, (T', ) yields (z1 | 23) = Z3. So, (T',7) is a crystallization of L(3, 1).
This completes the proof. O
Lemma 21. There exists a unique 16-vertex 4-colored graph (T',~) which is a crystalliza-
tion of a closed connected 3-manifold whose fundamental group is Zs.

Proof. Let (I',v) be a 16-vertex crystallization of a connected closed 3-manifold M and
(M, ) = Zs. Then M can not have a non-trivial 2-fold cover and hence M is orientable.
Also, by Lemma 15, 1»(M) = 16 and hence, by Theorem 4, (', ) is the crystallization of
M with minimum number of vertices. Then, by Lemma 18, (I",y) has no 2-cycle. So, I’
is a simple graph. Since M is orientable, I' is bipartite. By Proposition 14 and Remark
16, (I',y) yields a presentation (S| R) of Zs with ¢(S, R) = 16.

Claim 1. If (S = {x1, 2} | R = {r1,m2}) € Pa(Zs), ©(S, R) = 16 and r3 € R is of minimum
weight then (11,7, 73} = {(ehey ), (307 )= (#he) =) or {(aday may ), (i),
(z2x zox )}, (So, the set {71, 79,73} has 16 choices.)
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Figure 3: Crystallizations K3 ; and Mo 3

Let B be the set as in the proof of Lemma 15. Then w € F(S) and 4 < AM(w) < 6 imply
w is dependent with an element of B. Since I' has no 2-cycle, R has no element of weight
less than 4. Since ¢(S, R) = 16, we can assume that 4 < \(rq), A(r2) < 6. Since (S| R) €
Py(Zs) \ P1(Zs), the only possible choices of {ri', ri'} are {xlzy !, 2327}, {2227, 222y},
{8x5t 22xy), {22a5 w2yt e} or {22y eyt w2a teaay Y. So, if (S| R) € Py(Zs)
and ¢(S,R) = 16, then (ri',r3t,r3') = (zday!, vyt 22wy) or (vlay'zmias!, ziao,
w2 xoxyt). This proves Claim 1.

If g;; = 2 for some ¢ # j then (T',~) yields a presentation (S| R) € P1(Zs) such that
(S, R) = 16 (see Remark 16), which is not possible by Eq. (3.1). Thus, g;; > 3. Since
(by Proposition 13) g2 + g13 + g14 = 16/2 + 2 = 10, we can assume that g = 3 =
913, 914 = 4. In particular, if we choose generators (resp., relations) corresponding to the
components of I'15 (resp., I's4) then (I', v) yields a presentation (S'| R) € Pa(Z5) \ P1(Zs)
with ¢(S, R) = 16.

Claim 2. If x1, x5 are generators corresponding to two components of I'15 then the relations

corresponding to the components of '3y are (z3z; "), 2227, (222,)%2 for some 1,65 €

{1, -1},

Let S, R,r1,79,73 be as in Claim 1. Then by choosing (i,7) = (3,4) or (4,3) as in
Eq. (2.6), by Claim 1, we can assume (r,72,73) = ((z323")*!, zda7’, (2i22)*!) or
(2325 ez ), (zra2) 7t (@327 wozy)*!). In the first case, Claim 2 trivially holds. In
the second case, 7 = (1175 wox5 )", where a3 corresponds to the third component of

' (see Eq. (2.6)). By deleting x5 and renaming x3 by x5 in 73", we get the new relation

w2zt Claim 2 now follows from Claim 1.

To construct 7; as in Eq. (2.6), we can choose, without loss, (i,j) = (4,3). Since
go3 = g14 = 4, I'14 and T'y3 are of the form Cy U Cy LI Cy U Cy. Again, g19 = g34 = gog =
g13 = 3 implies I'13, I'ay, 12 and I'sy are of the form Cy U Cg LI Cg. Let Gy, Go, G3 be the
components of 'y and H;, Hy, H3 be the components of '3, such that x, xs, x3 represent
the generators corresponding to Gy, Ga, G respectively and (zdx; '), 2zt (2229)

represent the relations corresponding to Hy, Hy, H3 respectively.
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Let Gy = Cs(zt, ..., 2%, Gy = Cy(yt, ..., y*) and G5 = Cg(z', ..., 2%). Then to form
the relations (z3z5 )%, z2z7!, (2225)%2, we need to add the following: (i) two edges of
color 4 between G and G, (ii) four edges of colors 4 between G; and Gj, (iii) two edges
of color 4 between Gy and G3. These give all the 8 edges in y~!(4). Therefore, we must
have the following: (a) two 4-cycles between G and G3 in I'y4, (b) one 4-cycle between
Gy and Gy in 'y, (c) one 4-cycle between Go and G3 in I'14. So, the 4-cycle in T'yy is
in between Gy and G3. Thus, up to an isomorphism, y~!(4) is unique. In particular,
we can assume that I'jp4 is as in Fig. 3 (b). Now, y?2® is an edge of color 4 between
Gy and Go. Thus, y' (resp., y?) is in H; or Hy. Assume, without loss, y' € H;. Then
y? € H,. Since I' is bipartite and H, represents xzxglxgxfl, taking v; = 2° as in Eq.
(26), H2 = C4(ZL'57 y2, 26,y4). Since Fgg = 04 (] 04 L 04 (] 04 and Flg = 04 L 06 L 067 we
have xtyt, 2325, 2224, 2123 4321, 2022 € v71(3). Then (I',7y) = My3 of Fig. 3 (b). This
completes the proof. O

Lemma 22. There exists a unique 18-vertex crystallization of S®/Qs.

Proof. Let (I',7) be an 18-vertex crystallization of S3/Qs. By Lemma 15 and Theo-
rem 4, (T,v) is the crystallization of S®/Qg with minimum number of vertices. So,
by Lemma 18, (I',7) has no 2-cycle. Thus, T' is a simple graph. Since S3/Qg is ori-
entable, I' is bipartite. By Proposition 14 and Remark 16, (I',7) yields a presenta-
tion (S| R) of Qs with ¢(S,R) = 18. Again, (I',7) has no 2-cycle implies g;; < 4
for i # j. By Proposition 13, g1 + g13 + giu = 18/2 + 2 = 11. Assume, without
loss, that g1o = 3 and ¢13 = g14 = 4. Therefore, if we choose generators (resp., rela-
tions) correspond to the components of I'15 (resp., I's4) then (I',v) yields a presentation
(S| R) € P2(Qs) \ P1(Qs) with ¢(S, R) = 18. Then by the proof of part (v) in Lemma
15, R = {(22272)%, (21221125 )2, (w001 2927 1)} for some e1,69,63 € {1,—1}. Then,
by choosing (i,7) = (3,4) or (4,3) as in Eq. (2.6), we can assume that the three rela-
tions correspond to components of I'sy are (22272, (21090105 1)%2, o 29] *, for some
£1,62 € {—1,1}. Since I" has no 2-cycle, I';; = C, U Cy U Cy U Cg for 1 < i < 2 and
3 < j < 4. Let Gi,G9,G3 be the components of I'1s and Hy, Hy, H3 be the compo-
nents of I'34 such that z1, 2o, x3 represent the generators corresponding to G, Go, Gz and
(22072)%, woxiw0my t, (2100m105 1) Tepresent the relations corresponding to Hy, Ho, Hs
respectively. Then G;, H; are 6-cycles for 1 < i < 3. Let G; = Cg(aq,...,aq), G2 =
Cs(by,...,bg), G3 = Cg(cy, ..., c6). Again, to form these relations, there are exactly three
edges with color 4 between G; and G, for i # j. Since each of I';4 and I'yy has three
4-cycles, the three edges with color 4 between G; and G; for 7 # j, yield two 4-cycles.
Then, up to an isomorphism, I'1o4 is as in Fig. 4. Same arguments hold for color 3.

To construct 7 as in Eq. (2.6), choose (7,j) = (4,3). Since H, presents the relation
Tox1To7] ", up to isomorphism, the starting vertex v; (as in Eq. (2.6)) is ap or as. If
vy = ag then Hy = Cg(ag, bs, ¢4, as, co,bs) or Cg(asg, bs, ¢y, as,ce,b1). In the first case, if
bycz € v71(3), then bycs lies in a cycle of size at least 8 in I'y3, which is not possible. Then
the 4-cycle in I'13 between Gy and Gz must be Cy(by, bs, ¢5,¢6). But this is not possible
since bycg € 77 1(4). In the second case, if bacs € v7(3), then bycs lies in a cycle of size at
least 8 in I'y3, which is not possible. Then the 4-cycle in I'y3 between G5 and G35 must be
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Figure 4: Crystallization J3 of S3/Qs

Cy(by, bs, c2, c3). Again, this is not possible since bscy € y71(4). Thus, v; = az. Now, if
bacs is an edge of color 3 then ayc; and azbg must be edges of color 3. Then bscy must be
an edge of color 3 to make a 6-cycle in I'13, which is a contradiction (since bsc, is already
an edge of color 4). Thus, Hy = Cs(as, bs, c3, a6, ¢1,bg). Since the three edges with color 3
between Gy and G yield two 4-cycles (in I'13 and T'a3), bycy, bzcoy must be edges of color
3 between GG and G3. To make a 6-cycle in I'13, asby must be an edge of color 3. By
similar arguments, a;cg, ascs, ashs € y~1(3). Then, (T',v) = J3 of Fig. 4.

Now, the components Hy = Cg(as, b3, ¢a, bs, aq, c5) and Hz = Cg(by, ay, cg, by, ¢4, as) of
I'34 yield the relations a:%xl_z and z7o7,7; " respectively. Thus (T, ) yields the presenta-
tion (1, xy | 2202, 11207125 ") = Q. This completes the proof. O

Lemma 23. There exists a unique 24-vertex crystallization of S* x S x S*.

Proof. Let (T',7) be a 24-vertex crystallization of (S')3. By Lemma 15 and Theorem 4,
(T',~) is the crystallization of (S')? with minimum number of vertices. So, by Lemma
18, (T',7) has no 2-cycle. Thus, T' is a simple graph. Since (S')? is orientable, T' is
bipartite. By Proposition 14 and Remark 16, (T',7) yields a presentation (S|R) of Z?
with (S, R) = 24. Since any presentation of Z* has at least three generators, g;; > 4 for
i # j. By Proposition 13, gi2 + g13 + g14 = 14 and g;; = g for 4, j, k, | distinct.
Claim. (T',~) does not yield a presentation (S| R) € P4(Z3) \ P3(Z?) with ¢(S, R) = 24.

Assume (S | R) € P4(Z?) \ P5(Z?), where S = {x1, 79,73, 24}. Then A := {(222;1)*!,
(wjay, oy ) way e (g ) (w12, 27 ¢ 4, j, kL 1 are distinet} is the set
of all relations of weight four. Since I' has no 2-cycle, R has no element of weight two.
This implies that R has at least three elements of weights four. Since Z? has no torsion
element, xlﬁ, (kal_l)2 ¢ R. Consider an element w € RN A. Assume, without loss,
w = (wyz; ). Then (S) | R)) € Ps(Z?), where S; = {z1, 25, 23} and R consists of the
elements 7, where 7 can be obtained from a relation » € R by replacing x4 by w;. Let
A(w) :={r : r € A\ {w*'}}. Observe that the weights of the elements in A(w) are 6 or
8.

Since (S | Ry) € P3(Z3) \ Po(Z?), we have N(R;) = N(Ry), where Ry = {zz027 "5,
T1w3y twyt, Toxszy ‘x5 '} and hence N(R;) has no element of weight less than 6 (see
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the proof of part (v) of Lemma 15). Again, since #(R; N A(w)) > 2, R; has at least
two elements of weights 6 or 8. Observe that D := {xiszxi_lzv;l, :Eiasjlxkxi_lxjxgl,
vy oy eyt wrgey ey eyt {iy g kY = {1,2,3}} is the set of all relations of
weights at most 8 in N(Rp). So, Ry has at least two independent relations from DN A(w).
But DN A(w) does not contain two such elements, a contradiction. This proves the claim.

Figure 5: Crystallization J; of S* x S! x S1

By the claim, g;; # 5 for all 1 <@ # j < 4. So, we can assume that gi» = gi3 = 4 and
g14 = 6. Then all the components of I'y4 and T'y3 are 4-cycles. Let I'\g = Gy LU -+ U Gy
and I'sy = H; U --- U Hy such that xz,..., x4 represent the generators correspond-
ing to G1,...,Gy respectively and ry,...,ry represent the relations corresponding to
Hy, ..., Hy respectively. To construct 7 as in Eq. (2.6), choose (7,5) = (4,3). Thus
(T',7) yields a presentation (S = {1, 29,23} | R = {r1,r2,73}) € P3(Z3) \ Po(Z?) with
©(S,R) = 24. Then R contains three independent relations of weight 6 from the set
{wwju; o, vy gy eyt {i, g, kY = {1,2,3}} (see the proof of part (v) of Lemma
15). Without loss of generality, we can assume that R = {z 202, 25!, (womswy o)L,
(z12327 'zg )2} for some e1, 65 € {1, —1}. Then, all the components of I';y and I's, are 6-
cycles. Similarly, all the components of I';3 and 'y are 6-cycles. Let G = Cg(ay, .. ., ag),
G2 = Cﬁ(bl, ce ,bﬁ), Gg = 06(01, e ,CG> and G4 = Cﬁ(dl, ce ,dﬁ). To form the relations,
there are exactly two edges of color 3 (resp., 4) between G; and G, for 1 < ¢ # j < 4. Then,
up to an isomorphism, I';94 is as in Fig. 5. Now for the relation xlxgxl_lmgl, we can choose
v; = bg as in Eq. (2.6). Then the cycle for z zox7 25! is Hy = Cg(bs, a1, dy, bs, ay, dy).
Since T3 consists of 4-cycles, it follows that agds, asbs, bidg € v~ (3). Then the cycle
for the relation zozsz;, ‘w3t is Hy = Cg(cg, b1, ds, c3, by, d3). Again (since I'p3 is union of
4-cycles and T';3 is union of 6-cycles), dycy, bsca, ascy, ascs € v~ 1(3). Then (T',v) = J, of
Fig. 5.
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Now, the components Hy, Hy and H3z = Cs(cy,ag,ds, ¢y, a3,ds) yield the relations
T1Toxy "y, mowswy wy t and zyxsx; 'zg ! respectively. Thus (I, ) yields the presentation
(w1, To, T3 | 2120007 5 wowszy tag sy teg t) & Z3. This completes the proof. O

Remark 24. The crystallizations ICy 1, K31 and Ms, (in Figures 2 and 3) were orig-
inally found by Gagliardi et al. ([8, 10]). The first two have the following natural
generalization: Consider the bipartite graph I' consists of two disjoint 2p-cycles Gy =
Cop(ar, by, ... ap,b,), Go = Cop(cy, dy, ..., cp, dy) together with 4p edges a;c;, bid;, a;Ciqq,
bid; 14 for 1 <i < p. Consider the edge-coloring v with colors 1,2,3,4 of I' as: y(b;a;1+1) =
V(dicis1) = 1, v(aibi) = v(cidi) = 2, Y(aicirq) = Y(bidirq) = 3 and y(a;c;) = v(bid;) = 4,
1 <4 < p. (Summations in the subscripts are modulo p.) Then, KC,, = (I',v) is a 4p-
vertex crystallization of L(p,¢q), for p > 2 and ¢ > 1. This series is more or less known in
the literature. In the next section, we present some generalizations of M3 .

5 Two series of crystallizations of lens spaces

Generalizing the construction of Mss (Fig. 3 (b)) we have constructed the following
series of crystallizations.

5.1 A 4(k + q — 1)-vertex crystallization of L(kq — 1,q)

Let ¢ > 3. For each k > 2, we construct a 4(k + ¢ — 1)-vertex 4-colored simple graph
My, = (T% 4%) with the color set {1,2,3,4} inductively which yields the presentation
(z,y|x9y~ ', y*z~). For this, we want g¥, = g%, = 3. Then, without loss, gf; = g5, =
k+q—2and g, = g5y = k+q—1, where gfj is the number of components of I‘fj for i # j.
These imply, T'¥, and T'%; must be union of 4-cycles and T'}; (resp., ['5,) has two 6-cycles
and (k+q—4) 4-cycles. Then, by Proposition 13, M, , would be a crystallization of
some connected closed 3-manifold M.

k = 2 case: The crystallization Ms,, is given in Fig. 6. Then, the components of I'}, are
Gy = Oyt ... 2%0), Gy = Cu(yt,...,y*), Gs = Cou(zt,...,2%7) and the components
of T2, are Hy = Co,(y*, 2%, 2% 2% ... 2272 22072) Hy = Cy(x®71 2 2% yY), Hz =
Cog(2201 g3 2t wt . 22073 22073). Let z, y be the generators corresponding to G and
G respectively. To construct 7; (resp., 72) as in Eq. (2.6), choose (i,7) = (4,3) and
vy = y' (resp., v; = x%71). Then H, and H, represent the relations z%y~! and y*zr~!
respectively. Therefore, by Proposition 14, 7(Ma, *) = (z,y | z%y ™, y?x™!) = Zo, 1.

Let T and T3 be the 3-dimensional simplicial cell complexes represented by the color
graphs I'?| ;1 42 53 .3y and T?|y 2 (o1 42,43 533 respectively. Then |T'| and |T3| are solid tori
and the facets (2-cells) of T NTy are z3, x}, 23, 23, 23 23, 23, 23. Thus, |T NTy| is a torus
(see Fig. 7 (b)) with m(|TNTy],v1) = (a = [a], B = [b] | aBa™71), where a = 22,73, and
b=a3,23,23,. Then b = x},xi,2d, = 0(x) ~ 1 in |T|. Therefore, 7, (|T|,v1) = (o, 8| B).

Since af = Ba in |T| N |Ty|, ab ~ ba in |Ty|. Now ab = (23,23, (2}, xi2d,) ~

21,1 _ 2.2 1 2 1 2 2.1 .2 .1 _ .2 2q2¢1
T34 3Te3 = T3, T 3Tp3 ~ T53Tp3. Therefore, a*b ~ aba ~ T33T5313,T3; = T33T53T3,T34 ~

2 2¢.1 _ .2 .1 .1 2 1 3 21,2 .1 _ . 2.3_3._1 2.3 .1 _
To3T13T3y = T3213234 ~ Th3Zp3. LNUS, a°b ~ X3,T3,T53293 = T34T5,Th3293 ~ T34T13293 =
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Figure 6: Crystallization My, of L(2¢ — 1, q)

4 4 1 4 1 L q—1 2q—4 1 q 2 .1 ,.2g-4_ 1 __
Ty L3203 ~ Ty3Zas. oimilarly, a?™'b ~ x53 255. Therefore, a%b ~ 25,205,755 255 =
22,2020 o g2 2R, = 2070l o 2072 = 20l o 20 e =

34L34 Loz 223 34013 Zo3 = Taa M1z Za3 23 %23 = Tp3 Za3 ™ T34 Tiz Za3 =

a—1_1 1 q— _ ..2¢—1 _2q¢— . _ -1 2 o :
T34 213293 2~ 1£L‘324 1Z3§ - T34 2%4 K 281{1026 kl = 2, V\ge llla;/e 513 —221%. ;Thls 1mghes,

2¢—17.2 q—1_2¢-1_2q—4 1 __ _2¢—1_2q—1 _2q—1_1 qa—1_2¢-1_1 _ _2q9.2q_2q _ q
a U ~ a3y 234 Woy Zp3 = Ty 234 o3 o3~ Tyq 213 Zgy = Z34Z13%03 = 0(237) ~

Lin |T3|. Thus m(|Ta|,v1) = (o, B | @?71 82 aBa'f71). This implies that (see the second
paragraph of Subsection 2.3) |T'|U|Tz| = L(2¢ — 1,2). Therefore, Ms , is a crystallization
of L(2¢ —1,2) =2 L(2g — 1,q).

— . 29—1 2q
k = 3 case: Here 275 # 2i3. Let

F3 — (V(I-Q) U {y5’y6’ 22q+1, Z2Q+2}, E(F2) \ {y222q7y3zl7y3y4’ ZQq—lz2q} U {y3y57y5y6’
y6y47 Z2q—122q+1’ z2q+122q+2’ Z2q+22,2q7 y5z2q+1, y622q+27 y222q+1, y322q+2’ y5z2q7 y621})‘

Consider the following coloring +* on the edges of I'*: same colors on the old edges as
in My, color 1 on the edges y®y°, y0y*, 2247 1220H1 2207224 color 2 on the edges y°y",
224122042 color 3 on the edges 32229t 4322072 5224 4621 and color 4 on the edges
y° 220t 6224%2 (see Fig. 7 (a)). Let T be as in the case k = 2 and T3 be the cell complex
represented by the colored graph |y oy (1 42,23 23}

2q—172 2q 2q—1_2q _ _2q+1 _2q+1 _2q 2q+1 _2q _  _2q+2_2q s .
3 TE‘hSe moat I LTI Pl W e P . Il Ehlg glghes,
q— R q— q—1_2q— q ay . .2q.2q q q q.2q q _
a b> = (a%)(a b?) ~ (w35 234 )(2a3 253) = 234234 a3 %oy ~ Z34Z13 Zay =

239229220 — 9(237) ~ 1 in |Ts|. Thus, 7, (|T5],v1) = (a, ] 7152, afa~' 1) and hence
|T|U|T5] = L(3¢—1,3). Therefore, M3, is a crystallization of L(3¢—1,3) = L(3¢—1,q).
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Figure 7: (a) Crystallization M3, of L(3¢ —1,¢) (b) |71 N Tk

k > 4 case: Consider the graph

Fk — (V(Fk—l) U {ka—l’ ka’ 22q+2k—57 Z?q+2k—4} E(Fk—l) \ {ka;—SZQq7 ka_QZI, y2l<;—2y47

2q+2k—6 2q}U {y2k—2y2k—l7y2k—1y2k7y2ky4 202h=6 20+ 25 qu+2k—522q+2k—4

2k—1 2q+2k 5 .2k _2q+2k—4 , 2k—3 _2q+2k—5

2q+2k—4 2q T Y > LY

2k—2,2q+2k—4 , 2k—1,2¢ 2k 1
Y Y2},

z Y

Also, consider the following coloring v* on the edges of I'*: same colors on the old edges

as in My_1 4, color 1 on the edges y?F=2y?k =1 y2kyt 220F2k=6,20+2k=5 ", 2q+2k=4,24 color 2
%3, 20+2k—5 , 2%k—2 . 2q+2k—4
Z ) y Z Y

on the edges 3?8 ~1y?k, 22a+2k=5,20+2k=3 " color 3 on the edges y
y?F=1224 42k 21 and color 4 on the edges y?#~122a+2k=5 42k ;20+2k=4 [ ot T be as in the case
k = 2 and T} be the cell complex represented by the colored graph I' k‘v(pk)\{m17m2@3’z3}.

kq—1pk 2q 2q+2k—4 _2q . ‘Tk|

Claim. a ~ 234213 23 In

We prove the Clalm by induction. It is true for k = 3. Assume that a*~Da-1pk—1 ~

A o, 2 1 T, Now, o ~ Sy & ST gnd an MO~
234213 Za3 = 234 <13 Zoz o~ Zp3 T TZy3 = 23 3. Thus, a* 0" ~
(a9b)(a*F=Da=1p=1) ~ Z§ZZ§Z+2[€_4Z§§+2]€_4Z§§ = 22920724 20 0 | T, The claim now
follows by induction

Since 224 = 217724 in Ty, by the claim we get a®4~10% ~ 1 in |T},|. Thus, m (|T}|,v1) =

(o, B a*16% aBa~tB71) and hence |T| U |Ty| = L(kq — 1,k) = L(kq — 1,q). Therefore,
My, is a crystallization of L(kq — 1, q).

5.2 A 4(k + g)-vertex crystallization of L(kq + 1, q)

Let ¢ > 4. For each k > 1, we construct a 4(k + ¢)-vertex 4-colored simple graph
Nig = (Fk,’y ) with the color set {1,2,3,4} inductively which yields the presentation
(z,y |zl zy*). For this, we want gf, = g%, = 3. Then, without loss, gty = g5, = k+q—1
and gj, = g33 = k + ¢, where g, is the number of components of I'}; for i # j. These
imply, I'}, and T'5; must be union of 4-cycles and T'}; (resp., I'k,) has two 6-cycles and
(k+q—4) 4-cycles. Then, by Proposition 13, N}, would be a crystallization of some
connected closed 3-manifold M;,.
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k = 1 case: The crystallization N, is given in Fig. 8. Then, the components
of T, are Gy = Cy,(z!,...,2%), Gy = Cyu(y',...,y"), Gz = Cy(z',...,2%%) and the
components of I'y, are Hy = Co,(y3, 2%, 2%, 2%, ..., 22772 2%), Hy = Cy(z*7 1 2!, 21 yt),
Hy = Oy, (23, 9%, 2%, y* 2071 22073 2073 24 2% 23). Let x, y be the generators cor-
responding to G; and Gy respectively. To construct 71 (resp., 72) as in Eq. (2.6), choose
(i,7) = (4,3) and v; = y* (resp., v; = 2%71). Then H; and H, represent the relations
29y~! and zy respectively. Therefore, by Proposition 14, m(My,*) = (z,y |29y~ zy) =
L.

Figure 8: Crystallization N , of L(¢+ 1,q)

Let T and T} be the 3-dimensional simplicial cell complexes represented by the color
graphs I (45 44 53 .31 and Ty i) g5 44 43 3} respectively. Then |T'| and |T;] are solid tori
and the facets (2-cells) of T NTy are x5, 23, x5, x4, 3, 23, 23, 23. Thus, |TNT}| is a torus
(see Fig. 9 (b)) with 7, (|TNTy|,v1) = (@ = [a], 8 = [b] | aBa™!37!), where a = x3,23, and
b= z3,23,25,. Then b = z3,23,25, = d(x) ~ 1 in |T|. Therefore, m(|T],v1) = {a, B 3).

Since a8 = Ba in [TNTy|, it follows that ab ~ ba in |T|. Now, ab = (z3,23,)(23,23,23,)
~ Ty aT3y = 23y2isT3 ~ 233%35 = 2y3%a3. Thus, @b ~ aba ~ (253133)(25473,) =
hardaad, w3, ~ zhaliad, = 2labad, ~ zdiad, = 2LaS,. Therefore, a®b ~ aba® ~
Z3T9Tg Ty = ZpaT5aTG4TYy ~ ZpgTaTYy = 2p3T(sTYy ~ Zp3Tiy = 73753 Similarly we

q—2 1 ,.29—2 q—1 q—2 1.,.2¢-2,4 .3 __ 1,292 29-2_3
get,Qa ) b~ “a3la3 - ;thlls, a 52N @ ba R e I
1.2¢-2.3 _ 1. 2¢—1_2q— 1.2¢-1 _ 1,2 q 1.2¢,4 .3
2313 T3y = Zp3Tyy T3y~ Zg3lay = Zp3Tay.  Lherefore, alb ~ z5315313,7%,
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1.,.29,.29 .3 1.2¢9,3 _ 1,2 ,2 1,2 1 .1,2 _ 1,2,.2 1,2 _ .1 .2q

293T 9334 L34 ~~ Z93L13T34 = 293Y13Y34 ™~ 293Ya3 ™~ 234213Y23 = 234Y13Y23 ™~ Z34Y34 = Z34%34-
: 4.3 _ 3.9 3.3.92 _ 3 92 9 3.2 .3 1

Again, a = w3w3 = ?/349351 ~ ?/2519149351 = ?J%ylgy% ~ ?J24y224 = YayZy4- Therefore,
g+l q 3.1 .1 .2 a1 2q _  _2q_2q_ 2q __ q :

a’™b ~ aa'b ~ Yy 2473475y ~ 25214734 = Zpyziszs = 0(z3') ~ 1in |Th]. Thus

T (|Tx],v1) = (o, B| a®™ 3, afa~ 7). This implies that |T| U |Ty| = L(q + 1,1). There-
fore, N1, is a crystallization of L(q + 1,1) = L(¢+ 1, q).
k = 2 case: Here z}, # 237 Let

F2 — (V(Fl) U {ys’yG, 22q+1722q+2}’E<F1) \ {y2z2q’y122q717y1y47ZIZQq} U {y1y67y5y6’

1 2q+2’22q+122q+2’ 2q22q+1 5.2q+1 ,6_.2¢q+2 ,2_2¢+2 ,1_2g+1 ,6 2q7y522q—1})‘

yly° 2z z LY RRIT y0202 g2 202 20t By

To construct N, consider the following coloring v* on the edges of T'?: same colors on
the old edges as in N, color 1 on the edges y'y®, y*y®, 2122072 224224%1 color 2 on the
edges 1°y®, 2297122072 color 3 on the edges y?2z27T2, y1 2201 90224 4522971 and color 4 on
the edges y°221™! 022972 (see Fig. 9 (a)). Let T be as in the case k = 2 and Ty be the
cell complex represented by the colored graph F2|V(F2)\{x5’x4’x37z3}.

v U3 ¢ Uy
7 "
xy /|3
N 3 5 i
v 1 3
TN 1 2
X3 ’
Ty Z9
N N\
1 Uz 7 U1
Figure 9: (a) Crystallization N>, of L(2q + 1, ¢q) (b) |T) N [Ty
q+1 29 1 .29 _ ,2q_2q+2 2q+2 29 2q+2 __ _2q 2q+1 sl : 2q+11,2
Then, a b2~22%2142324 = 22242124“2%4“ N ETEN = it - ;Th;s 1mphezs, a”b
a+17,,q q.2q+1 1 _2q _ _2q 2q+1 2q+1 _2q q.2q q _ .2q.2q 2q __ q :
~ a®Tbalb ~ 254254 234734 = Za4%a4 34 Z3q ™ ZaqZ14 P34 = Z94714734 = d(z") ~ 1in

|Ty|. Thus, m(|Ts|,v1) = (a, 8| a?1 5% afa~t371) and hence |T| U |Tz| = L(2¢ + 1,2).
Therefore, Na, is a crystallization of L(2¢ + 1,2) = L(2q + 1, ¢q).
k > 3 case: Let

sz _ (V(Fk—l) U {y2k+1’ y2k+2’ Z2q+2k—37 22q+2k—2}’ E(Fk—l) \ {y2k22q, y2k—122q—17 y2k—1y4’

2¢+2k—5 _2q 2k—1, 2k4+2  2k+1, 2k+2 _2q+2k—5 _2q+2k—2 _2q+2k—3 2q+2k—2 _2q _2q+2k—3
z 2 ULyt Ty : , 272 :

2k+1_2q+2k—3 | 2k+2 _2q+2k—2 , 2k _2q+2k—2
'Z 7y Z Jy Z )

z
2k—1,2q+2k—3

z
2k+2 qu7

z z

y y Y Y2l gy 2Ry,

To construct Ny, consider the following coloring 7* on the edges of I'*: same colors
on the old edges as in Nj_1,, color 1 on the edges y* = 1y2+2 ¢dy2htl 52a+2k=5,20+2k=2
22q22q+2k‘—3’ color 2 on the edges y2lc—|—1le<:—‘,-27 Z2q+2k—3z2q+2k—2’
y2h 20k 22 k=1 24203 2k42,20 0 2k+1 201 an color 4 on the edges y
y?k+2,20+2k=2 Lot T be as in the case k = 1 and T}, be the cell complex represented by

the colored graph Fk|v(1“k)\{x57x47x37z3}-

color 3 on the edges
2k+1 ,2¢+2k—3
Y
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: kqt+lpk ~, »2a 2q+2k—3 _2q
Claim. a™ 0" ~ 25]21] 254 in | Tk
We prove the claim by induction. It is true for k = 2. Assume that a*~Dat1ph—1 ~
2 20+2(k—1)=3 2 g 2q-+2k—3 _2q gb—D)41p(k—1) 24 2q+2k—4 _
By ot Tl Nowalb sl ] e ety A
q.2q - qk+ q(k—1)+ 1)(,q q ,4q q q __ q .49 -9
<4424 . So, a b" ~ (a b (a b) ~ 234z <34 <34 T 224714 n

|Ty|. The claim now follows by induction.

Since 224 = 219773 in Ty, by the claim we get a®+10% ~ 1 in |T},|. Thus, m(|T}|,v1) =
(o, B| a*t1Br aBa~tB71) and hence |T| U |Ty| = L(kq+ 1,k) = L(kq + 1,q). Therefore,
Ny, is a crystallization of L(kq + 1, q).

A few days after we posted the first version of this article (arXiv:1308.6137) in
the arXiv, Casali and Cristofori posted an article on complexity of lens spaces [4] in
the arXiv (arXiv:1309.5728). In that paper, the authors constructed crystallizations of
L(p, q) with 4S5(p, q) vertices, where S(p,q) denotes the sum of all partial quotients in
the expansion of ¢/p as a regular continued fraction. In particular, they have constructed
L(kq—1,q) with 4(k 4 ¢ — 1) vertices for k,q > 2 and L(kq + 1,q) with 4(k + q) vertices
for k,q > 1. Their constructions are different from ours.

Remark 25. From the enumeration of crystallizations of prime 3-manifolds with at most
30 vertices (see [3, 12]), we know that W(L(9,4)) = 24 and ¥(L(13,4)) = 28. From our
constructions in Subsections 5.1 and 5.2, we know My 5 and Ny, are 24-vertex crystal-
lizations of L(9,4). The induced subgraphs of My on 2-colored edges are of the form
2C10 U Cy, 2Cs U 3Cy or 6Cy and such subgraphs of Na 4 are of the form Cig L Cs U Cg,
2Cs3Cy or 6Cy. So, My 5 and Na 4 are non-isomorphic. Thus, L(9,4) has more than one
(non-isomorphic) crystallizations with minimum number of vertices. The constructions in
[4] give a 28-vertex of crystallization of L(13,4) with {g12, 13, 14} = {4,5,7}. Observe
that N34 is also a 28-vertex of crystallization of L(13,4) with {g12, ¢13, g14} = {3,6,7}.
Thus, these two crystallizations of L(13,4) are non-isomorphic. So, the minimal crys-
tallization N34 of L(13,4) is not unique. Also, from the list of crystallizations in [12],
we know that there are several 3-manifolds having more than one crystallizations with
minimum number of vertices.

6 Proofs of Theorems 6, 8 and Corollary 7

Proof of Theorem 6. Let M3 be as in Subsection 5.1. Then, My 3 is a 16-vertex
crystallization of L(5,3) = L(5,2). Part (i) now follows from Lemmas 15, 19, ..., 23.

If f5(X) < 8 then, by Theorem 4, ¢)(M) < 8 and hence (M) = 2. Therefore
7(M,*) = {0} and hence, by Perelman’s theorem (Poincaré conjecture), M = S3. Part
(i) now follows from Lemma 19. O

Proof of Corollary 7. From the proof of Lemma 22, m(Qs) = 2. Therefore, if X is a
pseudotriangulation of 5% /Qg then, by Corollary 5 and Lemma 3, ho(X) > 1(S%/Qg)—
18 —2 > 12 = 6m(S?/Qs).

Again, if X is a pseudotriangulation of S* x S x S* then, by Corollary 5 and Lemma
3, ha(X) = (St x St x S1) —2=24—-2>6 x 3 =06m(S* x St x ST).
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For p, ¢ relatively prime and p > 3, let X be a pseudotriangulation of L(p,q). Then,
by Theorem 6 (ii) and Corollary 5, ho(X) = ¥(L(p,q)) —2>8—-2=6x1=6m(L(p,q))
for p > 3. This completes the proof. O

Proof of Theorem 8. Let K, , be as in Remark 24. Then K3 ; is a 12-vertex crystallization
of L(3,2). Part (a) now follows by the constructions in Subsection 5.1.

Again, K,11,4 18 a 4(¢ + 1)-vertex crystallization of L(g + 1, ¢) for 1 < ¢ < 3. Part (b)
now follows by the constructions in Subsection 5.2. U

Acknowledgement

This work is supported in part by UGC Centre for Advanced Studies. The first author
thanks CSIR, India for SPM Fellowship. The authors thank M. R. Casali and P. Cristofori
for pointing out an error in an earlier version of this paper. The authors also thank the
anonymous referee for many useful comments.

References

[1] A. Bjorner, Posets, regular CW complexes and Bruhat order, European J. Combin.
5 (1984), 7-16.

[2] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, New York, 2008.

[3] M. R. Casali and P. Cristofori, A catalogue of orientable 3-manifolds triangulated by
30 coloured tetrahedra, J. Knot Theory Ramification 17 (2008), 1-23.

[4] M. R. Casali and P. Cristofori, A note about complexity of lens spaces,
arXiv:1309.5728, 2013.

[5] A. Cavicchioli, L. Grasselli and M. Pezzana, Su di una decomposizione normale per
le n-varieta chiuse, Boll. Un. Mat. Ital. 17-B (1980), 1146-1165.

[6] D. B. A. Epstein, Finite presentations of groups and 3-manifolds, Quart. J. Math.
Ozford 12 (1961), 205-212.

[7] M. Ferri and C. Gagliardi, Crystalization moves, Pacific J. Math. 100 (1982), 85-104.

[8] M. Ferri, C. Gagliardi and L. Grasselli, A graph-theoretic representation of PL-
manifolds — a survey on crystallizations, Acquationes Math. 31 (1986), 121-141.

9] C. Gagliardi, A combinatorial characterization of 3-manifold crystallizations, Boll.
Un. Mat. Ital. 16-A (1979), 441-449.

[10] C. Gagliardi, How to deduce the fundamental group of a closed n-manifold from a
contracted triangulation, J. Combin. Inform. System Sci. 4 (1979), 237-252.

[11] S. Klee, The fundamental group of balanced simplicial complexes and posets, Elec-
tron. J Combin. 16 (2) (2009), #R7.

[12] S. Lins, Gems, computers and attractors for 3-manifolds, Series on Knots and Ev-
erything 5, World Scientific, River Edge, NJ, 1995.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(1) (2014), #P1.61 24


http://arxiv.org/abs/1309.5728

[13] S. Murai, Face vectors of simplicial cell decompositions of manifolds, Israel J. Math.
195 (2013), 187-213.

[14] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain
three-manifolds, arXiv:math/0307245, 2003.

[15] M. Pezzana, Sulla struttura topologica delle varieta compatte, Atti Sem. Mat. Fis.
Univ. Modena 23 (1974), 269-277.

[16] E. Swartz, The average dual surface of a cohomology class and minimal simplicial
decompositions of infinitely many lens spaces, arXiv:1310.1991, 2013.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(1) (2014), #P1.61 25


http://arxiv.org/abs/math/0307245
http://arxiv.org/abs/1310.1991

	Introduction and Results
	Preliminaries
	Colored Graphs
	Presentation of Groups
	Lens Spaces
	Crystallizations

	Proofs of Lemma 3, Theorem 4 and Corollary 5
	Uniqueness of some crystallizations
	Two series of crystallizations of lens spaces
	A 4(k+q-1)-vertex crystallization of L(kq-1, q)
	A 4(k+q)-vertex crystallization of L(kq+1, q)

	Proofs of Theorems 6, 8 and Corollary 7 

