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Abstract

We have introduced the weight of a group which has a presentation with number
of relations is at most the number of generators. We have shown that the number
of facets of any contracted pseudotriangulation of a connected closed 3-manifold
M is at least the weight of the fundamental group of M . This lower bound is
sharp for the 3-manifolds RP3, L(3, 1), L(5, 2), S1 × S1 × S1, S2 × S1, S2×− S1 and
S3/Q8, where Q8 is the quaternion group. Moreover, there is a unique such facet
minimal pseudotriangulation in each of these seven cases. We have also constructed
contracted pseudotriangulations of L(kq − 1, q) with 4(q + k − 1) facets for q > 3,
k > 2 and L(kq + 1, q) with 4(q + k) facets for q > 4, k > 1. By a recent result
of Swartz, our pseudotriangulations of L(kq + 1, q) are facet minimal when kq + 1
are even. In 1979, Gagliardi found presentations of the fundamental group of a
manifold M in terms of a contracted pseudotriangulation of M . Our construction
is the converse of this, namely, given a presentation of the fundamental group of
a 3-manifold M , we construct a contracted pseudotriangulation of M . So, our
construction of a contracted pseudotriangulation of a 3-manifold M is based on a
presentation of the fundamental group of M and it is computer-free.

Keywords: Pseudotriangulations of manifolds, Crystallizations, Lens spaces, Pre-
sentations of groups.

1 Introduction and Results

A simplicial cell complex K of dimension d is a poset isomorphic to the face poset X of a
d-dimensional simplicial CW-complex X. The topological space X is called the geometric
carrier of K and is also denoted by |K|. If a topological space M is homeomorphic to
|K|, then K is said to be a pseudotriangulation of M . For d > 1, a (d + 1)-colored
contracted graph Γ = (V,E) with an edge coloring γ : E → {1, . . . , d + 1} determines a
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d-dimensional simplicial cell complex K(Γ) whose vertices have one to one correspondence
with the colors 1, . . . , d+1 and the facets have one to one correspondence with the vertices
in V . If K(Γ) is a pseudotriangulation of a space M then (Γ, γ) is called a crystallization
of M . So, if (Γ, γ) is a crystallization of a d-manifold M then the number of vertices in
the pseudotriangulation K(Γ) of M is d+ 1. In [15], Pezzana showed the following.

Proposition 1 (Pezzana). Every connected closed PL-manifold admits a crystallization.

Thus, every connected closed pl d-manifold has a contracted pseudotriangulation, i.e., a
pseudotriangulation with d+1 vertices. In this article, we are interested in crystallizations
of connected closed 3-manifolds with minimum number of vertices.

In [6], Epstein proved that the fundamental group of a 3-manifold has a presentation
with the number of relations less than or equal to the number of generators. For such a
group G, we define the weight ψ(G) of G in Definition 10 below. The weight of the trivial
group is 2 and ψ(G) > 8 for any non-trivial group G as we see later.

Definition 2. For a connected closed 3-manifold M , let ψ(M) be the weight ψ(π(M,x))
of the group π(M,x) for some x in M .

If M and N are homeomorphic then clearly ψ(M) = ψ(N). Thus, ψ(M) is a topologi-
cal invariant. Clearly, ψ(S3) = 2 and, in view of Perelman’s theorem (Poincaré conjecture)
[14], ψ(M) > 8 for M 6= S3. Here, we have the following.

Lemma 3. Let ψ(M) be as above and let Q8 be the quaternion group {±1,±i,±j,±k}.
Then ψ(RP3) = ψ(S2×S1) = ψ(S2×− S1) = 8, ψ(L(3, 1)) = 12, ψ(L(5, q)) = 16, ψ(S 3/Q8)
= 18, ψ(S1 × S1 × S1) = 24 for 1 6 q 6 2.

For a d-dimensional simplicial cell complex K, let fj(K) denote the number of j-
cells of K for 0 6 j 6 d. Let g2(K) := f1(K) − (d + 1)f0(K) +

(
d+2

2

)
and h2(K) :=

f1(K) − df0(K) +
(
d+1

2

)
. For a connected simplicial cell complex K, let m(K) be the

minimal number of generators of π(|K|, ∗). For a connected closed pl d-manifold M , let

Ψ(M) = min{m : M has a crystallization with m vertices}
= min{fd(K) : K is a contracted pseudotriangulation of M}.

In [11], Klee proved that h2(K) >
(
d+1

2

)
m(K) for any d-dimensional normal pseudo-

manifold K whose edge graph is (d+ 1)-colorable. Here we have the following.

Theorem 4. Let M be a connected closed 3-manifold. If (Γ, γ) is a crystallization of M
then Γ has at least ψ(M) vertices. Equivalently, if X is a contracted pseudotriangulation
of M then f3(X) > ψ(M).

Corollary 5. Let M be a connected closed 3-manifold M and F be a field. If X is a
contracted pseudotriangulation of M then g2(X) = h2(X) > Ψ(M) − 2 > ψ(M) − 2 >
6m(M) > 6β1(M ;F).
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Consider the contracted pseudotriangulation K1 := K(J1) of S2 × S1 corresponding
to the crystallization J1 in Fig. 2 below. Since f3(K1) = 8, it follows that f2(K1) = 16
and hence f1(K1) = 12. Therefore, g2(K1) = 12− 16 + 10 = 6 = 6β1(S2 × S1;Q). Thus,
the inequalities in Corollary 5 are equalities and (hence) the lower bound is sharp.

From the complete enumeration (obtained by using high-powered computers) of crys-
tallizations of prime 3-manifolds with at most 30 vertices, we know Ψ(M) for all closed
prime 3-manifolds M with Ψ(M) 6 30 (cf. [3, 12]). In particular, we know that the min-
imal crystallizations of several 3-manifolds are unique and there are 3-manifolds which
have more than one minimal crystallizations (see Remark 25 below). We have proved the
existence and the uniqueness of some crystallizations using presentations of the funda-
mental groups. Consider a group G which has a presentation with number of relations
is at most the number of generators. From Theorem 4 we know that the number of ver-
tices in any crystallization (Γ, γ) of a closed connected 3-manifold M , whose fundamental
group is G, is at least ψ(G). We have constructed crystallizations on ψ(G) vertices which
yield presentations of G as mentioned at the end of Section 2.4. We have considered the
groups Z, Z2, Z3, Z5, Z3 and Q8 and have obtained such crystallizations. Generalizing
some of these constructions, we have constructed two infinite families of crystallizations
of lens spaces. More explicitly, we have the following.

Theorem 6. (i) If M = RP3, S2×S1, S2×− S1, L(3, 1), L(5, 2), S 3/Q8 or S1×S1×S1

then Ψ(M) = ψ(M) and M has a unique contracted pseudotriangulation with ψ(M)
facets.

(ii) Let X be a contracted pseudotriangulation of a connected closed 3-manifold M . If
f3(X) 6 8 then M is (homeomorphic to) S3, RP3, S2 × S1 or S2×− S1.

Corollary 7. Let X be a contracted pseudotriangulation of a closed 3-manifold M . If M
is S 3/Q8, S1 × S1 × S1 or L(p, q) for some p > 3 then h2(X) > 6m(M).

Theorem 8. (i) Ψ(L(kq − 1, q)) 6 4(k + q − 1) for k, q > 2 and

(ii) Ψ(L(kq + 1, q)) 6 4(k + q) for k, q > 1.

Remark 9. Recently, Swartz proved that Ψ(L(kq + 1, q)) > 4(k + q) whenever k, q are
odd ([16]). Thus, Ψ(L(kq+ 1, q)) = 4(k+ q) for odd positive integers k, q. We found that
Ψ(L(5, 1)) = 20 = Ψ(L(7, 2)). So, Swartz’s bound is also valid for L(5, 1) and L(7, 2).
We also found that ψ(Z4) = 14 and ψ(Z6) = ψ(Z7) = 18. Proofs of these are in earlier
versions of this article in the arXiv (arXiv:1308.6137). We have omitted these proofs
from this version for the sake of brevity.

2 Preliminaries

2.1 Colored Graphs

All graphs considered here are finite multigraphs without loops. If Γ = (V,E) is a graph
and U ⊆ V then the induced subgraph Γ[U ] is the subgraph of Γ whose vertex set is U and
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edges are those edges of Γ whose end points are in U . For n > 2, an n-cycle is a closed
path with n distinct vertices and n edges. If vertices ai and ai+1 are adjacent in an n-cycle
for 1 6 i 6 n (addition is modulo n) then the n-cycle is denoted by Cn(a1, a2, . . . , an). A
graph Γ is called h-regular if the number of edges adjacent to each vertex is h.

An edge coloring of a graph Γ = (V,E) is a map γ : E → C such that γ(e) 6= γ(f)
whenever e and f are adjacent (i.e., e and f are adjacent to a common vertex). The
elements of the set C are called the colors. If C has h elements then (Γ, γ) is said to be
an h-colored graph.

Let (Γ, γ) be an h-colored graph with color set C. If B ⊆ C with k elements then the
graph (V (Γ), γ−1(B)) is a k-colored graph with coloring γ|γ−1(B). This colored graph is
denoted by ΓB. Let (Γ, γ) be an h-colored connected graph with color set C. If ΓC\{c} is
connected for all c ∈ C then (Γ, γ) is called contracted.

Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two disjoint h-regular h-colored graphs with
same color set {1, . . . , h}. For 1 6 i 6 2, let vi ∈ Vi. Consider the graph Γ which
is obtained from (Γ1 \ {v1}) t (Γ2 \ {v2}) by adding h new edges e1, . . . , eh with colors
1, . . . , h respectively such that the end points of ej are uj,1 and uj,2, where vi and uj,i are
joined in Γi with an edge of color j for 1 6 j 6 h, 1 6 i 6 2. (Here Γi\{vi} = Γi[Vi\{vi}].)
The colored graph Γ is called the connected sum of Γ1, Γ2 and is denoted by Γ1#v1v2Γ2.

Let Γ = (V,E) be a (d + 1)-regular graph with a (d + 1)-coloring γ : E → C. Let
x, y ∈ V be joined by k edges e1, . . . , ek, where 1 6 k 6 d. Let B = C \ γ({e1, . . . , ek}).
Let X (resp., Y ) be the components of ΓB containing x (resp., y). If X 6= Y then Γ[{x, y}]
is called a d-dimensional dipole of type k. Dipoles of types 1 and d are called degenerate
dipoles.

Let Γ = (V,E) be a (d + 1)-regular graph with a (d + 1)-coloring γ : E → C and a
dipole Γ[{x, y}] of type k. Let B, X and Y be as above. A (d+ 1)-regular graph (Γ′, γ′)
with same color set C is said to obtained from Γ by cancelling the dipole Γ[{x, y}] if (i)
Γ′B is obtained from ΓB by replacing X t Y by X#xyY , and (ii) two vertices u, v of Γ′

are joined by an edge of color c ∈ B if and only if the corresponding vertices of Γ are so
(cf. [7]). For standard terminology on graphs see [2].

2.2 Presentation of Groups

Given a set S, let F (S) denote the free group generated by S. So, any element w of F (S)
is of the form w = xε11 · · ·xεmm , where x1, . . . , xm ∈ S and εi = ±1 for 1 6 i 6 m and
(xj+1, εj+1) 6= (xj,−εj) for 1 6 j 6 m − 1. For R ⊆ F (S), let N(R) be the smallest
normal subgroup of F (S) containing R. Then the quotient group F (S)/N(R) is denoted
by 〈S |R〉. So, 〈S |T 〉 = 〈S |R〉 if N(T ) = N(R). We write 〈S1 |R1〉 = 〈S2 |R2〉 only when
F (S1) = F (S2) and N(R1) = N(R2). For w1, w2 ∈ F (S), if w1N(R) = w2N(R) ∈ 〈S |R〉
then we write w1 ≡ w2 (mod R). Two elements w1, w2 ∈ F (S) are said to be independent
(resp., dependent) if N({w1}) 6= N({w2}) (resp., N({w1}) = N({w2})).

For a finite subset R of F (S), let

R := {w ∈ N(R) : N((R \ {r}) ∪ {w}) = N(R) for each r ∈ R}. (2.1)
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Observe that ∅ = ∅ and if R 6= ∅ is a finite set then w :=
∏

r∈R r ∈ R and hence R 6= ∅.
Also, {wrw−1, wr−1w−1 : w ∈ F (S)} ⊆ {r} for r ∈ F (S).

For w = xε11 · · ·xεmm ∈ F (S), m > 1, let

ε(w) :=

{
0 if m = 1,
|ε1 − ε2|+ · · ·+ |εm−1 − εm|+ |εm − ε1| if m > 2.

Consider the map λ : F (S)→ Z+ define inductively as follows.

λ(w) :=


2 if w = ∅,
2m− ε(w) if w = xε11 · · ·xεmm , (xm, εm) 6= (x1,−ε1),
λ(w′) if w = xε11 w

′x−ε11 .
(2.2)

Since |εi−εj| = 0 or 2, ε(w) is an even integer and hence λ(w) is also even. For w ∈ F (S),
λ(w) is said to be the weight of w. Observe that λ(w1w2) = λ(w2w1) for w1, w2 ∈ F (S).

Let S = {x1, . . . , xs} and R = {r1, . . . , rt} ⊆ F (S), where t 6 s. Let rt+1 be an
element in R of minimum weight. Let

ϕ(S,R) := λ(r1) + · · ·+ λ(rt) + λ(rt+1) + 2(s− t). (2.3)

For a finitely presented group G and a non-negative integer q, we define

Pq(G) := {〈S |R〉 ∼= G : #(R) 6 #(S) 6 q}.

For a finitely presented group G, let m(G) be the minimum number of generators of G.
Here, we are interested on those groups G for which Pq(G) 6= ∅ for some q. Let

µ(G) := min{q : Pq(G) 6= ∅}, (2.4a)

ψ(G; q) := min{ϕ(S,R) : 〈S |R〉 ∈ Pq(G)} for q > µ(G). (2.4b)

Clearly, µ(G) > m(G) and ψ(G, q) 6 ψ(G, µ(G)) for all q > µ(G). Let

ρ(G) := min{q > µ(G) : ψ(G; q) 6 6(q + 1)}. (2.5)

So, ρ(G) is the smallest integer q such that ψ(G; q) 6 6(q + 1).

Definition 10. Let G be a group which has a presentation with the number of relations
less than or equal to the number of generators. Let µ(G), ψ(G; q) and ρ(G) be as above.
Then ψ(G) = max{ψ(G; ρ(G)), 6µ(G) + 2} is a positive even integer. The integer ψ(G)
is said to be the weight of the group G.

Remark 11. Observe that min{ϕ(S,R) : 〈S |R〉 ∼= Z, #(R) 6 #(S) < ∞} = 4 =
ψ(Z, ρ(Z)) < 8 = ψ(Z) (see the proof of Lemma 3). In general, we have min{ϕ(S,R) :
〈S |R〉 ∼= G, #(R) 6 #(S) < ∞} = min{min{ϕ(S,R) : 〈S |R〉 ∈ Pq(G)} : µ(G) 6 q <
∞} = min{ψ(G; q) : µ(G) 6 q <∞} 6 ψ(G; ρ(G)) 6 ψ(G).
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2.3 Lens Spaces

Consider the 3-sphere S3 = {(z1, z2) ∈ C 2 : |z1|2 + |z2|2 = 1}. Let p and q be relatively
prime integers. Then the action of Zp = Z/pZ on S3 generated by e2πi/p · (z1, z2) =
(e2πi/pz1, e

2πiq/pz2) is free and hence properly discontinuous. Therefore the quotient space
L(p, q) := S 3/Zp is a 3-manifold whose fundamental group is isomorphic to Zp. The
3-manifolds L(p, q) are called the lens spaces. It is a classical theorem of Reidemeister
that L(p, q ′) is homeomorphic to L(p, q) if and only if q ′ ≡ ±q±1 (mod p).

If T1, T2 are two solid tori (i.e., each Tj is homeomorphic to {(z, w) ∈ C 2 : |z| =
1, |w| 6 1}) such that (i) T1 ∩ T2 = ∂(T1) = ∂(T2) ∼= S1 × S1, (ii) π1(T1 ∩ T2, x) =
〈α, β |αβα−1β−1〉, (iii) π1(T1, x) = 〈α〉 and (iv) π1(T2, x) = 〈α, β |αβα−1β−1, αpβq〉 (=
〈αmβn〉, where m,n ∈ Z such that mq − np = 1), for x ∈ T1 ∩ T2, then T1 ∪ T2 is
homeomorphic to L(p, q).

2.4 Crystallizations

A CW-complex X is said to be regular if the attaching maps which define the incidence
structure of X are homeomorphisms. Given a regular CW-complex X, let X be the set
of all closed cells of X together with the empty set. Then X is a poset, where the partial
ordering is the set inclusion. This poset X is said to be the face poset of X. Clearly, if X
and Y are two finite regular CW-complexes with isomorphic face posets then X and Y
are homeomorphic. A regular CW-complex X is said to be simplicial if the boundary of
each cell in X is isomorphic (as a poset) to the boundary of a simplex of same dimension.
A simplicial cell complex K of dimension d is a poset isomorphic to the face poset X of a
d-dimensional simplicial CW-complex X. The topological space X is called the geometric
carrier of K and is also denoted by |K|. If a topological space M is homeomorphic to
|K|, then K is said to be a pseudotriangulation of M . A simplicial cell complex K is said
to be connected if the topological space |K| is path connected (see [1, 13] for more).

Let K be a simplicial cell complex with partial ordering 6. If β 6 α ∈ K then we say
β is a face of α. For α ∈ K, the set ∂α := {γ ∈ K : α 6= γ 6 α} is a subcomplex of K
with induced partial order and is said to be the boundary of α. If ∂α is isomorphic to the
boundary complex of an i-simplex then we say that α is an i-cell or a cell of dimension i.
For β ∈ K, the set {σ ∈ K : β 6 σ} is also simplicial cell complex and is said to be the
link of α in K and is denoted by lkK(α).

If all the maximal cells of a d-dimensional simplicial cell complex K are d-cells then
it is called pure. Maximal cells in a pure simplicial cell complex K are called the facets
of K. Clearly, if K is pure of dimension d and α is an i-cell then lkK(α) is (d − i − 1)-
dimensional and pure. A pure d-dimensional simplicial cell complex K is said to be a
normal pseudomanifold if each (d − 1)-cell is a face of exactly two facets and the link of
each cell of dimension 6 d−2 is connected. Clearly, a pseudotriangulation of a connected
manifold is a normal pseudomanifold.

The 0-cells in a simplicial cell complex K are said to be the vertices of K. If u is a face
of α and u is a vertex then we say u is a vertex of α. Clearly, a d-dimensional simplicial
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cell complex X has at least d + 1 vertices. If a d-dimensional simplicial cell complex X
has exactly d+ 1 vertices then X is called contracted.

Let X be a pure d-dimensional simplicial cell complex. Consider the graph Λ(X ) whose
vertices are the facets of X and edges are the ordered pairs ({σ1, σ2}, γ), where σ1, σ2 are
facets, γ is a (d − 1)-cell and is a common face of σ1, σ2. The graph Λ(X ) is said to be
the dual graph of X . Observe that Λ(X ) is in general a multigraph without loops. On the
other hand, for d > 1, if (Γ, γ) is a (d+1)-colored graph with color set C = {1, . . . , d+ 1}
then we define a d-dimensional simplicial cell complex K(Γ) as follows. For each v ∈ V (Γ)
we take a d-simplex σv and label its vertices by 1, . . . , d+ 1. If u, v ∈ V (Γ) are joined by an
edge e and γ(e) = i, then we identify the (d−1)-faces of σu and σv opposite to the vertices
labelled by i, so that equally labelled vertices are identified together. Since there is no
identification within a d-simplex, this gives a simplicial CW-complex W of dimension d.
So, the face poset (denoted by K(Γ)) of W is a pure d-dimensional simplicial cell complex.
We say that (Γ, γ) represents the simplicial cell complex K(Γ). Clearly, the number of
i-labelled vertices of K(Γ) is equal to the number of components of ΓC\{i} for each i ∈ C.
Thus, the simplicial cell complex K(Γ) is contracted if and only if Γ is contracted (cf. [8]).

A crystallization of a connected closed d-manifold M is a (d + 1)-colored contracted
graph (Γ, γ) such that the simplicial cell complex K(Γ) is a pseudotriangulation of M .
Thus, if (Γ, γ) is a crystallization of a d-manifold M then the number of vertices in K(Γ)
is d+ 1. On the other hand, if K is a contracted pseudotriangulation of M then the dual
graph Λ(K) gives a crystallization of M . Clearly, if (Γ, γ) is a crystallization of a closed
d-manifold M then either Γ has two vertices (in which case M is Sd) or the number of
edges between two vertices is at most d− 1. From [5], we know the following.

Proposition 12 (Cavicchioli-Grasselli-Pezzana). Let (Γ, γ) be a crystallization of an n-
manifold M . Then M is orientable if and only if Γ is bipartite.

For k > 2, let 1, . . . , k be the colors of a k-colored graph (Γ, γ). For 1 6 i 6= j 6 k, Γij
denote the graph Γ{i,j} and gij denote the number of connected components of the graph
Γij. In [9], Gagliardi proved the following.

Proposition 13 (Gagliardi). Let (Γ, γ) be a contracted 4-colored graph with m vertices.
Then (Γ, γ) is a crystallization of a connected closed 3-manifold if and only if

(i) gij = gkl for every permutation ijkl of 1234, and

(ii) g12 + g13 + g14 = 2 +m/2.

Let (Γ, γ) be a crystallization (with the color set C) of a connected closed n-manifold
M . So, Γ is an (n + 1)-regular graph. Choose two colors, say, i and j from C. Let
{G1, . . . , Gs+1} be the set of all connected components of ΓC\{i,j} and {H1, . . . , Ht+1}
be the set of all connected components of Γij. Since Γ is regular, each Hp is an even
cycle. Note that, if n = 2, then Γij is connected and hence H1 = Γij. Take a set

S̃ = {x1, . . . , xs, xs+1} of s+ 1 elements. For 1 6 k 6 t+ 1, consider the word r̃k in F (S̃)
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as follows. Choose a vertex v1 in Hk. Let Hk = v1e
i
1v2e

j
2v3e

i
3v4 · · · ei2l−1v2le

j
2lv1, where eip

and ejq are edges with colors i and j respectively. Define

r̃k := x+1
k2
x−1
k3
x+1
k4
· · ·x+1

k2l
x−1
k1
, (2.6)

where Gkh is the component of ΓC\{i,j} containing vh. For 1 6 k 6 t+1, let rk be the word

obtained from r̃k by deleting x±1
s+1’s in r̃k. So, rk is a word in F (S), where S = S̃ \{xs+1}.

In [10], Gagliardi proved the following.

Proposition 14 (Gagliardi). For n > 2, let (Γ, γ) be a crystallization of a connected
closed n-manifold M . For two colors i, j, let s, t, xp, rq be as above. If π1(M,x) is the
fundamental group of M at a point x, then

π1(M,x) ∼=
{
〈x1, x2, . . . , xs | r1〉 if n = 2,
〈x1, x2, . . . , xs | r1, . . . , rt〉 if n > 3.

3 Proofs of Lemma 3, Theorem 4 and Corollary 5

Lemma 3 follows from the next lemma.

Lemma 15. (i) ψ(Z) = ψ(Z2) = 8, (ii) ψ(Z3) = 12, (iii) ψ(Z5) = 16, (iv) ψ(Q8) = 18
and (v) ψ(Z3) = 24.

Proof. Any presentations of Z must have at least one generator and 〈x〉 is a presentation of
Z. So, µ(Z) = 1. If 〈S|R〉 ∼= Z with #(S) = 1, thenR = ∅ and hence, by the definition (see
(2.3)), ϕ(S,R) = λ(∅) + 2(1− 0) = 2 + 2 = 4 < 12 = 6(µ(Z) + 1). Therefore, ψ(Z; q) 6 4
for all q > 1. Thus, ψ(Z) = max{ψ(Z, ρ(Z)), 6µ(Z) + 2} = max{ψ(Z, ρ(Z)), 8} = 8.

Let p > 2 be an integer. Since any presentations of Zp must have at least one generator
and 〈x |xp〉 is a presentation of Zp, it follows that µ(Zp) = 1. Clearly, if 〈S = {x} |R =
{r1}〉 is a presentation of Zp, then r1 = x±p. Let r2 ∈ R be of minimum weight. Since
〈x |r2〉 is also a presentation of Zp, r2 = x±p. Therefore, by (2.3),

ϕ(S,R) = λ(r1) + λ(r2) = (2p− ε(r1)) + (2p− ε(r2)) = 4p. (3.1)

First assume that p 6 3. Since, 〈S |R〉 ∈ P1(Zp) implies (up to renaming) (S,R) =
({x}, {xp}) or ({x}, {x−p}), it follows that ψ(Zp; 1) = ϕ({x}, {x±p}) = 4p 6 12 =
6(µ(Zp) + 1). This implies that ρ(Zp) = µ(Zp) = 1. Thus, ψ(Zp; ρ(Zp)) = 4p > 8 =
6µ(Zp) + 2. Therefore, ψ(Zp) = 4p. This proves parts (i) and (ii).

Now, assume p = 5. By the similar arguments as for p 6 3, 〈S |R〉 ∈ P1(Z5) implies
ϕ(S,R) = 4p = 20. Therefore, ψ(Z5; 1) = 20 > 12 = 6(µ(Z5) + 1) and hence ρ(Z5) >
µ(Z5) = 1. If we take S = {x1, x2} and R = {r1 = x2

1x
−1
2 , r2 = x3

2x
−1
1 } then ϕ(S,R) 6 16

(since r3 = x1x
2
2 ∈ R is of weight 6) and 〈S |R〉 ∈ P2(Z5)\P1(Z5). Thus, ψ(Z5; 2) 6 16 <

18 = 6(2 + 1). Therefore, ρ(Z5) = 2 and hence ψ(Z5) 6 16.
Now, let 〈S |R〉 ∈ P2(Z5) \ P1(Z5) with ϕ(S,R) 6 16. Since there is no presentation

〈S |R〉 of Z5 with (#(S),#(R)) = (2, 1), it follows that #(R) = #(S) = 2. Let S =
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{x1, x2} and R = {r1, r2}. If λ(r1) = 2, then r1 must be of the form x±1
i or xεix

−ε
j for

some j 6= i ∈ {1, 2} and ε = ±1. Since 〈S |R〉 ∼= Z5, it follows that r2 ≡ x±5
j (mod

{r1}). This implies that λ(r2) > λ(x±5
j ) = 10. Let r3 ∈ R be of minimum weight.

Then 〈x1, x2 | r1, r3〉 is also a presentation of Z5 and hence (by the same arguments)
λ(r3) > 10. Thus, ϕ(S,R) = λ(r1) + λ(r2) + λ(r3) > 2 + 10 + 10 = 22, a contradiction.
So, λ(ri) > 4 for 1 6 i 6 2. Let A = {x1x2, x

2
1, x

2
2, x

2
1x
−1
2 , x2

2x
−1
1 , x1x

−1
2 x1x

−1
2 } and let

A−1 = {w−1 : w ∈ A}. Then A is a set of pairwise independent elements of weight 4 in
F (S) and w ∈ F (S) is an element of weight 4 imply that w is dependent with an element
of A. Note that Z5 has no presentation 〈S |R〉 ∈ P2(Z5) \ P1(Z5) with R ⊆ A ∪ A−1.
So, at most one of r1, r2, r3 has weight 4 and the weights of other two are at least 6.
Therefore, ϕ(S,R) > 16. This implies that ψ(Z5) = 16. This proves part (iii).

Clearly, µ(Q8) = 2. If we take S = {x1, x2} and R = {x2x1x2x
−1
1 , x1x2x1x

−1
2 } then

〈S |R〉 ∈ P2(Q8) and ϕ(S,R) 6 18 (since x2
2x
−2
1 ∈ R is of weight 6). Thus ψ(Q8; 2) 6

18 = 6(2 + 1). Therefore, ρ(Q8) = 2 and hence ψ(Q8) 6 18.
Now, let ϕ(S,R) 6 18, where S = {x1, x2} and 〈S |R〉 ∈ P2(Q8). Note that

B = {x1x2, x
2
1, x

2
2, x

2
1x
−1
2 , x2

2x
−1
1 , x1x

−1
2 x1x

−1
2 , x2

2x1, x3
1x
−1
2 , x2

2x
−1
1 x2x

−1
1 , x2

1x2, x3
2x
−1
1 , x3

1, x
3
2,

x2
1x
−1
2 x1x

−1
2 , x1x2x1x

−1
2 , x2x1x2x

−1
1 , x1x

−1
2 x1x

−1
2 x1x

−1
2 , x1x2x

−1
1 x−1

2 , x2
2x
−2
1 } is a set of pair-

wise independent elements of weight 4 or 6 in F (S). It is not difficult to see that w ∈ F (S)
and 4 6 λ(w) 6 6 imply w is dependent with an element of B. Let B−1 = {w−1 : w ∈ B}.
Then R ⊆ B∪B−1. Clearly, the only possible choices of {r±1

1 , r±1
2 } are {x2

2x
−2
1 , x1x2x1x

−1
2 },

{x2
2x
−2
1 , x2x1x2x

−1
1 } and {x2x1x2x

−1
1 , x1x2x1x

−1
2 }. Then λ(r) > 6 for r ∈ R ∪ R. Thus,

ϕ(S,R) > 18. Therefore, ψ(Q8) = 18. This proves parts (iv).

Clearly, µ(Z3) = 3. If S0 = {x1, x2, x3} and R0 = {xixjx−1
i x−1

j : 1 6 i < j 6 3} then

〈S0 |R0〉 ∈ P3(Z3) and ϕ(S0, R0) 6 24 (since x1x
−1
2 x3x

−1
1 x2x

−1
3 ∈ R0 is of weight 6). Thus

ψ(Z3; 3) 6 24 = 6(3 + 1). Therefore, ρ(Z3) = 3 and hence ψ(Z3) 6 24.

Claim. If w ∈ N(R0) is not the identity then λ(w) > 6.

If w ∈ N(R0) is not the identity then clearly λ(w) 6= 2. Observe that, if w ∈ F (S0) with
λ(w) = 4, then w is dependent with an element of the set C = {x2

ix
−1
j , xix

−1
j xix

−1
j , x2

i , xixj,

xix
−1
j xix

−1
k : ijk is a permutation of 123}. Since none of the element in C is in N(R0),

it follows that N(R0) has no element of weight 4. This proves the claim.
Now, let ϕ(S,R) 6 24, where S = {x1, x2, x3} and 〈S |R〉 ∈ P3(Z3). Then N(R) =

N(R0) and hence, by the claim, weight of each element of R is at least 6. This implies
ϕ(S,R) > 24 and hence ϕ(S,R) = 24. Therefore, ψ(Z3) = 24. This completes the
proof.

Proof of Theorem 4. Let G = π(M,x) for some x ∈ M . To prove the theorem, it is
sufficient to show that any crystallization of M needs at least ψ(M) = ψ(G) vertices.

Let (Γ, γ) be a crystallization of M with m vertices and let {1, 2, 3, 4} be the color
set. Then, by Proposition 14, we know that G has a presentation with gij − 1 generators
and 6 gij − 1 relations. Therefore, by the definition of µ(G) (in (2.4a)), µ(G) 6 gij − 1.
Then, by part (ii) of Proposition 13,

m = 2(g12 + g13 + g14)− 4 > 6(µ(G) + 1)− 4 = 6µ(G) + 2. (3.2)
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From the definition of ρ(G) (in (2.5)), 6(ρ(G) + 1) > ψ(G; ρ(G)). Therefore, m >
6(ρ(G) + 1) implies m > ψ(G; ρ(G)). Thus, if m > 6(ρ(G) + 1) then the result follows
from this and Eq. (3.2).

Now, assume that m 6 6(ρ(G) + 1). Then, by part (ii) of Proposition 13, g12 + g13 +
g14 6 2 + 3(ρ(G) + 1). This implies, g1j 6 ρ(G) + 1 for some j ∈ {2, 3, 4}. Assume,
without loss, that g12 6 ρ(G) + 1.

As in Subsection 2.4, let G1, . . . , Gq+1 be the components of Γ12 and H1, . . . , Hq+1 be
the components of Γ34, where q + 1 = g34 = g12 6 ρ(G) + 1. By Proposition 14, G has
a presentation of the form 〈x1, x2, . . . , xq | r1, r2, . . . , rq〉, where xk corresponds to Gk and
rk corresponds to Hk as in Subsection 2.4. Let S = {x1, x2, . . . , xq} and R = {r1, . . . , rq}.

For 1 6 i 6 q, let ri = xε1i1 · · ·x
εn
in

, where xi1 , . . . , xin ∈ {x1, . . . , xq} and εj = ±1 for
1 6 j 6 n, (xij+1

, εj+1) 6= (xij ,−εj) for 1 6 j 6 n− 1 and (xin , εn) 6= (xi1 ,−ε1).

Claim. For 1 6 i 6 q, the length of the cycle Hi is at least λ(ri).

Consider the word r̃i (in F ({x1, . . . , xq, xq+1}) which is obtained from ri by the follow-

ing rules: if εj = εj+1 for 1 6 j 6 n− 1, then replace x
εj
ij

by x
εj
ij
x
−εj
q+1 in ri and if εn = ε1,

then replace xεnin by xεnin x
−εn
q+1 in ri. Observe that r̃i is non empty (since ri is non empty)

and the number of letters in r̃i is same as λ(ri) (see (2.6) and (2.2)). The claim follows
from this.

Let rq+1 be a word corresponding to Hq+1 in Γ34. Then, any q of the relations from the
set {r1, r2, . . . , rq, rq+1} together with the generators x1, x2, . . . , xq give a presentation ofG.
This implies, rq+1 ∈ R. Thus, m > λ(r1) + λ(r2) + · · ·+ λ(rq+1) > ϕ(S,R) > ψ(G; ρ(G)).
Therefore, m > max{ψ(G; ρ(G)), 6a(G) + 2} = ψ(G). This proves the theorem. �

Proof of Corollary 5. Let fi be the number of i-cells in X. So, f0 = 4. Therefore,
g2(X) = f1 − 16 + 10 = f1 − 6 = f1 − 12 + 6 = h2(X). Since |X| is a closed 3-manifold,
each 2-cell is a face of two 3-cells and each 3-cell has four 2-dimensional faces. This implies
that 2f2 = 4f3. Then, 0 = f0 − f1 + f2 − f3 = 4 − f1 + 2f3 − f3. Thus, f1 = f3 + 4 and
hence g2(X) = h2(X) = f3 − 2. Therefore, by Theorem 4, g2(X) = h2(X) = f3 − 2 >
Ψ(M)− 2 > ψ(M)− 2.

From the definition of ψ(G), ψ(G) > 6µ(G)+2 > 6m(G)+2. So, ψ(M) = ψ(π(M, ∗))
> 6m(π(M, ∗)) + 2. Since any presentation of π(M, ∗) has at least β1(M ;F) generators,
it follows that m(M) = m(π(M, ∗)) > β1(M ;F). The corollary now follows. �

Remark 16. If a crystallization (Γ, γ) yields a presentation 〈S |R〉 then, from the proof
of Theorem 4, we get ϕ(S,R) 6 the number of vertices of Γ.

Remark 17. We found that ρ(Z3) = 3 and ϕ(S,R) = 24, where 〈S |R〉 ∈ P3(Z3). On the
other hand, if S ′ = {x1, . . . , x5} and R ′ = {x1x

−1
4 x5x

−1
3 , x1x5x

−1
2 , x3x4x

−1
2 , x1x

−1
3 x5x

−1
4 ,

x5x1x
−1
2 } then 〈S ′ |R ′〉 ∈ P5(Z3) \ P4(Z3) with ϕ(S ′, R′) = 24. So, the minimum weight

presentation of Z3 is not unique. This is true for most of the groups.
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4 Uniqueness of some crystallizations

Here, we are interested on crystallizations of 3-manifolds M with ψ(M) vertices. For seven
3-manifolds, we show that there exists a unique such crystallization for each of them.

Throughout this section and behind, 1, 2, 3, 4 are the colors of a 4-colored graph (Γ, γ)
and gij is the number of components of Γij = Γ{i,j} for i 6= j.

Let X be the pseudotriangulation of a connected closed 3-manifold M determined by
a crystallization (Γ, γ). So, (Γ, γ) is contracted, i.e., Γ{i,j,k} is connected for i, j, k distinct.
For 1 6 i 6 4, we denote the vertex of X corresponding to the color i by vi. We identify
a vertex u of Γ with the corresponding facet σu of X . For a facet u (≡ σu) of X , the
2-face of u not containing the vertex vi will be denoted by ui. Similarly, the edge of u
not containing the vertices vi, vj will be denoted by uij. Clearly, if C2k(u

1, u2, . . . , u2k) is
a 2k-cycle in Γ with colors i and j alternately, then u1

ij = u2
ij = · · · = u2k

ij in X .

Lemma 18. Let Γ be a crystallization of a connected closed 3-manifold M with m vertices.
If Γ has a 2-cycle, then either M has a crystallization with m − 2 vertices or π1(M,x)
(for x ∈M) is isomorphic to the free product Z ∗H for some group H.

Proof. Without loss of generality, assume that Γ has a 2-cycle with color 1 and 2, i.e.,
Γ12 has a component of length 2. If this 2-cycle touches two different components of Γ34

(say, at vertices v and w, respectively), then Γ[{v, w}] is a 3-dimensional dipole of type 2.
Therefore, the crystallization Γ can be reduced to a crystallization Γ1 of M with vertex
set V (Γ) \ {v, w} so that Γ1

12 (resp., Γ1
34) has one less components than Γ12 (resp., Γ34) as

in Fig. 1 (see [7]). Thus, M has a crystallization (namely, Γ1) with m− 2 vertices.

v

Γ Γ1

1
2
3
4

w

Figure 1: Cancellation of a dipole of type 2

So, assume that the 2-cycle (say G1) touches only one component (say, H1) of Γ34. Let
G1, . . . , Gq+1 be the components of Γ12 and H1, . . . , Hq+1 be the components of Γ34, where
q + 1 = g12 = g34. Let x1, . . . , xq+1 and r1, . . . , rq+1 be as in Proposition 14. Then, by
Proposition 14, π1(M,x) has a presentation of the form 〈x1, x2, . . . , xq | r2, r3, . . . , rq+1〉.
Since G1 touches only H1, from the definition of r̃k in Eq. (2.6), r̃k does not contain x±1

1

for k 6= 1. Therefore, 〈x1, x2, . . . , xq | r2, . . . , rq+1〉 = 〈x1〉 ∗ 〈x2, . . . , xq | r2, . . . , rq+1〉. This
proves the lemma.
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Lemma 19. There exist exactly three 8-vertex crystallizations of non-simply connected,
connected, closed 3-manifolds. Moreover, these three are crystallizations of S2 × S1,
S2×− S1 and RP3 respectively.

Proof. Let (Γ, γ) be an 8-vertex crystallization of a non simply connected, connected,
closed 3-manifold M . By Proposition 13, g12 + g13 + g14 = 8/2 + 2 = 6 and gij = gkl for
i, j, k, l distinct. Since π1(M, ∗) has at least one generator, gij > 2 for 1 6 i 6= j 6 4. This
implies that gij = 2 and hence Γij is of the form C2 t C6 or C4 t C4 for 1 6 i 6= j 6 4.

Case 1: Suppose (Γ, γ) has a 2-cycle. Since M is not simply connected, M has no
crystallization with less than 8 vertices. Therefore, by Lemma 18, π1(M, ∗) must have
a torsion free element. Again, gij = 2 implies π1(M, ∗) is generated by one element and
hence isomorphic to Z. Therefore, M ∼= S2 × S1 or S2×− S1. Assume, without loss,
Γ12 = G1 t G2, where G1 = C2(v3, v4), G2 = C6(v1, v2, v5, v6, v7, v8). Then there is no
edge between v3 and v4 of color 3 or 4 and (see the proof of Lemma 18), G1 touches only
one component of Γ34. Let Γ34 = H1 t H2, where G1 ∩ H1 = ∅. Let x and y be the
generators corresponding to the components G1 and G2 respectively. If H2 is a 4-cycle
then H2 represents xy−1xy−1 by choosing some v1, i, j as in Eq. (2.6). But xy−1xy−1

does not give identity relation by deleting x or y. Therefore, H2 is a 6-cycle and hence
H1 is a 2-cycle. Similarly, G2 ∩H2 = ∅. Since the number of edges between any pair of
vertices is at most 2, we can assume that H1 = C2(v1, v6). Assume, without loss, that
there is an edge of color 4 between v2 and v3. Since Γ24 has two components, this implies
Γ24 = C4(v4, v3, v2, v5) t C4(v8, v1, v6, v7). So, there exists an edge of color 4 between v4

and v5 (resp. v7 and v8). Since H2 is a 6-cycle on the vertex set {v1, . . . , v8} \ {v1, v6},
this implies that H2 = C6(v2, v3, v8, v7, v4, v5) or C6(v2, v3, v7, v8, v4, v5). In the first case,
(Γ, γ) = J1 and in the second case, (Γ, γ) = J2 given in Fig. 2 (a) and (b) respectively.
In the first case, Γ is bipartite. Therefore, M is orientable and hence equal to S2 × S1.
In the second case, Γ is not bipartite. Therefore, M is non-orientable and hence equal to
S2×− S1.

v1

v2

v3v4

v5

v6

v7 v8
(a)

v1

v2

v3v4

v5

v6

v7 v8
(b)

1

2

3

4

(c)

a1

b2

b1

a2

c1

d2

d1

c2

Figure 2: Crystallizations J1, J2 and K2,1

Case 2: Suppose (Γ, γ) has no 2-cycle. So, Γ is a simple graph. Then, Γij = C4 t C4 for
1 6 i 6= j 6 4. Let G1 = C4(a1, b1, a2, b2) and G2 = C4(c1, d1, c2, d2) be the components of
Γ12. If a1a2 is an edge of color 3 then (since Γ13 = C4 tC4) b1b2 must be an edge of color
3. Then Γ123 is disconnected. This is not possible. So, a1a2 cannot be an edge of color 3.
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Similarly, a1a2 cannot be an edge of color 4. These imply, a1a2 can not be an edge of Γ.
Assume, without loss, a1c1 is an edge of color 4. Then a2c2, b1d1, b2d2 are edges of color
4 (since Γi4 = C4 t C4 for 1 6 i 6 2). If a1d1 is an edge of color 3, then C4(b1, a1, d1, c1)
would be a component of Γ23. This implies Γ[{a1, b1, c1, d1}] would be proper component
of Γ{2,3,4}. This is not possible since (Γ, γ) is a contracted graph. Thus, a1d1 is not an
edge of color 3. Similarly, a1d2 is not an edge of color 3. These imply a1c2 is an edge of
color 3. Similarly, b1d2, a2c1 and b2d1 are edges of color 3. Then, (Γ, γ) = K2,1 given in
Fig. 2 (c). Since G1 = C4(a1, b1, a2, b2) and H1 = C4(d1, b2, d2, b1) is a component of Γ34,
π(M, ∗) = 〈x |x2〉 ∼= Z2. This implies that M = RP3. This completes the proof.

Lemma 20. There exists a unique 12-vertex crystallization of L(3, 1).

Proof. By Lemma 15 and Theorem 4, L(3, 1) has no crystallization with less than 12
vertices. Let (Γ, γ) be a 12-vertex crystallization of L(3, 1). Since π1(L(3, 1), ∗) (∼= Z3)
has no torsion free element, by Lemma 18, (Γ, γ) has no 2-cycle. So, Γ is a simple graph.
This implies that gij 6 3 for i 6= j. Also (since Z3 has at least one generator) gij > 2.
By Proposition 13, g12 + g13 + g14 = 12/2 + 2 = 8 and gij = gkl for i, j, k, l distinct. So,
without loss, we can assume that g12 = g34 = 2, g13 = g14 = 3. Then Γij = C4 t C4 t C4

for 1 6 i 6 2, 3 6 j 6 4. Let G1, G2 be the components of Γ12 and H1, H2 be the
components of Γ34 such that x1, x2 represent the generators corresponding to G1, G2

respectively. Since 〈xj |x3
j〉 is the only presentation in P1(Z3), Hi must yield the relations

x±3
j , for 1 6 i, j 6 2. Therefore, Gi and Hi are 6-cycles. Let G1 = C6(a1, b1, . . . , a3, b3) and
G2 = C6(c1, d1, . . . , c3, d3). Assume, without loss, a1c1 ∈ γ−1(4). Then C4(b3, a1, c1, d3) ⊆
Γ14 and hence b3d3 ∈ γ−1(4). Similarly, a3c3, b2d2, a2c2, b1d1 ∈ γ−1(4). Now, a1d1 ∈ γ−1(3)
=⇒ C4(a1, d1, c1, b1) ⊆ Γ23 =⇒ Γ[{a1, b1, c1, d1}] is a component of Γ{2,3,4}. This is not
possible since Γ is a contracted graph. So, a1d1 6∈ γ−1(3). Similarly, a1d3 6∈ γ−1(3). Again,
a1d2 ∈ γ−1(3) =⇒ C4(a1, d2, c2, b1) ⊆ Γ23 =⇒ c2b1 ∈ γ−1(3) =⇒ C4(a2, b1, c2, d1) ⊆ Γ13 =⇒
Γ[{a2, b1, c2, d1}] is a component of Γ{1,3,4}, a contradiction. So, a1d2 6∈ γ−1(3). Therefore,
up to an isomorphism, a1c2 ∈ γ−1(3). Then b1d2, a2c3, b2d3, a3c1, b3d1 ∈ γ−1(3) and
hence (Γ, γ) = K3,1 given in Fig. 3 (a). Since H1 = C6(d1, b1, d2, b2, d3, b3) is one of the
two components of Γ34, (Γ, γ) yields 〈x1 |x3

1〉 ∼= Z3. So, (Γ, γ) is a crystallization of L(3, 1).
This completes the proof.

Lemma 21. There exists a unique 16-vertex 4-colored graph (Γ, γ) which is a crystalliza-
tion of a closed connected 3-manifold whose fundamental group is Z5.

Proof. Let (Γ, γ) be a 16-vertex crystallization of a connected closed 3-manifold M and
π(M, ∗) = Z5. Then M can not have a non-trivial 2-fold cover and hence M is orientable.
Also, by Lemma 15, ψ(M) = 16 and hence, by Theorem 4, (Γ, γ) is the crystallization of
M with minimum number of vertices. Then, by Lemma 18, (Γ, γ) has no 2-cycle. So, Γ
is a simple graph. Since M is orientable, Γ is bipartite. By Proposition 14 and Remark
16, (Γ, γ) yields a presentation 〈S |R〉 of Z5 with ϕ(S,R) = 16.

Claim 1. If 〈S = {x1, x2} |R = {r1, r2}〉 ∈ P2(Z5), ϕ(S,R) = 16 and r3 ∈ R is of minimum
weight then {r1, r2, r3} = {(x3

1x
−1
2 )±1, (x2

2x
−1
1 )±1, (x2

1x2)±1} or {(x2
1x
−1
2 x1x

−1
2 )±1, (x1x2)±1,

(x2
2x
−1
1 x2x

−1
1 )±1}. (So, the set {r1, r2, r3} has 16 choices.)
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a2
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b3

c1

c2

c3

d1

d2

d3
(a) (b)

x2

x4

x6

x3

x5

x1

y4

y2

y1 y3z3

z5

z1z2

z4

z6

Figure 3: Crystallizations K3,1 and M2,3

Let B be the set as in the proof of Lemma 15. Then w ∈ F (S) and 4 6 λ(w) 6 6 imply
w is dependent with an element of B. Since Γ has no 2-cycle, R has no element of weight
less than 4. Since ϕ(S,R) = 16, we can assume that 4 6 λ(r1), λ(r2) 6 6. Since 〈S |R〉 ∈
P2(Z5)\P1(Z5), the only possible choices of {r±1

1 , r±1
2 } are {x3

1x
−1
2 , x2

2x
−1
1 }, {x2

2x
−1
1 , x2

1x2},
{x3

1x
−1
2 , x2

1x2}, {x2
1x
−1
2 x1x

−1
2 , x1x2} or {x2

1x
−1
2 x1x

−1
2 , x2

2x
−1
1 x2x

−1
1 }. So, if 〈S |R〉 ∈ P2(Z5)

and ϕ(S,R) = 16, then (r±1
1 , r±1

2 , r±1
3 ) = (x3

1x
−1
2 , x2

2x
−1
1 , x2

1x2) or (x2
1x
−1
2 x1x

−1
2 , x1x2,

x2
2x
−1
1 x2x

−1
1 ). This proves Claim 1.

If gij = 2 for some i 6= j then (Γ, γ) yields a presentation 〈S |R〉 ∈ P1(Z5) such that
ϕ(S,R) = 16 (see Remark 16), which is not possible by Eq. (3.1). Thus, gij > 3. Since
(by Proposition 13) g12 + g13 + g14 = 16/2 + 2 = 10, we can assume that g12 = 3 =
g13, g14 = 4. In particular, if we choose generators (resp., relations) corresponding to the
components of Γ12 (resp., Γ34) then (Γ, γ) yields a presentation 〈S |R〉 ∈ P2(Z5) \ P1(Z5)
with ϕ(S,R) = 16.

Claim 2. If x1, x2 are generators corresponding to two components of Γ12 then the relations
corresponding to the components of Γ34 are (x3

1x
−1
2 )ε1 , x2

2x
−1
1 , (x2

1x2)ε2 for some ε1, ε2 ∈
{1,−1}.

Let S,R, r1, r2, r3 be as in Claim 1. Then by choosing (i, j) = (3, 4) or (4, 3) as in
Eq. (2.6), by Claim 1, we can assume (r1, r2, r3) =

(
(x3

1x
−1
2 )±1, x2

2x
−1
1 , (x2

1x2)±1
)

or(
(x2

1x
−1
2 x1x

−1
2 )±1, (x1x2)−1, (x2

2x
−1
1 x2x

−1
1 )±1

)
. In the first case, Claim 2 trivially holds. In

the second case, r̃2 = (x1x
−1
3 x2x

−1
3 )−1, where x3 corresponds to the third component of

Γ12 (see Eq. (2.6)). By deleting x2 and renaming x3 by x2 in r̃±1
2 , we get the new relation

x2
2x
−1
1 . Claim 2 now follows from Claim 1.
To construct r̃i as in Eq. (2.6), we can choose, without loss, (i, j) = (4, 3). Since

g23 = g14 = 4, Γ14 and Γ23 are of the form C4 t C4 t C4 t C4. Again, g12 = g34 = g24 =
g13 = 3 implies Γ13, Γ24, Γ12 and Γ34 are of the form C4 t C6 t C6. Let G1, G2, G3 be the
components of Γ12 and H1, H2, H3 be the components of Γ34 such that x1, x2, x3 represent
the generators corresponding to G1, G2, G3 respectively and (x3

1x
−1
2 )ε1 , x2

2x
−1
1 , (x2

1x2)ε2

represent the relations corresponding to H1, H2, H3 respectively.
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Let G1 = C6(x1, . . . , x6), G2 = C4(y1, . . . , y4) and G3 = C6(z1, . . . , z6). Then to form
the relations (x3

1x
−1
2 )ε1 , x2

2x
−1
1 , (x2

1x2)ε2 , we need to add the following: (i) two edges of
color 4 between G1 and G2, (ii) four edges of colors 4 between G1 and G3, (iii) two edges
of color 4 between G2 and G3. These give all the 8 edges in γ−1(4). Therefore, we must
have the following: (a) two 4-cycles between G1 and G3 in Γ14, (b) one 4-cycle between
G1 and G2 in Γ14, (c) one 4-cycle between G2 and G3 in Γ14. So, the 4-cycle in Γ24 is
in between G1 and G3. Thus, up to an isomorphism, γ−1(4) is unique. In particular,
we can assume that Γ124 is as in Fig. 3 (b). Now, y2x5 is an edge of color 4 between
G1 and G2. Thus, y1 (resp., y2) is in H1 or H2. Assume, without loss, y1 ∈ H1. Then
y2 ∈ H2. Since Γ is bipartite and H2 represents x2x

−1
3 x2x

−1
1 , taking v1 = x5 as in Eq.

(2.6), H2 = C4(x5, y2, z6, y4). Since Γ23 = C4 t C4 t C4 t C4 and Γ13 = C4 t C6 t C6, we
have x4y1, x3z5, x2z4, x1z3, y3z1, x6z2 ∈ γ−1(3). Then (Γ, γ) =M2,3 of Fig. 3 (b). This
completes the proof.

Lemma 22. There exists a unique 18-vertex crystallization of S3/Q8.

Proof. Let (Γ, γ) be an 18-vertex crystallization of S3/Q8. By Lemma 15 and Theo-
rem 4, (Γ, γ) is the crystallization of S3/Q8 with minimum number of vertices. So,
by Lemma 18, (Γ, γ) has no 2-cycle. Thus, Γ is a simple graph. Since S3/Q8 is ori-
entable, Γ is bipartite. By Proposition 14 and Remark 16, (Γ, γ) yields a presenta-
tion 〈S |R〉 of Q8 with ϕ(S,R) = 18. Again, (Γ, γ) has no 2-cycle implies gij 6 4
for i 6= j. By Proposition 13, g12 + g13 + g14 = 18/2 + 2 = 11. Assume, without
loss, that g12 = 3 and g13 = g14 = 4. Therefore, if we choose generators (resp., rela-
tions) correspond to the components of Γ12 (resp., Γ34) then (Γ, γ) yields a presentation
〈S |R〉 ∈ P2(Q8) \ P1(Q8) with ϕ(S,R) = 18. Then by the proof of part (v) in Lemma
15, R = {(x2

2x
−2
1 )ε1 , (x1x2x1x

−1
2 )ε2 , (x2x1x2x

−1
1 )ε3} for some ε1, ε2, ε3 ∈ {1,−1}. Then,

by choosing (i, j) = (3, 4) or (4, 3) as in Eq. (2.6), we can assume that the three rela-
tions correspond to components of Γ34 are (x2

2x
−2
1 )ε1 , (x1x2x1x

−1
2 )ε2 , x2x1x2x

−1
1 , for some

ε1, ε2 ∈ {−1, 1}. Since Γ has no 2-cycle, Γij = C4 t C4 t C4 t C6 for 1 6 i 6 2 and
3 6 j 6 4. Let G1, G2, G3 be the components of Γ12 and H1, H2, H3 be the compo-
nents of Γ34 such that x1, x2, x3 represent the generators corresponding to G1, G2, G3 and
(x2

2x
−2
1 )ε1 , x2x1x2x

−1
1 , (x1x2x1x

−1
2 )ε2 represent the relations corresponding to H1, H2, H3

respectively. Then Gi, Hi are 6-cycles for 1 6 i 6 3. Let G1 = C6(a1, . . . , a6), G2 =
C6(b1, . . . , b6), G3 = C6(c1, . . . , c6). Again, to form these relations, there are exactly three
edges with color 4 between Gi and Gj for i 6= j. Since each of Γ14 and Γ24 has three
4-cycles, the three edges with color 4 between Gi and Gj for i 6= j, yield two 4-cycles.
Then, up to an isomorphism, Γ124 is as in Fig. 4. Same arguments hold for color 3.

To construct r̃k as in Eq. (2.6), choose (i, j) = (4, 3). Since H2 presents the relation
x2x1x2x

−1
1 , up to isomorphism, the starting vertex v1 (as in Eq. (2.6)) is a2 or a3. If

v1 = a2 then H2 = C6(a2, b3, c4, a5, c2, b5) or C6(a2, b3, c4, a5, c6, b1). In the first case, if
b4c3 ∈ γ−1(3), then b4c3 lies in a cycle of size at least 8 in Γ23, which is not possible. Then
the 4-cycle in Γ13 between G2 and G3 must be C4(b1, b2, c5, c6). But this is not possible
since b1c6 ∈ γ−1(4). In the second case, if b2c5 ∈ γ−1(3), then b2c5 lies in a cycle of size at
least 8 in Γ13, which is not possible. Then the 4-cycle in Γ23 between G2 and G3 must be
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Figure 4: Crystallization J3 of S3/Q8

C4(b4, b5, c2, c3). Again, this is not possible since b5c2 ∈ γ−1(4). Thus, v1 = a3. Now, if
b2c5 is an edge of color 3 then a4c1 and a3b6 must be edges of color 3. Then b5c2 must be
an edge of color 3 to make a 6-cycle in Γ13, which is a contradiction (since b5c2 is already
an edge of color 4). Thus, H2 = C6(a3, b2, c3, a6, c1, b6). Since the three edges with color 3
between G2 and G3 yield two 4-cycles (in Γ13 and Γ23), b1c4, b3c2 must be edges of color
3 between G2 and G3. To make a 6-cycle in Γ13, a5b4 must be an edge of color 3. By
similar arguments, a1c6, a2c5, a4b5 ∈ γ−1(3). Then, (Γ, γ) = J3 of Fig. 4.

Now, the components H1 = C6(a2, b3, c2, b5, a4, c5) and H3 = C6(b4, a1, c6, b1, c4, a5) of
Γ34 yield the relations x2

2x
−2
1 and x1x2x1x

−1
2 respectively. Thus (Γ, γ) yields the presenta-

tion 〈x1, x2 |x2
2x
−2
1 , x1x2x1x

−1
2 〉 ∼= Q8. This completes the proof.

Lemma 23. There exists a unique 24-vertex crystallization of S1 × S1 × S1.

Proof. Let (Γ, γ) be a 24-vertex crystallization of (S1)3. By Lemma 15 and Theorem 4,
(Γ, γ) is the crystallization of (S1)3 with minimum number of vertices. So, by Lemma
18, (Γ, γ) has no 2-cycle. Thus, Γ is a simple graph. Since (S1)3 is orientable, Γ is
bipartite. By Proposition 14 and Remark 16, (Γ, γ) yields a presentation 〈S |R〉 of Z3

with ϕ(S,R) = 24. Since any presentation of Z3 has at least three generators, gij > 4 for
i 6= j. By Proposition 13, g12 + g13 + g14 = 14 and gij = gkl for i, j, k, l distinct.

Claim. (Γ, γ) does not yield a presentation 〈S |R〉 ∈ P4(Z3) \ P3(Z3) with ϕ(S,R) = 24.

Assume 〈S |R〉 ∈ P4(Z3) \ P3(Z3), where S = {x1, x2, x3, x4}. Then A := {(x2
kx
−1
l )±1,

(xjx
−1
k xjx

−1
l )±1, xix

−1
j xkx

−1
l , (xjxkx

−1
l )±1, (xkx

−1
l )2, x±2

l : i, j, k, l are distinct} is the set
of all relations of weight four. Since Γ has no 2-cycle, R has no element of weight two.
This implies that R has at least three elements of weights four. Since Z3 has no torsion
element, x±2

l , (xkx
−1
l )2 6∈ R. Consider an element w ∈ R ∩ A. Assume, without loss,

w = (w1x
−1
4 )±1. Then 〈S1 |R1〉 ∈ P3(Z3), where S1 = {x1, x2, x3} and R1 consists of the

elements r̄, where r̄ can be obtained from a relation r ∈ R by replacing x4 by w1. Let
A(w) := {r̄ : r ∈ A \ {w±1}}. Observe that the weights of the elements in A(w) are 6 or
8.

Since 〈S1 |R1〉 ∈ P3(Z3)\P2(Z3), we have N(R1) = N(R0), where R0 = {x1x2x
−1
1 x−1

2 ,
x1x3x

−1
1 x−1

3 , x2x3x
−1
2 x−1

3 } and hence N(R1) has no element of weight less than 6 (see
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the proof of part (v) of Lemma 15). Again, since #(R1 ∩ A(w)) > 2, R1 has at least
two elements of weights 6 or 8. Observe that D := {xixjx−1

i x−1
j , xix

−1
j xkx

−1
i xjx

−1
k ,

xixjx
−1
k x−1

i xkx
−1
j , xixjx

−1
i xkx

−1
j x−1

k : {i, j, k} = {1, 2, 3}} is the set of all relations of
weights at most 8 in N(R0). So, R1 has at least two independent relations from D∩A(w).
But D∩A(w) does not contain two such elements, a contradiction. This proves the claim.

4
3
2
1

b4

b2b6

b3

b1

b5
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c2c6

c3
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c5
G3
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a2a6

a3
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a5
G1

d4

d2d6

d3

d1

d5
G4

Figure 5: Crystallization J4 of S1 × S1 × S1

By the claim, gij 6= 5 for all 1 6 i 6= j 6 4. So, we can assume that g12 = g13 = 4 and
g14 = 6. Then all the components of Γ14 and Γ23 are 4-cycles. Let Γ12 = G1 t · · · t G4

and Γ34 = H1 t · · · t H4 such that x1, . . . , x4 represent the generators correspond-
ing to G1, . . . , G4 respectively and r1, . . . , r4 represent the relations corresponding to
H1, . . . , H4 respectively. To construct r̃k as in Eq. (2.6), choose (i, j) = (4, 3). Thus
(Γ, γ) yields a presentation 〈S = {x1, x2, x3} |R = {r1, r2, r3}〉 ∈ P3(Z3) \ P2(Z3) with
ϕ(S,R) = 24. Then R contains three independent relations of weight 6 from the set
{xixjx−1

i x−1
j , xix

−1
j xkx

−1
i xjx

−1
k : {i, j, k} = {1, 2, 3}} (see the proof of part (v) of Lemma

15). Without loss of generality, we can assume that R = {x1x2x
−1
1 x−1

2 , (x2x3x
−1
2 x−1

3 )ε1 ,
(x1x3x

−1
1 x−1

3 )ε2} for some ε1, ε2 ∈ {1,−1}. Then, all the components of Γ12 and Γ34 are 6-
cycles. Similarly, all the components of Γ13 and Γ24 are 6-cycles. Let G1 = C6(a1, . . . , a6),
G2 = C6(b1, . . . , b6), G3 = C6(c1, . . . , c6) and G4 = C6(d1, . . . , d6). To form the relations,
there are exactly two edges of color 3 (resp., 4) betweenGi andGj for 1 6 i 6= j 6 4. Then,
up to an isomorphism, Γ124 is as in Fig. 5. Now for the relation x1x2x

−1
1 x−1

2 , we can choose
v1 = b6 as in Eq. (2.6). Then the cycle for x1x2x

−1
1 x−1

2 is H1 = C6(b6, a1, d4, b3, a4, d1).
Since Γ23 consists of 4-cycles, it follows that a6d5, a5b2, b1d6 ∈ γ−1(3). Then the cycle
for the relation x2x3x

−1
2 x−1

3 is H2 = C6(c6, b1, d6, c3, b4, d3). Again (since Γ23 is union of
4-cycles and Γ13 is union of 6-cycles), d2c1, b5c2, a3c4, a2c5 ∈ γ−1(3). Then (Γ, γ) = J4 of
Fig. 5.
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Now, the components H1, H2 and H3 = C6(c1, a6, d5, c4, a3, d2) yield the relations
x1x2x

−1
1 x−1

2 , x2x3x
−1
2 x−1

3 and x1x3x
−1
1 x−1

3 respectively. Thus (Γ, γ) yields the presentation
〈x1, x2, x3 |x1x2x

−1
1 x−1

2 , x2x3x
−1
2 x−1

3 , x1x3x
−1
1 x−1

3 〉 ∼= Z3. This completes the proof.

Remark 24. The crystallizations K2,1, K3,1 and M3,2 (in Figures 2 and 3) were orig-
inally found by Gagliardi et al. ([8, 10]). The first two have the following natural
generalization: Consider the bipartite graph Γ consists of two disjoint 2p-cycles G1 =
C2p(a1, b1, . . . , ap, bp), G2 = C2p(c1, d1, . . . , cp, dp) together with 4p edges aici, bidi, aici+q,
bidi+q for 1 6 i 6 p. Consider the edge-coloring γ with colors 1, 2, 3, 4 of Γ as: γ(biai+1) =
γ(dici+1) = 1, γ(aibi) = γ(cidi) = 2, γ(aici+q) = γ(bidi+q) = 3 and γ(aici) = γ(bidi) = 4,
1 6 i 6 p. (Summations in the subscripts are modulo p.) Then, Kp,q = (Γ, γ) is a 4p-
vertex crystallization of L(p, q), for p > 2 and q > 1. This series is more or less known in
the literature. In the next section, we present some generalizations of M3,2.

5 Two series of crystallizations of lens spaces

Generalizing the construction of M3,2 (Fig. 3 (b)) we have constructed the following
series of crystallizations.

5.1 A 4(k + q − 1)-vertex crystallization of L(kq − 1, q)

Let q > 3. For each k > 2, we construct a 4(k + q − 1)-vertex 4-colored simple graph
Mk,q = (Γk, γk) with the color set {1, 2, 3, 4} inductively which yields the presentation
〈x, y |xqy−1, ykx−1〉. For this, we want gk12 = gk34 = 3. Then, without loss, gk13 = gk24 =
k+q−2 and gk14 = gk23 = k+q−1, where gkij is the number of components of Γkij for i 6= j.
These imply, Γk14 and Γk23 must be union of 4-cycles and Γk13 (resp., Γk24) has two 6-cycles
and (k + q − 4) 4-cycles. Then, by Proposition 13, Mk,q would be a crystallization of
some connected closed 3-manifold Mk.

k = 2 case: The crystallizationM2,q is given in Fig. 6. Then, the components of Γ2
12 are

G1 = C2q(x
1, . . . , x2q), G2 = C4(y1, . . . , y4), G3 = C2q(z

1, . . . , z2q) and the components
of Γ2

34 are H1 = C2q(y
1, x2q, z2, x2, . . . , z2q−2, x2q−2), H2 = C4(x2q−1, y2, z2q, y4), H3 =

C2q(z
2q−1, y3, z1, x1, . . . , z2q−3, x2q−3). Let x, y be the generators corresponding to G1 and

G2 respectively. To construct r̃1 (resp., r̃2) as in Eq. (2.6), choose (i, j) = (4, 3) and
v1 = y1 (resp., v1 = x2q−1). Then H1 and H2 represent the relations xqy−1 and y2x−1

respectively. Therefore, by Proposition 14, π(M2, ∗) ∼= 〈x, y |xqy−1, y2x−1〉 ∼= Z2q−1.
Let T and T2 be the 3-dimensional simplicial cell complexes represented by the color

graphs Γ2|{x1,x2,x3,z3} and Γ2|V (Γ2)\{x1,x2,x3,z3} respectively. Then |T | and |T2| are solid tori
and the facets (2-cells) of T ∩ T2 are x1

2, x
1
4, x

2
3, x

2
4, x3

1, x
3
3, z

3
1 , z

3
2 . Thus, |T ∩ T2| is a torus

(see Fig. 7 (b)) with π1(|T ∩T2|, v1) = 〈α = [a], β = [b] |αβα−1β−1〉, where a = x2
34x

3
34 and

b = x3
34z

3
13z

3
23. Then b = x1

34x
1
13x

1
23 = ∂(x1

3) ∼ 1 in |T |. Therefore, π1(|T |, v1) = 〈α, β | β〉.
Since αβ = βα in |T | ∩ |T2|, ab ∼ ba in |T2|. Now ab = (x2

34x
1
34)(x1

34x
1
13x

1
23) ∼

x2
34x

1
13x

1
23 = x2

34x
2
13x

1
23 ∼ x2

23x
1
23. Therefore, a2b ∼ aba ∼ x2

23x
1
23x

2
34x

1
34 = x2

23x
2q
23x

2q
34x

1
34 ∼

x2
23x

2q
13x

1
34 = x2

23z
1
13z

1
34 ∼ x2

23z
1
23. Thus, a3b ∼ x2

34x
1
34x

2
23z

1
23 = x2

34x
3
34x

3
23z

1
23 ∼ x2

34x
3
13z

1
23 =
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Figure 6: Crystallization M2,q of L(2q − 1, q)

x4
34x

4
13z

1
23 ∼ x4

23z
1
23. Similarly, aq−1b ∼ x2q−4

23 z1
23. Therefore, aqb ∼ x2

34x
1
34x

2q−4
23 z1

23 =
x2

34x
2q−3
34 x2q−3

23 z1
23 ∼ x2

34x
2q−3
13 z1

23 = x2q−2
34 x2q−2

13 z1
23 ∼ x2q−2

23 z1
23 = x2q−1

23 z1
23 ∼ x2q−1

34 x2q−1
13 z1

23 =
x2q−1

34 z1
13z

1
23 ∼ x2q−1

34 z1
34 = x2q−1

34 z2q−1
34 . Since k = 2, we have z2q−1

13 = z2q
13. This implies,

a2q−1b2 ∼ x2q−1
34 z2q−1

34 x2q−4
23 z1

23 = x2q−1
34 z2q−1

34 z2q−1
23 z1

23 ∼ x2q−1
34 z2q−1

13 z1
23 = z2q

34z
2q
13z

2q
23 = ∂(z2q

3 ) ∼
1 in |T2|. Thus π1(|T2|, v1) = 〈α, β |α2q−1β2, αβα−1β−1〉. This implies that (see the second
paragraph of Subsection 2.3) |T |∪ |T2| = L(2q−1, 2). Therefore,M2,q is a crystallization
of L(2q − 1, 2) ∼= L(2q − 1, q).

k = 3 case: Here z2q−1
13 6= z2q

13. Let

Γ3 = (V (Γ2) ∪ {y5, y6, z2q+1, z2q+2}, E(Γ2) \ {y2z2q, y3z1, y3y4, z2q−1z2q} ∪ {y3y5, y5y6,

y6y4, z2q−1z2q+1, z2q+1z2q+2, z2q+2z2q, y5z2q+1, y6z2q+2, y2z2q+1, y3z2q+2, y5z2q, y6z1}).

Consider the following coloring γ3 on the edges of Γ3: same colors on the old edges as
in M2,q, color 1 on the edges y3y5, y6y4, z2q−1z2q+1, z2q+2z2q, color 2 on the edges y5y6,
z2q+1z2q+2, color 3 on the edges y2z2q+1, y3z2q+2, y5z2q, y6z1 and color 4 on the edges
y5z2q+1, y6z2q+2 (see Fig. 7 (a)). Let T be as in the case k = 2 and T3 be the cell complex
represented by the colored graph Γ3|V (Γ3)\{x1,x2,x3,z3}.

Then, a2q−1b2 ∼ z2q
34z

2q−1
13 z2q

23 = z2q+1
34 z2q+1

13 z2q
23 ∼ z2q+1

23 z2q
23 = z2q+2

23 z2q
23. This implies,

a3q−1b3 = (aqb)(a2q−1b2) ∼ (x2q−1
34 z2q−1

34 )(z2q+2
23 z2q

23) = z2q
34z

2q+2
34 z2q+2

23 z2q
23 ∼ z2q

34z
2q+2
13 z2q

23 =
z2q

34z
2q
13z

2q
23 = ∂(z2q

3 ) ∼ 1 in |T3|. Thus, π1(|T3|, v1) = 〈α, β |α3q−1β3, αβα−1β−1〉 and hence
|T |∪ |T3| = L(3q−1, 3). Therefore,M3,q is a crystallization of L(3q−1, 3) ∼= L(3q−1, q).
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Figure 7: (a) Crystallization M3,q of L(3q − 1, q) (b) |T1 ∩ Tk|

k > 4 case: Consider the graph

Γk = (V (Γk−1) ∪ {y2k−1, y2k, z2q+2k−5, z2q+2k−4}, E(Γk−1) \ {y2k−3z2q, y2k−2z1, y2k−2y4,

z2q+2k−6z2q} ∪ {y2k−2y2k−1, y2k−1y2k, y2ky4, z2q+2k−6z2q+2k−5, z2q+2k−5z2q+2k−4,

z2q+2k−4z2q, y2k−1z2q+2k−5, y2kz2q+2k−4, y2k−3z2q+2k−5, y2k−2z2q+2k−4, y2k−1z2q, y2kz1}).

Also, consider the following coloring γk on the edges of Γk: same colors on the old edges
as inMk−1,q, color 1 on the edges y2k−2y2k−1, y2ky4, z2q+2k−6z2q+2k−5, z2q+2k−4z2q, color 2
on the edges y2k−1y2k, z2q+2k−5z2q+2k−3, color 3 on the edges y2k−3z2q+2k−5, y2k−2z2q+2k−4,
y2k−1z2q, y2kz1 and color 4 on the edges y2k−1z2q+2k−5, y2kz2q+2k−4. Let T be as in the case
k = 2 and Tk be the cell complex represented by the colored graph Γk|V (Γk)\{x1,x2,x3,z3}.

Claim. akq−1bk ∼ z2q
34z

2q+2k−4
13 z2q

23 in |Tk|.
We prove the claim by induction. It is true for k = 3. Assume that a(k−1)q−1bk−1 ∼

z2q
34z

2q+2(k−1)−4
13 z2q

23 in |Tk−1|. Now, aqb ∼ z2q
34z

1
34 = z2q

34z
2q+2k−4
34 and a(k−1)q−1b(k−1) ∼

z2q
34z

2q+2k−6
13 z2q

23 = z2q+2k−5
34 z2q+2k−5

13 z2q
23 ∼ z2q+2k−5

23 z2q
23 = z2q+2k−4

23 z2q
23. Thus, akq−1bk ∼

(aqb)(a(k−1)q−1b(k−1) ∼ z2q
34z

2q+2k−4
34 z2q+2k−4

23 z2q
23 = z2q

34z
2q+2k−4
13 z2q

23 in |Tk|. The claim now
follows by induction.

Since z2q
13 = z2q+2k−4

13 in Tk, by the claim we get akq−1bk ∼ 1 in |Tk|. Thus, π1(|Tk|, v1) =
〈α, β |αkq−1βk, αβα−1β−1〉 and hence |T | ∪ |Tk| = L(kq − 1, k) ∼= L(kq − 1, q). Therefore,
Mk,q is a crystallization of L(kq − 1, q).

5.2 A 4(k + q)-vertex crystallization of L(kq + 1, q)

Let q > 4. For each k > 1, we construct a 4(k + q)-vertex 4-colored simple graph
Nk,q = (Γk, γk) with the color set {1, 2, 3, 4} inductively which yields the presentation
〈x, y |xqy−1, xyk〉. For this, we want gk12 = gk34 = 3. Then, without loss, gk13 = gk24 = k+q−1
and gk14 = gk23 = k + q, where gkij is the number of components of Γkij for i 6= j. These
imply, Γk14 and Γk23 must be union of 4-cycles and Γk13 (resp., Γk24) has two 6-cycles and
(k + q − 4) 4-cycles. Then, by Proposition 13, Nk,q would be a crystallization of some
connected closed 3-manifold Mk.
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k = 1 case: The crystallization N1,q is given in Fig. 8. Then, the components
of Γ1

12 are G1 = C2q(x
1, . . . , x2q), G2 = C4(y1, . . . , y4), G3 = C2q(z

1, . . . , z2q) and the
components of Γ1

34 are H1 = C2q(y
3, x2, z2, x4, . . . , z2q−2, x2q), H2 = C4(z2q−1, x1, z1, y1),

H3 = C2q(x
3, y2, z2q, y4, x2q−1, z2q−3, x2q−3, . . . , z4, x4, z3). Let x, y be the generators cor-

responding to G1 and G2 respectively. To construct r̃1 (resp., r̃2) as in Eq. (2.6), choose
(i, j) = (4, 3) and v1 = y3 (resp., v1 = z2q−1). Then H1 and H2 represent the relations
xqy−1 and xy respectively. Therefore, by Proposition 14, π(M1, ∗) ∼= 〈x, y |xqy−1, xy〉 ∼=
Zq+1.
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Figure 8: Crystallization N1,q of L(q + 1, q)

Let T and T1 be the 3-dimensional simplicial cell complexes represented by the color
graphs Γ1|{x5,x4,x3,z3} and Γ1|V (Γ1)\{x5,x4,x3,z3} respectively. Then |T | and |T1| are solid tori
and the facets (2-cells) of T ∩T1 are x5

2, x5
3, x4

3, x4
4, x3

1, x3
4, z3

1 , z3
2 . Thus, |T ∩T1| is a torus

(see Fig. 9 (b)) with π1(|T ∩T1|, v1) = 〈α = [a], β = [b] |αβα−1β−1〉, where a = x4
34x

3
34 and

b = x3
34x

3
13x

4
23. Then b = x3

34x
3
13x

3
23 = ∂(x1

3) ∼ 1 in |T |. Therefore, π1(|T |, v1) = 〈α, β | β〉.
Since αβ = βα in |T∩T1|, it follows that ab ∼ ba in |T1|. Now, ab = (x4

34x
3
34)(x3

34x
3
13x

3
23)

∼ x4
34x

3
13x

3
23 = z2

34z
2
13x

3
23 ∼ z2

23x
3
23 = z1

23x
3
23. Thus, a2b ∼ aba ∼ (z1

23x
3
23)(x4

34x
3
34) =

z1
23x

4
23x

4
34 x3

34 ∼ z1
23x

4
13x

3
34 = z1

23x
5
13x

5
34 ∼ z1

23x
5
23 = z1

23x
6
23. Therefore, a3b ∼ aba2 ∼

z1
23x

6
23x

4
34x

3
34 = z1

23x
6
23x

6
34x

3
34 ∼ z1

23x
6
13x

3
34 = z1

23x
7
13x

7
34 ∼ z1

23x
7
23 = z1

23x
8
23. Similarly we

get, aq−2b ∼ z1
23x

2q−2
23 . Thus, aq−1b ∼ aq−2ba ∼ z1

23x
2q−2
23 x4

34x
3
34 = z1

23x
2q−2
23 x2q−2

34 x3
34 ∼

z1
23x

2q−2
13 x3

34 = z1
23x

2q−1
13 x2q−1

34 ∼ z1
23x

2q−1
23 = z1

23x
2q
23. Therefore, aqb ∼ z1

23x
2q
23x

4
34x

3
34 =
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z1
23x

2q
23x

2q
34 x

3
34 ∼ z1

23x
2q
13x

3
34 = z1

23y
2
13y

2
34 ∼ z1

23y
2
23 ∼ z1

34z
1
13y

2
23 = z1

34y
2
13y

2
23 ∼ z1

34y
2
34 = z1

34z
2q
34.

Again, a = x4
34x

3
34 = y3

34y
2
34 ∼ y3

24y
3
14y

2
34 = y3

24y
2
14y

2
34 ∼ y3

24y
2
24 = y3

24z
1
24. Therefore,

aq+1b ∼ aaqb ∼ y3
24z

1
24z

1
34z

2q
34 ∼ z2q

24z
1
14z

2q
34 = z2q

24z
2q
14z

2q
34 = ∂(z2q

4 ) ∼ 1 in |T1|. Thus
π1(|T1|, v1) = 〈α, β |αq+1β, αβα−1β−1〉. This implies that |T | ∪ |T1| = L(q + 1, 1). There-
fore, N1,q is a crystallization of L(q + 1, 1) ∼= L(q + 1, q).

k = 2 case: Here z1
14 6= z2q

14. Let

Γ2 = (V (Γ1) ∪ {y5, y6, z2q+1, z2q+2}, E(Γ1) \ {y2z2q, y1z2q−1, y1y4, z1z2q} ∪ {y1y6, y5y6,

y4y5, z1z2q+2, z2q+1z2q+2, z2qz2q+1, y5z2q+1, y6z2q+2, y2z2q+2, y1z2q+1, y6z2q, y5z2q−1}).

To construct N2,q, consider the following coloring γ2 on the edges of Γ2: same colors on
the old edges as in N1,q, color 1 on the edges y1y6, y4y5, z1z2q+2, z2qz2q+1 color 2 on the
edges y5y6, z2q+1z2q+2, color 3 on the edges y2z2q+2, y1z2q+1, y6z2q, y5z2q−1 and color 4 on
the edges y5z2q+1, y6z2q+2 (see Fig. 9 (a)). Let T be as in the case k = 2 and T2 be the
cell complex represented by the colored graph Γ2|V (Γ2)\{x5,x4,x3,z3}.
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Figure 9: (a) Crystallization N2,q of L(2q + 1, q) (b) |T | ∩ |Tk|

Then, aq+1b ∼ z2q
24z

1
14z

2q
34 = z2q

24z
2q+2
14 z2q+2

34 ∼ z2q
24z

2q+2
24 = z2q

24z
2q+1
24 . This implies, a2q+1b2

∼ aq+1baqb ∼ z2q
24z

2q+1
24 z1

34z
2q
34 = z2q

24z
2q+1
24 z2q+1

34 z2q
34 ∼ z2q

24z
2q+1
14 z2q

34 = z2q
24z

2q
14z

2q
34 = ∂(z2q

4 ) ∼ 1 in
|T2|. Thus, π1(|T2|, v1) = 〈α, β |α2q+1β2, αβα−1β−1〉 and hence |T | ∪ |T2| = L(2q + 1, 2).
Therefore, N2,q is a crystallization of L(2q + 1, 2) ∼= L(2q + 1, q).
k > 3 case: Let

Γk = (V (Γk−1) ∪ {y2k+1, y2k+2, z2q+2k−3, z2q+2k−2}, E(Γk−1) \ {y2kz2q, y2k−1z2q−1, y2k−1y4,

z2q+2k−5z2q} ∪ {y2k−1y2k+2, y2k+1y2k+2, z2q+2k−5z2q+2k−2, z2q+2k−3z2q+2k−2, z2qz2q+2k−3,

y2k+1z2q+2k−3, y2k+2z2q+2k−2, y2kz2q+2k−2, y2k−1z2q+2k−3, y2k+2z2q, y2k+1z2q−1, y4y2k+1}).

To construct Nk,q, consider the following coloring γk on the edges of Γk: same colors
on the old edges as in Nk−1,q, color 1 on the edges y2k−1y2k+2, y4y2k+1, z2q+2k−5z2q+2k−2,
z2qz2q+2k−3, color 2 on the edges y2k+1y2k+2, z2q+2k−3z2q+2k−2, color 3 on the edges
y2kz2q+2k−2, y2k−1z2q+2k−3, y2k+2z2q, y2k+1z2q−1 and color 4 on the edges y2k+1z2q+2k−3,
y2k+2z2q+2k−2. Let T be as in the case k = 1 and Tk be the cell complex represented by
the colored graph Γk|V (Γk)\{x5,x4,x3,z3}.
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Claim. akq+1bk ∼ z2q
24z

2q+2k−3
14 z2q

34 in |Tk|.
We prove the claim by induction. It is true for k = 2. Assume that a(k−1)q+1bk−1 ∼

z2q
24z

2q+2(k−1)−3
14 z2q

34 in |Tk−1|. Now aqb ∼ z2q+2k−3
34 z2q

34 and aq(k−1)+1b(k−1) ∼ z2q
24z

2q+2k−4
24 =

z2q
24z

2q+2k−3
24 . So, aqk+1bk ∼ (aq(k−1)+1b(k−1)(aqb) ∼ z2q

24z
2q+2k−3
24 z2q+2k−3

34 z2q
34 = z2q

24z
2q+2k−3
14 in

|Tk|. The claim now follows by induction.
Since z2q

14 = z2q+2k−3
14 in Tk, by the claim we get akq+1bk ∼ 1 in |Tk|. Thus, π1(|Tk|, v1) =

〈α, β |αkq+1βk, αβα−1β−1〉 and hence |T | ∪ |Tk| = L(kq + 1, k) ∼= L(kq + 1, q). Therefore,
Nk,q is a crystallization of L(kq + 1, q).

A few days after we posted the first version of this article (arXiv:1308.6137) in
the arXiv, Casali and Cristofori posted an article on complexity of lens spaces [4] in
the arXiv (arXiv:1309.5728). In that paper, the authors constructed crystallizations of
L(p, q) with 4S(p, q) vertices, where S(p, q) denotes the sum of all partial quotients in
the expansion of q/p as a regular continued fraction. In particular, they have constructed
L(kq − 1, q) with 4(k + q − 1) vertices for k, q > 2 and L(kq + 1, q) with 4(k + q) vertices
for k, q > 1. Their constructions are different from ours.

Remark 25. From the enumeration of crystallizations of prime 3-manifolds with at most
30 vertices (see [3, 12]), we know that Ψ(L(9, 4)) = 24 and Ψ(L(13, 4)) = 28. From our
constructions in Subsections 5.1 and 5.2, we know M2,5 and N2,4 are 24-vertex crystal-
lizations of L(9, 4). The induced subgraphs of M2,5 on 2-colored edges are of the form
2C10 t C4, 2C6 t 3C4 or 6C4 and such subgraphs of N2,4 are of the form C10 t C8 t C6,
2C6t3C4 or 6C4. So,M2,5 and N2,4 are non-isomorphic. Thus, L(9, 4) has more than one
(non-isomorphic) crystallizations with minimum number of vertices. The constructions in
[4] give a 28-vertex of crystallization of L(13, 4) with {g12, g13, g14} = {4, 5, 7}. Observe
that N3,4 is also a 28-vertex of crystallization of L(13, 4) with {g12, g13, g14} = {3, 6, 7}.
Thus, these two crystallizations of L(13, 4) are non-isomorphic. So, the minimal crys-
tallization N3,4 of L(13, 4) is not unique. Also, from the list of crystallizations in [12],
we know that there are several 3-manifolds having more than one crystallizations with
minimum number of vertices.

6 Proofs of Theorems 6, 8 and Corollary 7

Proof of Theorem 6. Let M2,3 be as in Subsection 5.1. Then, M2,3 is a 16-vertex
crystallization of L(5, 3) = L(5, 2). Part (i) now follows from Lemmas 15, 19, . . . , 23.

If f3(X) < 8 then, by Theorem 4, ψ(M) < 8 and hence ψ(M) = 2. Therefore
π(M, ∗) = {0} and hence, by Perelman’s theorem (Poincaré conjecture), M = S3. Part
(ii) now follows from Lemma 19. �

Proof of Corollary 7. From the proof of Lemma 22, m(Q8) = 2. Therefore, if X is a
pseudotriangulation of S3/Q8 then, by Corollary 5 and Lemma 3, h2(X) > ψ(S3/Q8)−2 =
18− 2 > 12 = 6m(S3/Q8).

Again, if X is a pseudotriangulation of S1×S1×S1 then, by Corollary 5 and Lemma
3, h2(X) > ψ(S1 × S1 × S1)− 2 = 24− 2 > 6× 3 = 6m(S1 × S1 × S1).
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For p, q relatively prime and p > 3, let X be a pseudotriangulation of L(p, q). Then,
by Theorem 6 (ii) and Corollary 5, h2(X) > ψ(L(p, q))− 2 > 8− 2 = 6× 1 = 6m(L(p, q))
for p > 3. This completes the proof. �

Proof of Theorem 8. Let Kp,q be as in Remark 24. Then K3,1 is a 12-vertex crystallization
of L(3, 2). Part (a) now follows by the constructions in Subsection 5.1.

Again, Kq+1,q is a 4(q + 1)-vertex crystallization of L(q + 1, q) for 1 6 q 6 3. Part (b)
now follows by the constructions in Subsection 5.2. �
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