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Department of Mathematics
University of West Bohemia

Univerzitńı 8, 306 14 Plzeň, Czech Republic

sarpet@kma.zcu.cz

Submitted: Dec 1, 2012; Accepted: Mar 10, 2014; Published: Mar 24, 2014

Mathematics Subject Classification: 05C15, 05D10, 91A46

Abstract

An online Ramsey game (G,H) is a game between Builder and Painter, alter-
nating in turns. During each turn, Builder draws an edge, and Painter colors it
blue or red. Builder’s goal is to force Painter to create a monochromatic copy of G,
while Painter’s goal is to prevent this. The only limitation for Builder is that after
each of his moves, the resulting graph has to belong to the class of graphs H. It was
conjectured by Grytczuk, Ha luszczak, and Kierstead (2004) that if H is the class of
planar graphs, then Builder can force a monochromatic copy of a planar graph G
if and only if G is outerplanar. Here we show that the “only if” part does not hold
while the “if” part does.

Keywords: Ramsey theory; Online Ramsey games; Planar graphs; Outerplanar
graphs; Game theory; Builder and Painter

1 Introduction

For a fixed graph G and a class of graphs H such that G ∈ H, an online Ramsey game
(G,H), defined by Grytczuk, Ha luszczak, and Kierstead [5], is a game between Builder
and Painter with the following rules. The game starts with the empty graph on infinitely
many vertices. On the i-th turn, Builder adds a new edge to the graph created in the first
i−1 turns so that the resulting graph belongs to H (we say that Builder plays on H), and
Painter colors this edge blue or red. Builder wins if he can always force Painter to create
a monochromatic copy of G (or force G for short). We then say that G is unavoidable on
H. A graph G is unavoidable if it is unavoidable on planar graphs. On the other hand, if
Painter can ensure that a monochromatic copy of G is never created, then G is avoidable
on H. A class of graphs H is self-unavoidable if every graph of H is unavoidable on H.

According to Ramsey’s theorem, for every t ∈ N there exists n ∈ N such that every
2-coloring of the edges of Kn contains a monochromatic copy of Kt. Thus, without
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restricting toH, Builder would always win the online Ramsey game by creating sufficiently
large complete graph. The size Ramsey number r(G) for a graph G is the minimum
number of edges of a graph that contains a monochromatic copy of G in every 2-coloring
of its edges. The online size Ramsey number r̃(G) is the minimum m such that Builder
can force G by playing on the class of graphs with at most m edges. Clearly, r̃(G) 6 r(G)
(Builder wins by presenting a graph of size r(G) that contains a monochromatic copy
of G for any 2-edge-coloring). However, Builder may be able to win using less than
r(G) edges since he can adapt his strategy to Painter’s coloring. One can then ask
whether or not r̃(G) = o(r(G)). The basic conjecture in the field, attributed to Rödl
by Kurek and Ruciński [9], is that r̃(Kt) = o(r(Kt)). In 2009, Conlon [3] showed that
r̃(Kt) 6 1.001−t(r(Kt)) for infinitely many t. On the other hand, if G is a path or a cycle,
then both r̃(G) and r(G) are linear in |V (G)| (see [1], [6], [7]).

Butterfield et al. [2] studied Online Ramsey games played on the class Sk of graphs
with maximum degree at most k. The authors introduce an online degree Ramsey number
r̃4(G) as the least k for which G is unavoidable on Sk.

Online Ramsey games played on various classes of graphs were studied by Grytczuk et
al. [5]. They proved that the class of k-colorable graphs as well as the class of forests are
self-unavoidable. (It was later shown by Kierstead and Konjevod [8] that the k-colorable
graphs are self-unavoidable even if Painter uses more colors.) Various games played on
planar graphs were investigated in [5]. It was shown, for example, that every cycle, as
well as the graph K4 − e, is unavoidable on planar graphs. They made the following
conjecture:

Conjecture ([5]). The class of graphs unavoidable on planar graphs is exactly the class
of outerplanar graphs.

Here we show that the conjecture is only partially true. In particular, it is true that
the class of outerplanar graphs is a subclass of the class of graphs unavoidable on planar
graphs.

Theorem 1. Every outerplanar graph is unavoidable on planar graphs.

However, we show that there exists an infinite family of planar but not outerplanar
graphs which are unavoidable on planar graphs. Let θi,j,k denote the union of three
internally disjoint paths of lengths i, j, k, respectively.

Theorem 2. The graph θ2,j,k is unavoidable for even j, k.

The paper is organized as follows. In Section 2, we introduce notation. Section 3 gives
a proof of Theorem 1, and Section 4 gives a proof of Theorem 2.

2 Notation

In this section, we first mention several notions that are particularly important for the next
discussion. Besides these, we follow standard graph theory terminology (see Diestel [4]).
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Figure 1: Graphs G and H such that GBH.

All graphs considered here are simple and undirected. For a graph G, the set of vertices
is denoted by V (G) and the set of edges by E(G). The length of a path is the number of
its edges. If we replace an edge e of G with a path of length k+ 1 (i.e. we place k vertices
of degree 2 on e), then we say that e is subdivided k-times. For a fixed graph G, a copy
H of G is a graph isomorphic to G with V (G)∩V (H) = ∅. For two graphs G1 = (V1, E1)
and G2 = (V2, E2), their union is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). When we
say that a graph is a disjoint union of G1 and G2, we are automatically assuming that
V1 ∩ V2 = ∅. A planar graph is a graph that can be drawn in the plane without edge
crossings. An outerplanar graph is a planar graph that can be embedded so that all its
vertices belong to the boundary of the outer face. A red-blue graph is a graph with its
edges colored red or blue. A red-blue graph will often use the same name as its underlying
(uncolored) graph.

Let G1 and G2 be two disjoint graphs containing cliques H1, H2 (Hi ⊆ Gi) of size
k > 0. Let the vertices of Hi be labeled v1(Gi), . . . , vk(Gi). A k-sum G1 ⊕k G2 of G1 and
G2 is a graph formed from the disjoint union of G1 and G2 by identifying the vertex vj(G1)
with vj(G2) for each j = 1, . . . , k. To simply notation, we write G1⊕G2 if k 6 2. Note that
G1⊕G2 does not specify the appending cliques, and so it is not a well-defined operation.
However, if k = 1, then we can make this notation precise and specify the appending
vertex v by writing G1 ⊕v G2 (which we will do often). For k = 2, we sometimes write
G1 ⊕e G2, where e(Gi) is a non-oriented edge v1(Gi)v2(Gi) (the resulting graph is again
not always unique). Also, we abbreviate ((G1 ⊕G2)⊕ . . . )⊕Gn by G1 ⊕G2 ⊕ · · · ⊕Gn.

Let G be a graph, H a subgraph of G. If there exist planar graphs X1, . . . , Xn such
that G = H ⊕X1 ⊕ · · · ⊕Xn, then we say that G is reducible to H, and we write GBH.
It is a well known fact that for k 6 2, a k-sum of two planar graphs is planar, thus the
following holds:

Remark 3. If H is a planar graph, and a graph G is reducible to H, then G is planar.

Informally, G is reducible to H if G can be formed from H by successively “appending”
planar graphs on edges/vertices. So, Remark 3 says that if the starting graph H is planar,
then so is G.

Consider an online Ramsey game on planar graph. A strategy (for Builder) X is a
finite sequence of rules that tell Builder how to move on any given turn of the game,
no matter how Painter plays. If a monochromatic copy of the target graph G arises,
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the game ends and Builder wins (provided that the final red-blue graph is planar). The
output graph of strategy X is then the final red-blue graph with a fixed monochromatic
copy of G, called a winning copy (of G by X) and denoted simply by G if no confusion
can arise. This winning copy adopts all notation from the target graph. For example, for
a target graph G with vertices u, v and a cycle C, the two corresponding vertices and the
corresponding cycle are again denoted by u, v, C in the chosen winning copy G. If Builder
always wins when following strategy X, then we say that G is unavoidable by strategy X.
The set of all output graphs of a strategy X is denoted X (the calligraphic version of the
name of the strategy).

3 Outerplanar graphs

In this section we show that every outerplanar graph is unavoidable on the class of planar
graphs. The idea behind our proof is based on the inductive proof of the self-unavoidability
of forests presented by Grytczuk et al. [5]. Suppose that Builder’s goal is to force a forest
T . We can assume that T is a tree (since every forest is contained in some tree). Choose
a leaf u of T , let v be the neighbor of u in T , and let T ′ = T − u. Builder forces 2|T | − 1
monochromatic copies of T ′ (where the corresponding final graphs are pairwise disjoint),
from which at least |T | are of the same color, say blue. On those copies, Builder builds a
new copy of T by adding edges between copies of v. If any one of the new added edges is
blue, then that edge and a blue copy of T ′ appended to one of its endpoints form a blue
copy of T . Otherwise, those edges form a red copy of T . We will call this strategy the
tree strategy.

Since trees are planar, the tree strategy shows that forests are unavoidable (on planar
graphs). Moreover, a generalized version of the tree strategy can be used for forcing a
graph formed from a tree T by appending a copy of an unavoidable graph G to each
vertex of T . Before presenting this strategy we need some notation.

Let T be a tree on vertices v1(T ), . . . , vn(T ), and let G be a graph with an arbitrary
vertex labeled by v. The ordered triple (T,G, v) denotes the graph T⊕v1G1⊕v2 · · ·⊕vnGn,
where for i = 1, . . . , n, Gi is a copy of G and vi(Gi) ∈ V (Gi) is the copy of v. We refer to
the identified vertices vi(T ) = vi(G) in (T,G, v) by vi. Next, let S be any set of red-blue
graphs X such that each has a fixed monochromatic copy GX of G. Let A be a red-blue
graph with a fixed monochromatic subgraph (T,G, v) = T ⊕v1 G1 ⊕v2 · · · ⊕vn Gn. We say
that A is (T,S)-reducible if AB T ⊕v1 X1 ⊕v2 · · · ⊕vn Xn, where for each i ∈ [n] either Xi

is a monochromatic copy of G, or Xi ∈ S such that Gi = GXi
. In our proofs we take S to

be the set of all final graphs of some strategy. For example, the set of all output graphs
X of a strategy X is a set of red-blue graphs, each with a fixed monochromatic copy of
G, and so, for any given tree T , we can talk about (T,X )-reducible graphs.

Suppose that G is unavoidable by strategy X. We consider the following Builder’s
strategy for forcing a monochromatic copy of (T,G, v).
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Figure 2: Forcing a monochromatic copy of (T,G, v), where T is a path of length 2, G a
triangle, and v is an arbitrary vertex of V (G).

strategy A (T,G, v,X)

Let n = |V (T )|, k = |V ((T,G, v))|.
1. If n = 1, call strategy X and stop.

2. If n > 1, choose a leaf u of T , set T ′ = T − u, and call strategy A(T ′, G, v,X)
(2k − 1)-times. Choose k copies H1, . . . , Hk of (T ′, G, v) of the same color, and
in ith of them label the vertex that corresponds to the neighbor of u in T by
ui. Add an edge eij = uiuj if and only if vivj is an edge in (T,G, v).

To prove that (T,G, v) is unavoidable by strategy A(T,G, v,X), we have to ensure
that no matter how Painter plays, a monochromatic copy of the target graph (T,G, v)
eventually appears, and that the final graph is planar. Both parts are shown below using
induction and reduction arguments that rely on Remark 3.

Lemma 4. Let T be a tree, G a graph, and v a vertex of V (G). If G is unavoidable by
strategy X, then (T,G, v) is unavoidable by strategy A(T,G, v,X), and every graph A of
A(T,G, v,X) is (T,X )-reducible.

Proof. We use all the notation introduced in strategy A. The proof is by induction on
the number n of vertices of T . If n = 1, then (T,G, v) = G, which is unavoidable by
strategy X by the assumption. Since A(T,G, v,X) = X , the graph A is (T,X )-reducible.
Now let n > 1. The following two cases can arise.

Case 1: All edges eij are red. These edges form a red (T,G, v). Every final graph
for forcing Hi is planar by the induction hypothesis. Observe that each such graph is
appended to (T,G, v) by one vertex only. Thus, A is reducible directly to (T,G, v), and
hence is (T,X )-reducible, which proves the planarity as well as the second part of the
claim. See Figure 2.

Case 2: Some edge eij is blue. The graph Hi, the edge eij, and one copy of G contained
in Hj form a blue (T,G, v). The graph A is planar by previous discussion, so the first part
of the claim is complete. Let Ai, Aj ∈ A(T ′, G, v,X) be subgraphs of A that were used
for forcing Hi and Hj, respectively. By the induction hypothesis, Ai is (T ′,X )-reducible.
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Figure 3: A graph G and its complete block graph B(G).

Similarly Aj is (T ′,X )-reducible, and therefore is (u′,X )-reducible. Since the rest of A is
reducible to eij, and eij shares with each of Hi and Hj only one vertex (the vertex ui and
uj, respectively), we get the second part of the claim.

A block is a maximal 2-connected subgraph. For a graph G with a vertex set V =
{v1, . . . , vk} and blocks B1, . . . , Bl, the complete block graph B(G) is a graph on V ∪
{B1, . . . , Bl} formed by the edges viBj with vi ∈ V (Bj) (see Figure 3). Notice that B(G)
can be obtained from the block graph B(G) of G by adding edges with one endpoint of
degree 1, and thus, B(G) is a tree for every connected graph G.

Remark 5. The union of an outerplanar graph G and its complete block graph B(G) is
planar.

Let H be an outerplanar graph. The weak dual H∗ of H is the graph obtained from
the plane dual of H by removing the vertex that corresponds to the outer face of H. It is
easy to see that H∗ is a forest, which is a tree whenever H is 2-connected. If there exists
a vertex r ∈ V (H∗) such that H∗ rooted in r (denoted by H∗(r)) is a full binary tree,
then we call H a full outerplanar graph. The height h(H) of a full outerplanar graph H is
the number of levels in its full binary tree H∗(r). The edge of a full outerplanar graph H
incident to the face that corresponds to r, as well as to the the outer face, is the central
edge eH of H (see Figure 4, left). For the sake of convenience, a graph that consists of
a single edge is also considered to be full outerplanar. Its height is then defined to be 0
and its central edge is the only edge of the graph.

Lemma 6. For every outerplanar graph G there exists a full outerplanar graph H such
that G ⊆ H.

Proof. Let GT be an almost triangulation of G, i.e. an outerplanar graph formed by
triangulating the inner faces of G. The maximum degree of G∗T is at most 3, and there
exists a vertex r ∈ V (G∗T ) of degree 1 or 2. Let H∗(r) be a full binary tree of height
h(G∗T (r)) containing G∗T . The graph H is then the desired full outerplanar graph.

Recall that for a tree T with n vertices and m edges, a graph G, and a vertex v ∈ V (G),
we have (T,G, v) = T ⊕v1 G1 ⊕v2 · · · ⊕vn Gn. Let H be a full outerplanar graph, and
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Figure 4: A full outerplanar graph H with its full binary tree H∗(r) of height 3 (left).
The structure of (T,G, v, h) (right).

for i = 1, . . . ,m, let Hi be a copy of H with the central edge ei(Hi). Then we define
(T,G, v,H) as a graph T ⊕v1 G1 ⊕v2 · · · ⊕vn Gn ⊕e1 H1 ⊕e2 · · · ⊕em Hm. So, (T,G, v,H) is
simply the graph that arises from (T,G, v) if we “glue” a copy of H by its central edge
to every edge of T (cf. Figure 4, right).

We now present a strategy B for forcing a monochromatic copy of (T,G, v,H), as-
suming that G is unavoidable by a strategy X.

strategy B (T,G, v,H,X)

Let t = |V (T )| and h = h(H).
1. If t = 1, call strategy X and stop.

2. If h = 0, call strategy A(T,G, v,X) and stop.

3. Choose a leaf u of T and call its neighbor u′. Call strategy B(T ′, G′, v′, H ′,X′),
where

• T ′ = B(T,G, v,H),

• G′ = (T − u,G, v,H),

• v′ is the vertex of T − u ⊆ G′ that corresponds to u′,

• H ′ is the full outerplanar graph of height h− 1,

• X′ = B(T − u,G, v,H,X).

Let {u1, . . . , uk} be the vertex set of (T,G, v,H), and thus also a subset of a
vertex set of B(T,G, v,H) = T ′. Adopt this notation to the subgraph T ′ of
the winning copy (T ′, G′, v′, H ′) found by strategy B(T ′, G′, v′, H ′,X′). Add an
edge eij = uiuj in (T ′, G′, v′, H ′) if and only if uiuj is an edge in (T,G, v,H).

Let S be a set of red-blue graphs such that each X ∈ S contains a fixed monochromatic
graph G. Then we set S = S ∪ {G ∪B(G)}, where G is the fixed monochromatic graph.

Theorem 1. Every outerplanar graph is unavoidable (on planar graphs).
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Figure 5: Forcing a monochromatic copy of (T,G, v,H), where T is a path of length 2,
G is a cycle of length 4, v is any vertex of V (G), and H is the full outerplanar graph of
height 1.

Proof. We prove a stronger claim instead.

Claim. Let T be a tree, G an outerplanar graph, and v ∈ V (G). If G is unavoidable
by strategy X, then (T,G, v,H) is unavoidable by strategy B(T,G, v,H,X), and every
graph B ∈ B(T,G, v,H,X) is (T,X )-reducible.

This statement implies Theorem 1 since every outerplanar graph G is contained in
some full outerplanar graph H by Lemma 6, which can be written as (eH , ({v}, ∅), v,H),
and is therefore unavoidable by the above claim.

We adopt all the notation used in strategy B. Let S be the set of all 2-tuples (h, t) ∈
(N ∪ {0})× N. On S, we define the lexicographic order E, i.e. (h1, t1) E (h2, t2) exactly
when h1 < h2, or h1 = h2 and t1 6 t2 for all h1, h2 ∈ N ∪ {0} and t1, t2 ∈ N. The set S
together with the relation E is linear, and we can apply induction.

We start with the basis. Suppose first that h > 0, and t = 1. Then (T,G, v,H) = G
and the claim is trivially satisfied. Let now h = 0, and t > 1. In this case we have
(T,G, v,H) = (T,G, v). By Lemma 4, (T,G, v) is unavoidable by A(T,G, v,X). So,
every graph of A(T,G, v,X) is (T,X )-reducible, and thus (T,X )-reducible since X ⊆ X .

Suppose now that h > 1, t > 2. By the induction hypothesis ((h, t − 1) E (h, t)),
G′ = (T − u,G, v,H) is unavoidable by strategy X′ = B(T − u,G, v,H,X), and every
graph of X ′ is (T − u,X )-reducible. Since G′ is unavoidable by strategy X′, it holds
by the induction hypothesis ((h − 1, t) E (h, t)) that (T ′, G′, v′, H ′) is unavoidable by
strategy B′ = B(T ′, G′, v′, H ′,X′), and every graph B′ of B′ is (T ′,X ′)-reducible. Say
that the winning copy (T ′, G′, v′, H ′) in B′ is blue. We distinguish the following two
cases:

Case 1: All edges eij are red. These edges form a red copy of (T,G, v,H). The graph
B′ is (T ′,X ′)-reducible, and thus reducible to T ′ = B(T,G, v,H). Since B arose from
B′ by adding the edges forming (T,G, v,H), B is reducible to (T,G∪B(G), v), and thus
(T,X )-reducible.
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Case 2: At least one edge eij = uiuj is blue. The endpoints of eij are connected by a
path P in T ′ of length 2. There is a copy of H ′ appended along each of the edges of P .
Those two copies of H ′ together with eij form a full outerplanar graph H of height h with
central edge eij (see Figure 5). Let G′i and G′j be the blue copies of G′ = (T − u,G, v,H)
appended to ui and uj, respectively. Then H, G′i, and the copy of G in G′j that is
appended to uj form a blue copy of (T,G, v,H). We can assume that Builder chooses
this copy as the winning copy. We now prove the second part of the claim. Recall that
B′ is (T ′,X ′)-reducible. Let X ′i, X

′
j be the graphs of X ′ appended to ui, uj, respectively.

So, X ′i is (T − u,X )-reducible, and Xj is ({uj},X )-reducible. Since the rest of the graph
B is reducible to eij, we find that B is (T,X )-reducible. See the diagram on the right in
Figure 5.

4 Non-outerplanar graphs

We now show that an infinite subclass of theta-graphs is unavoidable on planar graphs.
Recall that a theta-graph (θ-graph) is the union of three internally disjoint paths that
have the same two end vertices. We write θi,j,k for the theta-graph with paths of length
i, j, k. For example, K2,3 is the graph θ2,2,2.

Before stating the main theorem, we introduce a strategy for forcing even cycles. The
unavoidability of cycles was proven in [5], but here we need the final graph to have a
special type of plane embedding that we utilize in the proof of the main theorem.

Let C be a cycle of even length n that is unavoidable by strategy X. If for every graph
X of X there is a plane embedding of X such that

(G1) all vertices of V (C) belong to the boundary of one common face, and

(G2) there exists a path P ⊂ C of length n
2

such that all vertices of V (P ) lie the boundary
of another face,

then we say that strategy X is a good strategy. The path P is then called a good path in
C.

strategy C (C)

Let n = |V (C)|, a = (n− 1), and b = n
2
− 1.

1. Force a monochromatic path P = v0 . . . va2+b by the tree strategy.

2. In P , Connect the vertices v0 and va2 by an edge e.

3. If e has the other color than P , add the path P ′ = v0vav2a . . . va2 . Otherwise
add the cycle C ′ = vbv(b+a)v(b+2a) . . . v(b+a2)vb.

Lemma 7. Let C be an even cycle. Then strategy C(C) is a good strategy.
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Figure 6: Forcing cycle of length 4 by strategy C.

Proof. We will follow the notation introduced in strategy C. We fix a planar embedding
of an output graph of strategy C(C) as shown in Figure 6. By [5], every final graph of the
tree strategy for forcing P is a forest, which is reducible to (the chosen monochromatic)
P . Assume that P is blue. The following two cases can arise.

Case 1: The edge e is red. If Painter colors some edge of P ′ blue, a blue copy of C
arises since there is a blue path of length n − 1 between such two vertices. Otherwise,
P ′ ∪ e is a red cycle C of length n. In both cases, all vertices of the monochromatic copy
of C belong to two common faces. See Figure 6, left.

Case 2: The edge e is blue. Suppose that Painter colors some edge e′ of C ′− vbv(a2+b)

blue. Since each such pair is connected by a blue path of length a = n − 1, a blue cycle
of length n arises. Condition (G1) is then satisfied by the face bounded by this cycle,
and (G2) is satisfied by the face f bounded by the cycle v0vav2a . . . va2v0, which contains
a good path on n/2 + 1 vertices if e′ = va(a−1)va2 and on all n vertices in all the other
cases. Suppose now that Painter colors the edge vbv(a2+b) blue. Then the blue copy of
C is formed by this edge and the blue path starting at vb, going through e, and ending
at v(a2+b). All of the vertices of the blue copy of C belong to the outer face, and there
is a good path vbvb−1 . . . v0va2 of length b + 1 = n

2
that belongs to f . Consider the last

possibility when C ′ is red. Now, all of the vertices of V (C) belong to the boundary of
f ′, and all but the vertex v(a2+b) of V (C) belong to the boundary of f . See Figure 6,
right.

Theorem 2. The graph θ2,j,k is unavoidable for even j, k.

Proof. For fixed j and k, let j′ = j
2
, k′ = k

2
. We consider disjoint cycles C1, . . . , Cj′+k′+1 of

length k+2. In ith of them, we label an arbitrary vertex by ci and one of the two vertices
in distance 2 from ci by v0(Ci) if i 6 j′ + 1, and by v1(Ci) otherwise. Let P1, . . . , Pj′+k′+2

be paths of length j − 1, where in each Pi, one end is labeled by pi, and another one by
v0(Pi) if i 6 j′ + 1, and by v1(Pi) otherwise. Let

L := C1 ⊕v0 · · · ⊕v0 Cj′+1 ⊕v0 P1 ⊕v0 · · · ⊕v0 Pj′+1

and
R := Cj′+2 ⊕v1 · · · ⊕v1 Cj′+k′+1 ⊕v1 Pj′+2 ⊕v1 · · · ⊕v1 Pj′+k′+2.

Then we write H for a graph that is formed from the disjoint union of L and R by
identifying p1 with pj′+k′+2, and pj′+1 with pj′+2 (see Figure 7, left). The cycle consisting
of the paths P1, Pj′+1, Pj′+2, and Pj′+k′+2 is denoted C0.
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H: θ2,2,4:

v0 v1

C0

C1C2

C3

C4

P4

p1 = p5

p2 = p3

p4c1c2

c3

c4
P1

P2 P3

P5

p1 = p5

p2 = p3

p4c1c2

c3

c4

Figure 7: Graph H for j = 2, k = 4 (left) and forcing θ2,2,4 using H (right).

Observe first that having a monochromatic copy of a H, Builder could easily force
θ2,j,k (cf. Figure 7). The graph H is outerplanar, and hence unavoidable by Theorem 1.
The problem is that by connecting the proper vertices of the monochromatic copy of H
in the resulting graph, the planarity condition would be violated. Therefore, we have to
change the strategy for forcing H.

For n = 0, . . . , j′+ k′+ 1, let Gn := H[V (C0 ∪ · · · ∪Cn)]. So, the graph Gj′+k′+1 is the
graph H without the paths P2, . . . , Pj′ , Pj′+3, . . . , Pj′+k′+1. Let us refer to the blocks of
Gn and the corresponding vertices of the complete block graph simply by C0, C1, . . . , Cn.
Next, let V ′ be the set of vertices of Gn (and thus also of B(Gn)) for which the distance
from v0 in Gn is even. For Gn, we define a subdivided complete block graph BS(Gn) as a
graph that arises from B(Gn) by subdividing each edge joining Ci (i = 1, . . . , n) and a
vertex of V ′ (k − 1)-times. Observe that BS(G) is a tree, and that G ∪BS(G) is planar.

We now present strategy D for forcing Gn.

strategy D (Gn)

1. If n = 0, call strategy C(C0). In C0, find a good path P0, denote the middle
vertex of P0 by v0 and its opposite vertex in C0 by v1.

2. If n > 1, let T ′ = BS(Gn), G′ = Gn−1, v
′ = v0 if n 6 j′ + 1 and v′ = v1

otherwise, and D′ = D(Gn−1). Call strategy A(T ′, G′, v′,D′).

3. In (T ′, G′, v′), connect two vertices of T ′ = BS(Gn) by an edge if and only if the
corresponding vertices are connected by an edge in Gn.

We show by induction on n that Gn is unavoidable by strategy D(Gn), and that every
graph D of D(Gn) can be embedded in the plane so that

(1) all vertices v0, v1, p1, pj′+1, c1, . . . , cn belong to some face f1, and

(2) (a) the vertices v0, p1, pj′+1 belong to some face f2, other than f1, or

(b) there is a path P = p1c1pj′+1 of the other color than Gn.
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C1

C0

C2

C3 C3

BS(G3)

G3

G2

Figure 8: Left: The graphs G3 (dashed) and BS(G3) (solid) for j = 2, k = 2. Black
vertices represent the vertices of B(G3) whereas white ones are the subdividing vertices.
Right: Forcing G3, Case 2 – one of the edges added to (T ′, G′, v′) = (BS(G3), G2, v2) is
blue.

The base case is n = 0. By Lemma 7, strategy C(C0) is a good strategy, i.e. every
graph of C(C0) can be embedded in such a way that all vertices of C0 belong to one

common face, and there is a path P0 ⊂ C0 of length 4(j−1)
2

= 2(j−1) such that all vertices
of V (P0) belong to the boundary of another face. The first part implies condition (1),
and the second part implies condition (2)(a).

Now assume that n > 1. We first show that D is planar. Every graph of D(G′) is
planar by induction. Therefore, every graph A of A(T ′, G′, v′,D′) is reducible to T ′ by
Lemma 4, and thus planar. Since T ′ = Bs(Gn), every graph that arises in Step 3 of
strategy D(Gn) is reducible to Bs(Gn) ∪Gn, which is planar.

Let us prove that a monochromatic copy of Gn arises when following strategy D(Gn),
and that D fulfills Conditions (1) and (2). Suppose that the monochromatic copy of
(T ′, G′, v′) in A is blue. Let us focus on the edges added in Step 3. The following two
cases can arise.

Case 1: All these edges are red. Since all the edges form a copy of Gn, we get a red
Gn. According to the discussion above, D is reducible to Bs(Gn) ∪ Gn. Every Bs(Ci)
(i = 0, . . . , n) can be drawn inside the cycle Ci of Gn. Then, all the vertices of Gn belong
to the boundary of the outer face, which gives us Condition (1). Condition (2) is also
satisfied as there is a blue path p1C0pj′+1.

Case 2: At least one edge e is blue. The edge e joins the ends of a blue path P
of length k + 1 of T ′. So, a cycle Cn of length k + 2 is formed. Since there is a copy
of G′ = Gn−1 appended to each vertex of T ′ and Gn = Gn−1 ∪ Cn, k + 2 blue copies
of Gn are formed. Builder arbitrarily chooses one of them, called Gn. The graph A of
A(T ′, G′, v′,D′) is (T ′,D′)-reducible by Lemma 4. Since P ⊆ T ′, the graph A is (P,D′)-
reducible. Let D′ be the graph of D′ that contains the copy of Gn−1 in the chosen blue
graph Gn. By the induction hypothesis, D′ can be embedded so that Conditions (1) and
(2) are satisfied (for Gn−1 in D′). Therefore, the graph D can be embedded is such a way
that all the vertices v0, v1, p1, pj′+1, c1, . . . , cn−1 of G′ lie in the boundary of a common
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Figure 9: Adding edges of a copy of θ2,2,4 to H if the condition (2)a (left), resp. (2)b
(right) is satisfied.

face and either v0, p1, pj′+1 belong to another common face or there is red path of p1c1pj′+1.
Also, D can be embedded so that all vertices of Cn lie in the boundary of a common face.
Now, G′ can be drawn inside that face, which gives both Condition (1) and Condition
(2).

Having a monochromatic copy of G = Gj′+k′+1, Builder can force H = G⊕v0 T0⊕v1 T1,
where T0 = P2 ⊕v0 · · · ⊕v0 Pj′ and T1 = Pj′+3 ⊕v1 · · · ⊕v1 Pj′+k′+1. Indeed, since G is
unavoidable by strategy D(Gj′+k′+1), the supergraph (T0, G, v0) of G ⊕v0 T0 is unavoid-
able by strategy X = A(T0, G, v0,D(G)) by Lemma 4. Applying Lemma 4 again, we
find that the supergraph (T1, (T0, G, v0), v1) of G ⊕v0 T0 ⊕v1 T1 is unavoidable by strat-
egy A(T1, (T0, G, v0), v1,X). In order to force θ2,j,k, it suffices to add the appropriate edges
to G⊕v0 T0 ⊕v1 T1. The whole process is summed up in strategy E.

strategy E (θ2,j,k)

1. Call strategy A(T1, (T0, G, v0), v1,X), where X = A(T0, G, v0,D(G)) and v1 is
an arbitrary vertex corresponding to v1 of some copy of G in (T0, G, v0). Chose
a monochromatic copy of H.

2. Add edges of the cycle p1c2p2c3 . . . pj′+1(= pj′+2)cj′+2pj′+3 . . . cj′+k′+1p1 to H. If
there is not the path p1c1pj′+1, also add the edges p1c1 and c1pj′+1.

As a consequence of Lemma 4, every graph of A(T1, (T0, G, v0), v1,X) can be em-
bedded in such a way that Conditions (1) and (2) hold for G, and that all the vertices
p2, . . . , pj′+k′+1 lie in the boundary of the face f1. This means that adding the cycle in
Step 3 of strategy E does not violate the planarity of the final graph. Finally, Condition
(2) ensures that either there already is a path of length 2 connecting p1 and pj′+1 of the
desired color, or Builder can add it by connecting p1 to c1 and c1 to pj′+1.
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5 Further problems

The question of whether the class of planar graphs is self-unavoidable is still open. To
disprove it, it suffices to find a single planar graph G such that Painter can ensure that
a monochromatic copy of G never occurs when playing on planar graphs. The graph K4

seems to be a good candidate.

Conjecture 8. K4 is avoidable on the class of planar graphs.

Unfortunately, Painter’s winning strategies seem to be much harder to find. So far,
only one such strategy has been presented; namely a strategy showing that a triangle is
avoidable on the class of outerplanar graphs given in [5].
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