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Abstract

The main purpose of this paper is to derive various Matiyasevich-Miki-Gessel
type convolution identities for Bernoulli and Genocchi polynomials and numbers by
applying some Euler type identities with two parameters.
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1 Introduction

The Bernoulli numbers Bn and polynomials Bn(x) appear in many areas of mathematics
and theoretical physics, most notably in number theory, the calculus of finite differences,
asymptotic analysis and quantum field theory. They can be defined by the generating
functions

P (t) :=
t

et − 1
=
∞∑
n=0

Bn
tn

n!
(|t| < 2π),

P (t, x) :=
text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π),

(1.1)

respectively. As is easily shown, we see Bn(0) = (−1)nBn(1) = Bn and Bn(1 − x) =
(−1)nBn(x) for n > 0.
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On the other hands, the Genocchi numbers Gn and polynomials Gn(x) are defined by
the generating functions

Q(t) :=
2t

et + 1
=
∞∑
n=0

Gn
tn

n!
(|t| < π),

Q(t, x) :=
2text

et + 1
=
∞∑
n=0

Gn(x)
tn

n!
(|t| < π),

(1.2)

respectively. It is easily seen that G2k+1 = 0, (−1)kG2k > 0 for k > 1 and Gn(0) = Gn.
They can be expressed in terms of Bernoulli numbers and polynomials byGn = 2(1−2n)Bn

and Gn(x) = 2Bn(x) − 2n+1Bn(x/2). Further, we can express them in terms of Euler
numbers En and polynomials En(x) defined by

R(t) :=
2

et + e−t
=
∞∑
n=0

En
tn

n!
(|t| < π),

R(t, x) :=
2ext

et + 1
=
∞∑
n=0

En(x)
tn

n!
(|t| < π),

(1.3)

respectively. Indeed, we see that Gn+1(x) = (n+ 1)En(x) (n > 0) and

Gn+1 =
n+ 1

2n

n∑
i=0

(
n

i

)
(−1)n−iEi (n > 0).

Concerning convolution identities for Bernoulli numbers, the most basic and remark-
able one is the following formula, which is usually attributed to Euler:

n∑
i=0

(
n

i

)
BiBn−i = −nBn−1 − (n− 1)Bn (n > 1).

This identity was extended to Bernoulli polynomials and generalized in many directions
(see, e.g., [1, 2, 3, 4, 5, 7, 13]). For instance, we have, as a simple one,

n∑
i=0

(
n

i

)
Bi(x)Bn−i(y) = n(x+ y − 1)Bn−1(x+ y)− (n− 1)Bn(x+ y) (n > 1).

In 1978, a very different type of convolution identity for Bernoulli numbers was proved
by Miki [16] based on p-adic arguments:

n−2∑
i=2

BiBn−i

i(n− i)
−

n−2∑
i=2

(
n

i

)
BiBn−i

i(n− i)
= 2Hn

Bn

n
(n > 4), (1.4)

where Hn is the nth harmonic number defined by

Hn := 1 +
1

2
+ · · ·+ 1

n
. (1.5)
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Subsequently, Matiyasevich [15] discovered a good companion identity to (1.6) with
the aid of the computer software system “Mathematica”. Rewriting his original identity
in an equivalent form,

n−2∑
i=2

BiBn−i − 2
n−2∑
i=2

(
n+ 1

i− 1

)
BiBn−i

i
=
n(n+ 1)

n+ 2
Bn (n > 4). (1.6)

This identity was later proved and generalized by several authors (cf., e.g., [8, 10, 17]).
In 2005, Miki’s identity (1.6) was extended to Bernoulli polynomials by Gessel [12]

using the Stirling numbers of the second kind. Indeed, he proved that for n > 1,

n−1∑
i=1

Bi(x)Bn−i(x)

i(n− i)
− 2

n

n−1∑
i=0

(
n

i

)
Bi(x)Bn−i

n− i
−Bn−1(x) = 2Hn−1

Bn(x)

n
. (1.7)

In this paper, we study the Matiyasevich-Miki-Gessel (we simply write as “M-M-G”)
type convolution identities for Bernoulli and Genocchi polynomials. In Section 2, we de-
duce some Euler type identities with two parameters for these polynomials by observing
certain functional equations related to the generating functions P (t, x) and Q(t, x). Con-
sidering special cases of these Euler type identities, we derive in Section 3 various M-M-G
type identities for Bernoulli and Genocchi polynomials and numbers.

The basic idea we will use in Section 3 is the following. Given two functions F (t) :=∑∞
n=0 fnt

n/n! and G(t) :=
∑∞

n=0 gnt
n/n!, suppose that we have an identity

F (ut)G((1− u)t) =
∞∑
n=0

hn(u)
tn

n!
, u ∈ R.

Equating coefficients of tn/n! on both sides and integrating with respect to u from 0 to
1, one can deduce

1

n+ 1

n∑
k=0

fkgn−k =

∫ 1

0

hn(u)du.

Here we have used the beta integral
∫ 1

0
uk(1−u)n−kdu = k!(n−k)!/(n+ 1)! (Lemma 2-(i)

below). This is essentially the same idea used by Crabb in [6] to give another short and
intelligible proof of (1.7).

2 Euler type convolution identities

For arbitrary two sequences S = {Sn}n>0 and T = {Tn}n>0, we will use the following
umbral notation for simplification. For u, v ∈ R, letting 00 = 1 by convention (in the case
of u = 0 or v = 0), we define the notation [uS + vT ]n by

[uS + vT ]n :=
n∑

i=0

(
n

i

)
uivn−iSiTn−i (n > 0).
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We now establish some Euler type convolution identities with two parameters for
Bernoulli and Genocchi polynomials by observing certain functional equations satisfied
by the generating functions P (t, x) and Q(t, x) of these polynomials.

Theorem 1. Let u, v ∈ R\{0} with u + v 6= 0 and put W := (ux + vy)/(u + v). For
n > 1, we have

(i) [uB(x) + vB(y)]n =uv(u+ v)n−2nBn−1(W ) +
v

u+ v
[(u+ v)B(W ) + uB]n

+
u

u+ v
[(u+ v)B(W ) + vB]n ,

(ii) [uG(x) + vG(y)]n =4uv(u+ v)n−2nBn−1(W )− 2v

u+ v
[(u+ v)B(W ) + uG]n

− 2u

u+ v
[(u+ v)B(W ) + vG]n ,

(iii) [uB(x) + vG(y)]n =uv(u+ v)n−2nGn−1(W ) +
v

u+ v
[(u+ v)G(W ) + uB]n

− u

2(u+ v)
[(u+ v)G(W ) + vG]n .

Proof. We will use the following rational function identities of X which can be easily
confirmed by direct calculations:

(a)
1

Xu − 1
· 1

Xv − 1
=

1

Xu+v − 1

(
1 +

1

Xu − 1
+

1

Xv − 1

)
(uv(u+ v) 6= 0),

(b)
1

Xu + 1
· 1

Xv + 1
=

1

Xu+v − 1

(
1− 1

Xu + 1
− 1

Xv + 1

)
(u+ v 6= 0),

(c)
1

Xu − 1
· 1

Xv + 1
=

1

Xu+v + 1

(
1 +

1

Xu − 1
− 1

Xv + 1

)
(u 6= 0).

Here we put X = et and multiply (a), (b) and (c) by κ := uvt2e(ux+vy)t, 4κ and 2κ,
respectively. Then we can obtain the following functional equations:

P (ut, x)P (vt, y) =
uv

u+ v
tP ((u+ v)t,W ) +

v

u+ v
P ((u+ v)t,W )P (ut)

+
u

u+ v
P ((u+ v)t,W )P (vt),

Q(ut, x)Q(vt, y) =
4uv

u+ v
tP ((u+ v)t,W )− 2v

u+ v
P ((u+ v)t,W )Q(ut)

− 2u

u+ v
P ((u+ v)t,W )Q(vt),

P (ut, x)Q(vt, y) =
uv

u+ v
tQ((u+ v)t,W ) +

v

u+ v
Q((u+ v)t,W )P (ut)

− u

2(u+ v)
Q((u+ v)t,W )Q(vt).
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Equating coefficients of tn/n! in the power series expansions on both sides of these equa-
tions, we can deduce the Euler type formulas as indicated.

Many kinds of convolution identities for Bernoulli and Genocchi polynomials can be
obtained from Theorem 1 by taking various values of u and v. In particular, considering
the special case when u + v = 1 and x = y, we will derive M-M-G type convolution
identities for these polynomials and numbers in the next section.

3 M-M-G type convolution identities

We first present the following lemma which will be needed throughout in this section:

Lemma 2. Let Hn be the nth harmonic number defined in (1.5). It follows that

(i)

∫ 1

0

un−1(1− u)k−1du =
(n− 1)!(k − 1)!

(n+ k − 1)!
(n, k > 1),

(ii)
1

2

∫ 1

0

1− un+1 − (1− u)n+1

u(1− u)
du =

∫ 1

0

1− un

1− u
du = Hn (n > 1).

We do not give the proof of this lemma, but both formulas can be easily verified by
elementary calculations. Here note that (i) is the well-known beta integral and (ii) is
found in Crabb’s paper [6] (where it is used in exactly the same way).

Put y = x and v = 1−u (6= 0) in Theorem 1. Then, since W = (xu+vy)/(u+v) = x,
we have the identities

[uB(x) + (1− u)B(x)]n = u(1− u)nBn−1(x)

+ (1− u) [B(x) + uB]n + u [B(x) + (1− u)B]n ,
(3.1)

[uG(x) + (1− u)G(x)]n = 4u(1− u)nBn−1(x)

− 2(1− u) [B(x) + uG]n − 2u [B(x) + (1− u)G]n ,
(3.2)

[uB(x) + (1− u)G(x)]n = u(1− u)nGn−1(x)

+ (1− u) [G(x) + uB]n − u

2
[G(x) + (1− u)G]n .

(3.3)

Applying above (3.1), we can deduce the following polynomial versions of Matiyase-
vich’s and Miki’s identities mentioned in Section 1.

Theorem 3. For n > 1, we have

(i)
n−1∑
i=1

Bi(x)Bn−i(x)− 2

n+ 2

n−1∑
i=0

(
n+ 2

i

)
Bi(x)Bn−i

=
n(n+ 1)

6
Bn−1(x) + (n− 1)Bn(x),

the electronic journal of combinatorics 21(1) (2014), #P1.65 5



(ii)
n−1∑
i=1

Bi(x)Bn−i(x)

i(n− i)
− 2

n

n−1∑
i=0

(
n

i

)
Bi(x)Bn−i

n− i

= Bn−1(x) + 2Hn−1
Bn(x)

n
((1.7), Gessel).

Proof. We rewrite (3.1) gathering the terms involving Bn(x) in one place as

n−1∑
i=1

(
n

i

)
ui(1− u)n−iBi(x)Bn−i(x)

−
n−1∑
i=0

(
n

i

)
(un−i(1− u) + u(1− u)n−i)Bi(x)Bn−i

= u(1− u)nBn−1(x) + (1− un − (1− u)n)Bn(x).

(3.4)

Integrating this between 0 and 1 with respect to u, we obtain using Lemma 2-(i),

1

n+ 1

n−1∑
i=1

Bi(x)Bn−i(x)− 2
n−1∑
i=0

(
n

i

)
Bi(x)Bn−i

(n+ 2− i)(n+ 1− i)

=
n

6
Bn−1(x) +

n− 1

n+ 1
Bn(x).

Since 1
(n+2−i)(n+1−i)

(
n
i

)
= 1

(n+1)(n+2)

(
n+2
i

)
, we know that this identity implies (i) multiplying

by n+ 1. Next, we divide (3.4) by u(1− u). Then we get

n−1∑
i=1

(
n

i

)
ui−1(1− u)n−1−iBi(x)Bn−i(x)−

n−1∑
i=0

(
n

i

)
(un−1−i + (1− u)n−1−i)Bi(x)Bn−i

= nBn−1(x) +
1− un − (1− u)n

u(1− u)
Bn(x).

In the same way as above, integrating this identity between 0 and 1 with respect to u, we
obtain using both formulas in Lemma 2,

n

n−1∑
i=1

Bi(x)Bn−i(x)

i(n− i)
− 2

n−1∑
i=0

(
n

i

)
Bi(x)Bn−i

n− i
= nBn−1(x) + 2Hn−1Bn(x),

which gives (ii) dividing by n. This completes the proof.

As an immediate consequence of Theorem 3, we can state the following

Corollary 4. For n > 4, we have

(i)
n−2∑
i=2

BiBn−i − 2
n−2∑
i=2

(
n+ 1

i− 1

)
BiBn−i

i
=
n(n+ 1)

n+ 2
Bn ((1.6), Matiyasevich),

(ii)
n−2∑
i=2

BiBn−i

i(n− i)
−

n−2∑
i=2

(
n

i

)
BiBn−i

i(n− i)
= 2Hn

Bn

n
((1.4), Miki).
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Proof. If n > 4 is odd, then both sides of (i) and (ii) entirely vanish. So it suffices to
consider the case when n > 4 is even. Taking x = 0 in Theorem 3-(i), we have, since
B0 = 1 and Bn−1 = 0,

n−2∑
i=2

BiBn−i −
2

n+ 2

(
n−2∑
i=2

(
n+ 2

i

)
BiBn−i +Bn

)
= (n− 1)Bn,

which gives (i) because
(
n+2
i

)
= n+2

i

(
n+1
i−1

)
. Similarly, taking x = 0 in Theorem 3-(ii), we

have
n−2∑
i=2

BiBn−i

i(n− i)
− 2

n

(
n−2∑
i=2

(
n

i

)
BiBn−i

n− i
+
Bn

n

)
= 2Hn−1

Bn

n
.

Since 1
n

(
1
i

+ 1
n−i

)
= 1

i(n−i) and 2
n2 + 2

n
Hn−1 = 2

n
Hn, we can deduce (ii).

We note that some different proofs of Corollary 4 are already known using tools from
combinatorics, p-adic analysis, contour integrals and other areas (see [6, 8, 11, 14, 18]).

Let B′n := (1 − 2n−1)Bn for n > 0. Thus we see B2k+1 = 0 for all k > 0 and
B′0 = 1/2, B′2 = −1/6, B′4 = 7/30, B′6 = −31/42, B′8 = 127/30 and so on.

Lemma 5. It follows that

(i) B0 (1/2) = 1, Bn (1/2) =
1− 2n−1

2n−1 Bn =
1

2n−1B
′
n (n > 1),

(ii) G0 (1/2) = 0, Gn (1/2) =
n

2n−1En−1 (n > 1).

Proof. This lemma can be easily shown from the facts P (2t, 1/2) = 2P (t) − P (2t) and
Q (2t, 1/2) = 2tR(t).

Corollary 6. For n > 4, we have

(i)
n−2∑
i=2

B′iB
′
n−i −

1

n+ 2

n−2∑
i=2

(
n+ 2

i

)
2n−iB′iBn−i =

n− 1

2
B′n +

2n−1

n+ 2
Bn,

(ii)
n−2∑
i=2

B′iB
′
n−i

i(n− i)
− 1

n

n−2∑
i=2

(
n

i

)
2n−iB′iBn−i

n− i
= Hn

B′n
n

+
2n − 1

n2
Bn.

Proof. We may assume that n > 4 is even by the same reason as mentioned in the proof
of Corollary 4. Taking x = 1/2 in Theorem 3-(i), we obtain from Lemma 5, noticing that
Bn−1 = B′n−1 = 0,

1

2n−2

n−2∑
i=2

B′iB
′
n−i −

2

n+ 2

(
n−2∑
i=2

(
n+ 2

i

)
B′iBn−i

2i−1 +Bn

)
=
n− 1

2n−1 B
′
n,

which yields (i) multiplying by 2n−2. Similarly, taking x = 1/2 in Theorem 3-(ii),

1

2n−2

n−2∑
i=

B′iB
′
n−i

i(n− i)
− 2

n

(
n−2∑
i=2

(
n

i

)
B′iBn−i

2i−1(n− i)
+
Bn

n

)
= Hn−1

B′n
2n−2n

.

Multiplying this by 2n−2 and replacing Hn−1 by Hn − 1
n
, we get (ii) as desired.
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We note that Corollary 6-(ii) is equivalent to the following identity discovered by Faber
and Pandharipande in [9] with a proof by Zagier in an appendix:

n−1∑
i=1

BiBn−i

i(n− i)
− 1

n

n∑
i=1

(
n

i

)
BiBn−i

i
= Hn−1

Bn

n
,

where Bi := ((1 − 2i−1)/2i−1)Bi (i > 0). Indeed, we easily know that Bi = B′i/2
i−1 and

B1 = Bn−1 = 0 for an even n > 4. Concerning this and other Miki type convolution
identities, see also Dunne and Schubert [8], in which they presented a new and interesting
approach using some tools from perturbative quantum field theory and string theory.

Similarly to Theorem 3, we can deduce the following identities using identity (3.2):

Theorem 7. For n > 2, we have

(i)
n−1∑
i=1

Gi(x)Gn−i(x) +
4

n+ 2

n−2∑
i=0

(
n+ 2

i

)
Bi(x)Gn−i = 0,

(ii)
n−1∑
i=1

Gi(x)Gn−i(x)

i(n− i)
+

4

n

n−2∑
i=0

(
n

i

)
Bi(x)Gn−i

n− i
= 0.

Proof. Since G0(x) = G0 = 0, identity (3.2) can be written as

n−1∑
i=1

(
n

i

)
ui(1− u)n−iGi(x)Gn−i(x) = 4u(1− u)nBn−1(x)

− 2
n−1∑
i=0

(
n

i

)
(un−i(1− u) + u(1− u)n−i)Bi(x)Gn−i.

(3.5)

Integrating (3.5) between 0 and 1 with respect to u, we obtain using Lemma 2-(i), since
G1 = 1 and

(
1

n+1−i −
1

n+2−i

) (
n
i

)
= 1

(n+1−i)(n+2−i)

(
n
i

)
= 1

(n+1)(n+2)

(
n+2
i

)
,

1

n+ 1

n−1∑
i=1

Gi(x)Gn−i(x) =
2n

3
Bn−1(x)− 4

n−1∑
i=0

(
n

i

)
Bi(x)Gn−i

(n+ 1− i)(n+ 2− i)

= − 4

(n+ 1)(n+ 2)

n−2∑
i=0

(
n+ 2

i

)
Bi(x)Gn−i,

which yields (i) multiplying by n+ 1. For identity (ii), dividing (3.5) by u(1−u), we have

n−1∑
i=1

(
n

i

)
ui−1(1− u)n−1−iGi(x)Gn−i(x)

= 4nBn−1(x)− 2
n−1∑
i=0

(
n

i

)
(un−1−i + (1− u)n−1−i)Bi(x)Gn−i

= −2
n−2∑
i=0

(
n

i

)
(un−1−i + (1− u)n−1−i)Bi(x)Gn−i.
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Similarly to the above, integrating this between 0 and 1 with respect to u, we obtain using
Lemma 2-(i),

n
n−1∑
i=1

Gi(x)Gn−i(x)

i(n− i)
= −4

n−2∑
i=0

(
n

i

)
Bi(x)Gn−i

n− i
,

and so (ii) follows dividing by n.

As a consequence of Theorem 7, we will now derive two corollaries related to convolu-
tion identities for Genocchi and Euler numbers.

Corollary 8. For n > 4, we have

(i)
n−2∑
i=2

GiGn−i + 4
n−2∑
i=2

(
n+ 1

i− 1

)
BiGn−i

i
= − 4

n+ 2
Gn,

(ii)
n−2∑
i=2

GiGn−i

i(n− i)
+ 4

n−2∑
i=2

(
n− 1

i− 1

)
BiGn−i

i(n− i)
= − 4

n2
Gn.

Proof. Set x = 0 in Theorem 7-(i). Noting that G1 = B0 = 1 and B1 = −1/2, we have

n−1∑
i=1

GiGn−i +
4

n+ 2

n−2∑
i=0

(
n+ 2

i

)
BiGn−i

=
n−2∑
i=2

GiGn−i + 2Gn−1 +
4

n+ 2

n−2∑
i=2

(
n+ 2

i

)
Bi(x)Gn−i +

4

n+ 2
Gn + 4B1Gn−1

=
n−2∑
i=2

GiGn−i + 4
n−2∑
i=2

(
n+ 2

i− 1

)
Bi(x)Gn−i

i
+

4

n+ 2
Gn = 0,

and therefore (i) was shown. Similarly, to get identity (ii) we set x = 0 in Theorem 7-(ii).
Then, since G1 = B0 = 1 and B1 = −1/2, we get

n−1∑
i=1

GiGn−i

i(n− i)
+

4

n

n−2∑
i=0

(
n

i

)
BiGn−i

n− i

=
n−2∑
i=2

GiGn−i

i(n− i)
+

2Gn−1

n− 1
+

4

n

n−2∑
i=2

(
n

i

)
BiGn−i

n− i
+

4Gn

n2
+

4B1Gn−1

n− 1

=
n−2∑
i=2

GiGn−i

i(n− i)
+ 4

n−2∑
i=2

(
n− 1

i− 1

)
BiGn−i

i(n− i)
+

4Gn

n2
= 0,

which gives (ii) as desired.
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Corollary 9. For n > 4, we have

(i)
n−1∑
i=1

i(n− i)Ei−1En−1−i +
n−2∑
i=2

(
n+ 1

i− 1

)
2n+1−iB

′
iGn−i

i
= − 2n

n+ 2
Gn,

(ii)
n−1∑
i=1

Ei−1En−1−i +
n−2∑
i=2

(
n− 1

i− 1

)
2n+1−i B

′
iGn−i

i(n− i)
= −2n

n2
Gn.

Proof. The above identities clearly follow if n > 4 is odd, and so we assume that n > 4 is
even. Taking x = 1/2 in Theorem 7-(i), we obtain from Lemma 5 that, since B0(1/2) = 1
and Gn−1 = 0,

1

2n−2

n−1∑
i=1

i(n− i)Ei−1En−1−i +
4

n+ 2

(
n−2∑
i=2

(
n+ 2

i

)
1

2i−1B
′
iGn−i +Gn

)

=
1

2n−2

n−1∑
i=1

i(n− i)Ei−1En−1−i + 4
n−2∑
i=2

(
n+ 1

i− 1

)
B′iGn−i

2i−1i
+

4

n+ 2
Gn = 0,

which yields (i) multiplying by 2n−2. Similarly to the above, taking x = 1/2 in Theorem 7-
(ii), we get, since B0(1/2) = 1 and Gn−1 = 0,

1

2n−2

n−1∑
i=1

Ei−1En−1−i +
4

n

(
n−2∑
i=2

(
n

i

)
1

2i−1 ·
B′iGn−i

n− i
+
Gn

n

)

=
1

2n−2

n−1∑
i=1

Ei−1En−1−i + 4
n−2∑
i=2

(
n− 1

i− 1

)
1

2i−1 ·
B′iGn−i

i(n− i)
+

4Gn

n2
= 0.

Multiplying this identity by 2n−2, we can deduce (ii).

Applying identity (3.3), we can prove the following theorem:

Theorem 10. For n > 2, we have

(i)
n−1∑
i=1

Bi(x)Gn−i(x)−
n−2∑
i=1

(
n+ 1

i− 1

)
2n−iGi(x)Bn−i

i
=
n− 1

2
Gn(x),

(ii)
n−1∑
i=1

Bi(x)Gn−i(x)

i(n− i)
−

n−2∑
i=1

(
n− 1

i− 1

)
2n−iGi(x)Bn−i

i(n− i)
= Hn−1

Gn(x)

n
.

Proof. Since G0 = G0(x) = 0, identity (3.3) can be written as

n−1∑
i=0

(
n

i

)
ui(1− u)n−iBi(x)Gn−i(x) = u(1− u)nGn−1(x)

+ (1− u)
n∑

i=1

(
n

i

)
un−iGi(x)Bn−i −

u

2

n−1∑
i=1

(
n

i

)
(1− u)n−iGi(x)Gn−i.
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Gathering the terms involving Gn(x) in one place, we have, since B0 = B0(x) = 1,

n−1∑
i=1

(
n

i

)
ui(1− u)n−iBi(x)Gn−i(x)

= u(1− u)nGn−1(x) + ((1− u)− (1− u)n)Gn(x)

+ (1− u)
n−1∑
i=1

(
n

i

)
un−iGi(x)Bn−i −

u

2

n−1∑
i=1

(
n

i

)
(1− u)n−iGi(x)Gn−i.

(3.6)

Integrating (3.6) between 0 and 1 with respect to u, we obtain using Lemma 2, since
Gn−i = 2(1− 2n−i)Bn−i and B1 − 1

2
G1 = −1,

1

n+ 1

n−1∑
i=1

Bi(x)Gn−i(x) =
n

6
Gn−1(x) +

n− 1

2(n+ 1)
Gn(x)

+
n−2∑
i=1

(
n

i

)
Gi(x)

(
Bn−i − 1

2
Gn−i

)
(n+ 1− i)(n+ 2− i)

+

(
n

n− 1

)
Gn−1(x)

(
B1 − 1

2
G1

)
2 · 3

=
n− 1

2(n+ 1)
Gn(x) +

1

n+ 1

n−2∑
i=1

(
n+ 1

i− 1

)
2n−iGi(x)Bn−i

i
,

which leads to (i) multiplying by n+ 1. Next, dividing (3.6) by u(1− u), we have

n−1∑
i=1

(
n

i

)
ui−1(1− u)n−1−iBi(x)Gn−i(x) = nGn−1(x) +

1− (1− u)n−1

u
Gn(x)

+
n−1∑
i=1

(
n

i

)
un−1−iGi(x)Bn−i −

1

2

n−1∑
i=1

(
n

i

)
(1− u)n−1−iGi(x)Gn−i.

Similarly to the above, integrating this from 0 to 1 with respect to u, we obtain using
again Lemma 2,

n

n−1∑
i=1

Bi(x)Gn−i(x)

i(n− i)
= nGn−1(x) +Hn−1Gn(x)

+
n−2∑
i=1

(
n

i

)
Gi(x)(Bn−i − 1

2
Gn−i)

n− i
+ nGn−1(x)

(
B1 −

1

2
G1

)
= Hn−1Gn(x) +

n−2∑
i=1

(
n

i

)
2n−iGi(x)Bn−i

n− i
,

which gives (ii) dividing by n.
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Corollary 11. For n > 4, we have

(i)
n−2∑
i=2

BiGn−i −
n−2∑
i=2

(
n+ 1

i− 1

)
2n−iGiBn−i

i
=
n− 1

2
Gn,

(ii)
n−2∑
i=2

BiGn−i

i(n− i)
−

n−2∑
i=2

(
n− 1

i− 1

)
2n−iGiBn−i

i(n− i)
= Hn−1

Gn

n
.

Proof. Both identities immediately follow from Theorem 10 putting x = 0, because
Bn−1 = Gn−1 = 0 for an even n > 4.

Corollary 12. For n > 3, we have

(i)
n−1∑
i=2

(n− i)B′iEn−1−i −
n−2∑
i=1

(
n+ 1

i− 1

)
22(n−i)−1Ei−1Bn−i =

n(n− 1)

4
En−1,

(ii)
n−1∑
i=2

B′iEn−1−i

i
−

n−2∑
i=1

(
n− 1

i− 1

)
22(n−i)−1Ei−1Bn−i

n− i
=

1

2
Hn−1En−1.

Proof. If n > 3 is even, then the above identities are trivial because both sides of (i) and
(ii) entirely vanish. Hence we assume that n > 3 is odd. Taking x = 1/2 in Theorem 10-
(i), we obtain from Lemma 5 that

1

2n−2

n−1∑
i=1

(n− i)B′iEn−1−i −
n−2∑
i=1

(
n+ 1

i− 1

)
2n+1−2iEi−1Bn−i =

n(n− 1)

2n
En−1.

Multiplying this by 2n−2 and noting B′1 = 0, we can deduce (i). In the same way as above,
taking x = 1/2 in Theorem 10-(ii), we have

1

2n−2

n−1∑
i=1

B′iEn−1−i

i
−

n−2∑
i=1

(
n− 1

i− 1

)
2n+1−2iEi−1Bn−i

n− i
=

1

2n−1Hn−1En−1,

which gives (ii) multiplying by 2n−2.

4 Additional remarks

In the above arguments, we did not ostensibly treat the M-M-G type convolution identities
for Euler polynomials. To discuss and deduce them, we may apply the following functional
equation satisfied by the generating function R(t, x) of En(x) given in (1.3): letting u, v ∈
R\{0} with u+ v 6= 0 and W be as in Theorem 1,

tR(ut, x)R(vt, y) =
4

u+ v
P ((u+ v)t,W )− 2

u+ v
P ((u+ v)t,W )R(ut)

− 2

u+ v
P ((u+ v)t,W )R(vt).

the electronic journal of combinatorics 21(1) (2014), #P1.65 12



However, since Q(t, x) = tR(t, x), we know Gn(x) = nEn−1(x) (n > 1) and this fact tells
that Genocchi polynomials can be expressed in terms of Euler polynomials and vice versa.
In conclusion, it suffices to deal with either Genocchi or Euler polynomials, and therefore,
we chose and discussed the former polynomials in this paper.
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