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Abstract

A stable (or independent) set is a set of vertices where no two of the vertices in
the set are adjacent. The stability polynomial A(G; p) of a graph G is the probability
that a set of randomly chosen vertices is stable where the probability of each vertex
being chosen is p, with choices independent. This polynomial is analogous to the
chromatic polynomial in a precise sense. This paper considers factorisation of sta-
bility polynomials, following work by Morgan and Farr on factorisation of the chro-
matic polynomial. The stability polynomial A(G; p) is said to have an s-factorisation

with s-factors H1 and H2 if A(G; p) = A(H1; p)A(H2; p). This clearly occurs when
G is a disjoint union of H1 and H2. We find many other cases where such fac-
torisation occurs even when G is connected. We find 152 different s-factorisations
of connected graphs of order at most 9, and two infinite families. We introduce
certificates of s-factorisation to explain s-factorisations in terms of the structure of
G. Short certificates for s-factorisations of connected graphs of order at most 6 are
found. Upper bounds for the lengths of the certificates of s-factorisations are given.
We also use certificates to explain stability equivalence, when two graphs have the
same stability polynomial. We give certifications of stability equivalence for two
infinite families of graphs.

Keywords: stability polynomial; chromatic polynomial; certificate; stability equiv-
alence; s-factorisation

1 Introduction

The chromatic polynomial P (G;λ) of a graph G gives the number of different ways colours
can be assigned to the vertices of a graph such that no pair of adjacent vertices get the
same colour [1].
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In this paper we will consider one of its relatives, the stability polynomial, and study
its factorisation properties. Let G be a graph and p ∈ [0, 1] be the probability of each
vertex being chosen. The vertex choices are made independently. The stability polynomial
A(G; p) of a graph G is the probability that a set of randomly chosen vertices is stable (i.e.,
no two adjacent) [4, 8]. This polynomial plays the same role for graphic 2-polymatroids
as the chromatic polynomial plays for graphs [8].

Let H1 and H2 be graphs. The stability polynomial of graph G is said to have an
s-factorisation with s-factors H1 and H2 if

A(G; p) = A(H1; p)A(H2; p). (1)

The graph G is said to be s-factorised or G is s-factorisable. In this research we will focus
on the s-factorisations of connected graphs because it is known that any disconnected
graph always has an s-factorisation [3]. In principle, s-factorisations of graph G could
be used to reduce the time taken to calculate A(G; p) by calculating the product of the
stability polynomial of two smaller graphs H1 and H2.

As a polynomial is an algebraic object, the study of its algebraic properties, including
factorisation, is important. But there has been little research done on the factorisation
of graph polynomials. Morgan and Farr [12] pioneered the use of certificates to study the
algebraic properties of chromatic polynomials. In this paper, we introduce certificates for
stability polynomials, and establish some of their fundamental properties.

One objective of this research is to search for s-factorisations of connected graphs and
find short certificates to explain these cases. We searched all the stability polynomials
of connected graphs of order at most 9 and found 17,461,965 s-factorisations correspond-
ing to 273,192 graphs. These correspond to 152 different stability polynomials that have
s-factorisation. We use certificates to explain these s-factorisations. A certificate is a
sequence of expressions S1, S2, . . . , Sk satisfying the following properties. The first ex-
pression S1 is the graph G. Each expression Si is obtained from Si−1 by applying a
property of the stability polynomial or an algebraic property. If the last expression is
the graph H then we have a certificate of equivalence. If the last expression Sk is the
product of the graphs H1 and H2 then we have a certificate of factorisation. A certificate
step is a rule that uses some properties of the graph polynomial or algebraic properties
to transform one expression to another [9]. A single certificate step is usually not enough
to explain an s-factorisation.

We found s-factorisable connected graphs have order > 6. Short certificates of s-
factorisations for all stability polynomials of graphs of order at most 8 are given. Short
certificates for two infinite families of s-factorisations were found.

Another objective of this research is to find bounds for the lengths of certificates of
s-factorisations and stability equivalence. We find upper bounds on the lengths of cer-
tificates of s-factorisations and stability equivalence, which are both exponential. The
lengths of the short certificates we found for two infinite families are all constant values,
which are significantly lower than the theoretical upper bounds. But we also give evi-
dence that the lengths of certificates of equivalence cannot always be much shorter than
quadratic.
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The length of certificates may have implications for the computational complexity of
stability equivalence and factorisation, which we discuss.

We also find certificate schemas for some certificates of s-factorisations. If there is a
set of graphs that have s-factorisations which can be explained by certificates that use
the same sequence of steps, these certificates will be generalised to a certificate schema.
We found two certificate schemas by analysing the patterns in short certificates of s-
factorisations.

This paper contains ten sections. Section 1 gives an overview of this research and intro-
duces some definitions and notation. Section 2 introduces some properties of the stability
polynomial, shows the relationship between the stability polynomial and some other graph
polynomials and studies the previous research on graph polynomial factorisation. Section
3 presents computational results. Section 4 gives the certificate steps of the stability
polynomial. Section 5 finds upper bounds for the length of certificates of stability equiv-
alence. Section 6 examines the relationship between certificate length and computational
complexity. It also gives a provisional lower bound on the lengths of some certificates of
equivalence. Short certificates of stability equivalence and s-factorisations are presented
in Section 7 and 8. Section 9 generalises some short certificates of s-factorisations and
gives two certificate schemas. Section 10 summarises our work and and points to some
directions of future research.

1.1 Definitions and notation

Graphs defined in this paper are listed in Table 1. Some notation used in this paper is
listed as follows. Kn: the graph of order n > 0 with no edges; Cn: the cycle of order n;
Kn: the complete graph of order n; Pn: path graph of order n with n− 1 edges; G− v: a
graph obtained from G by deleting vertex v; G ∪ G′: disjoint union of graphs G and G′;
G+ e: a graph obtained from G by adding the edge e; G+G′: any graph obtained from
G and G′ by choosing one vertex from each graph and adding an edge between this pair
of vertices. A null graph is a graph with no edges. The independence number α(G) is the
size of a maximum stable set in graph G [15].

2 Background

2.1 Relationships between the stability polynomial and other

graph polynomials

The stability polynomial is closely related to the independence polynomial, the chromatic
polynomial and other polynomials.

The independence polynomial

The independence polynomial I(G; x) is a generating polynomial for the number of stable
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Notation Explanation Location in paper

Qn The graph of order n with Thm 11, Cor. 13
E(Qn) = {v0v2} ∪ {vivi+1 : 0 6 i 6 n− 2}, n > 3 Cor. 20, Fig. 6

Yn The graph of order n with Cor. 13, Fig. 8
E(Yn) = {v0v2} ∪ {vivi+1 : 1 6 i 6 n− 3} ∪ {vn−1v1}
where n > 4

K∗
n The graph of order 2n with Cor. 14, Fig. 9

E(K∗
n) = {vivn+i : 0 6 i 6 n− 1}

∪{vjvk : 0 6 j, k 6 n− 1, j 6= k}, n > 1
Υm,n The graph of order n with Thm 15, Fig. 10

E(Υm,n) = {vivi+1 : 0 6 i 6 n− 2}
∪{vm−1vj : 0 6 j 6 m− 3}
where 3 6 m 6 n

Kn∼n Kn∼n = Kn +Kn Cor. 19, Fig. 13

Table 1: Graphs defined in this paper

sets si of cardinality i [6]. It can be expressed as

I(G; x) =
∑

X stable

x|X| =

α(G)
∑

i=0

six
i (2)

where α(G) is the size of a maximum stable set in G.
A(G; p) and I(G; x) are related to each other by the following transformation. It is

well known that

A(G; p) = (1− p)nI

(

G;
p

1− p

)

(3)

and

I(G; x) = (1 + x)−nA

(

G;
x

1 + x

)

(4)

When |G| = |H1| + |H2|, any results on s-factorisation A(G; p) = A(H1; p)A(H2; p)
can be translated to analogous factorisations for the independence polynomial, the clique
polynomial and the positive matching polynomial.

The chromatic polynomial

The chromatic polynomial of a graph G = (V,E) is

PG(λ) =
∑

X⊆E

(−1)|X|λn−ρ(X) (5)
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where n is the number of vertices of G, and ρ(X) is the rank of X.
It follows from (5) that

PG(λ)

λn
=

∑

X⊆E

(−1)|X|λ−ρ(X). (6)

The stability polynomial can be written [8]

A(G; p) =
∑

X⊆E

(−1)|X|pν(X) (7)

where ν(X) is the number of vertices that are incident with edges in X. We note that ν
is the rank function of a 2-polymatroid.

When p = 1
λ
, (7) becomes

A

(

G;
1

λ

)

=
∑

X⊆E

(−1)|X|λ−ν(X). (8)

This was first shown in [8]. When we compare (5) and (8), we note that the right hand
sides only differ in the rank function: ρ is the rank of the cycle matroid of G while ν(X)
is the rank function of a 2-polymatroid. So the stability polynomial is a cousin of the
chromatic polynomial: it plays the same role for graphic 2-polymatroid that the chromatic
polynomial plays for matroids. This is what motivates us to investigate factorisation and
equivalence for stability polynomials, having already done so for chromatic polynomials
[9, 11, 12]

2.2 Properties of the stability polynomial

In this section we give five interesting properties of the stability polynomial. They enable
us to compute the stability polynomial of a graph recursively. They may be found, in
different forms, in one or more of [3, 6, 14]. We will use these properties in our certificate
steps in Section 4.

Theorem 1. ([6], in terms of I(G;x)) For any vertex v ∈ V (G) which is not incident to
a loop, there is

A(G; p) = (1− p)A(G− v; p) + p(1− p)dA(G− v −N(v); p) (9)

where d is the degree of vertex v and N(v) is the neighbour set of v.

Theorem 2. [14] For any edge uv ∈ E(G),

A(G; p) = (1− p)A(G− u; p) + (1− p)A(G− v; p)− (1− p)2A(G− u− v; p).

Proposition 3. [6] Let H1 and H2 be two disjoint graphs. If G = H1 ∪H2, then

A(G; p) = A(H1; p)A(H2; p). (10)
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Proposition 4. Let G be a graph with loops, L is the set of vertices incident to loops.
Then

A(G; p) = (1− p)|L|A(G− L; p).

Theorem 5. [3] For any edge uv ∈ E(G),

A(G; p) = A(G\uv; p)− p2(1− p)duvA(G− u− v −N(u)−N(v); p)

where duv = |(N(u)\{v}) ∪ (N(v)\{u})|.

Proposition 3 is a basic case of stability polynomial factorisation. It gives a case
of factorisation when the graphs H1 and H2 are disjoint. In this project we will find
s-factorisations of graphs that do not have disjoint components but still satisfy (10).
Studying s-factorisations may result in new rules for stability polynomials. A new rule is
a proposition which can be explained by a certificate schema.

2.3 Graph polynomial factorisation

We review research on factorisation of chromatic polynomials and consider the relationship
to the work of this paper.

2.3.1 Chromatic factorisations

The chromatic polynomial PG(λ) is said to have chromatic factorisation [9] with chromatic
factors H1 and H2 if

PG(λ) =
PH1

(λ)PH2
(λ)

PKr
(λ)

(11)

where H1 and H2 are not isomorphic to Kr and have χ(Hi) > r, i = 1, 2. A graph
G has a chromatic factorisation if PG(λ) does. Any clique-separable graph, that is, a
graph that can be obtained by identifying r-clique in H1 with an r-clique in H2, has
a chromatic factorisation. It follows that any graph that is chromatically equivalent to
(i.e., has the same chromatic polynomial as) a clique-separable graph also has a chromatic
factorisation. Morgan and Farr [12, 11] defined a graph to be strong non-clique-separable if
it is not chromatically equivalent to any clique-separable graph. Perhaps surprisingly, they
found graphs that are strongly non-clique-separable, yet have a chromatic factorisation,
identifying all such cases with at most 9 vertices, as well as an infinite family.

They introduced the concept of a certificate in order to explain these chromatic fac-
torisations [12]. Certificates have also been used to explain chromatic equivalence [10].

A certificate of chromatic factorisation is a sequence of expressions P0, P1, . . . , Pi where
P0 = PG(λ) and Pi = PH1

(λ)PH2
(λ)/PKr

(λ) such that each Pj , 1 6 j 6 i, is obtained
from Pj−1 by applying an algebraic property or a property of the chromatic polynomial.
This certificate is used to explain why a given graph G has a chromatic factorisation with
chromatic factors H1 and H2.
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Similarly a certificate of chromatic equivalence is a sequence of expressions P0, P1,. . .,
Pi where P0 = PG(λ) and Pi = PH(λ) such that each Pj, 1 6 j 6 i, is obtained from
Pj−1 by applying an algebraic property or a property of the chromatic polynomial. This
certificate is used to explain why graphs G and H have the same chromatic polynomial.

Certificates may give a means of verifying these properties of chromatic polynomials
without computing these polynomials from scratch (which is #P-hard). They give ex-
planations of chromatic factorisation and chromatic equivalence that are purely graph
theoretic, making no explicit use of polynomial algebra.

Certificates have been used to explain the chromatic factorisations of all strongly non-
clique-separable graphs of order at most 9 [12], to explain chromatic factorisation of an in-
finite family of strongly non-clique-separable graphs [11], to show that every non-bipartite
graph can be the chromatic factor of a chromatic factorisation PH1

(λ)PH2
(λ)/PK3

(λ) [13]
and to find pairs of chromatically equivalent graphs [10]. Interestingly, although theoret-
ically these certificates could be exponentially long [12], in practice they are remarkably
short.

The length of these certificates have implications for the computational complexity of
testing for chromatic equivalence, and of testing for the existence of a chromatic factori-
sation. In each case, if certificate length is bounded by a polynomial in graph size, then
the problem belongs to NP [2].

2.3.2 Connections with current research

As certificates have proved to be a powerful tool in explaining algebraic properties such
as factorisation and equivalence for the chromatic polynomial and we have seen that the
stability polynomial is closely related to the the chromatic polynomial (see (6) and (7)),
we use certificates to explain algebraic properties of the stability polynomial, namely
s-factorisation and stability equivalence.

While the certificates used for the chromatic polynomial used certificate steps based
on properties of the chromatic polynomial, the certificates used in our research are based
on properties of the stability polynomial. In Section 4 we define a set of certificate steps
based on the properties for the stability polynomial given in Section 2.2. We then use these
steps to give certificates of s-equivalence for some infinite families of graphs in Section 7
and certificates of s-factorisation for some infinite families of graphs in Section 8.

Theorem 1, 2 and 5 in Section 2.2 can be used to construct recursive algorithms for the
computation of the stability polynomial. We implemented an algorithm using (9) to calcu-
late the stability polynomial. According to Farr [5], the time complexity of this algorithm
is O(2n poly(n)), which is more efficient than the usual recursive deletion-contraction algo-
rithm for computing the chromatic polynomial. This means that the stability polynomial
can be computed for graphs of larger order than the chromatic polynomial.
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3 Computational results on s-factorisations

By Proposition 3, any disconnected graph G has an s-factorisation A(G; p) = A(H1; p) ·
A(H2; p) where H1 and H2 are two disjoint components of G. However, it was not known
if any connected graph has an s-factorisation. In this paper we focus on s-factorisations
of connected graphs.

We calculated the stability polynomials of all connected non-isomorphic graphs of
order at most 9 using a recursive algorithm based on (9). The base case of this recursive
algorithm is A(Kn; p) = 1. If G has edges, then we compute A(G; p) as the sum of two
recursive calculations, A(G−v; p) and A(G−v−N(v); p). We then exhaustively searched
for s-factorisations.

The computational results show that there are 17,461,965 s-factorisations correspond-
ing to 28,576 s-factorisable graphs. These s-factorisable graphs have 152 different stability
polynomials. Detailed results are given in Table 2 and Table 3.

Order #Graphs #Different polys #s-factorisable #Different
graphs s-factorised polys

2 1 1 0 0
3 2 2 0 0
4 6 5 0 0
5 21 13 0 0
6 112 38 4 3
7 853 116 50 9
8 11117 391 955 42
9 261080 1438 27567 143

Table 2: Graphs and the stability polynomials

For each order, Table 2 gives the number of non-isomorphic graphs, the number of
different stability polynomials, the number of graphs that have s-factorisation and the
number of different stability polynomials that can be s-factorised. Table 3 gives the
accumulated data about s-factorisations of graphs, including the number of connected
graphs that can be s-factorised (Column C), the number of different stability polynomials
that can be s-factorised (Column D) and the number of different s-factorisations (Column
F).

Table 2 shows that connected graphs which have s-factorisations have order > 6. By
analysing the ratio between the number of graphs of order n and the number of different
stability polynomials of these graphs, we can see that when the order of graphs increases,
the probability that different graphs have the same stability polynomials gets higher as n
increase.

Table 3 shows that 28,576 of the 273,192 connected graphs of order 2 to 9 can be s-
factorised. These s-factorisable graphs correspond to 152 different stability polynomials,
and have 152 different s-factorisations. Another interesting fact given by Table 3 is that
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Order A B C D E F

2 1 1 0 0 0 0
2-3 3 3 0 0 0 0
2-4 9 7 0 0 0 0
2-5 30 17 0 0 0 0
2-6 142 45 4 3 18 3
2-7 995 130 54 10 741 10
2-8 12112 420 1009 44 73617 44
2-9 273192 1503 28576 152 17461965 152

Table 3: s-factorisations
(A) Number of non-isomorphic graphs, (B) Number of different stability polynomials,
(C) Number of s-factorisable graphs, (D) Number of different s-factorisable stability
polynomials, (E) Number of s-factorisations, (F) Number of different s-factorisations.

the values in Column D are the same as the values in Column F, which means the
number of different s-factorisable stability polynomials is equal to the number of different
s-factorisations. This finding may suggest that a stability polynomial can be s-factorised
in at most one way.

Our computational results confirmed that there are many cases of s-factorisation.
A closer examination of the graph data summarised here also gave insights into possible
families of graphs that have s-factorisations. By analysing the structure of these graphs, we
identified several infinite families of graphs that have s-factorisations and found certificates
of s-factorisation to explain the factorisations.

4 Certificate steps

Just as for the chromatic polynomial, we introduce certificates for the stability polynomial
in order to give graph theoretic explanations of properties of these polynomials.

In this section we give certificate steps based on the properties of the stability poly-
nomial which are presented in Section 2.2. We then define certificates of s-factorisation
and certificates of s-equivalence.

CS1 A(Kn; p) becomes 1.

CS2 1 becomes A(Kn; p).

Figure 1 illustrates CS1 and CS2. In this paper, we use the convention of representing
the stability polynomial of a graph by a picture of the graph itself.

CS3 A(G; p) becomes (1− p)A(G− v; p)+ p(1− p)dA(G− v−N(v); p) for some vertex
v ∈ V (G) where d is the degree of vertex v. (Theorem 1)
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Figure 1: A(Kn; p) ↔ 1, n = 3

CS4 Let U = {u1, u2, u3, . . . , ud} be d distinct vertices in V (G1). Then (1−p)A(G1; p)+
p(1− p)dA(G2; p) becomes A(G; p) where G = (V,E) is isomorphic to the graph G′

with vertex set V ′ = V (G1)∪{v}, and edge set E ′ = E(G1)∪{vui : where ui ∈ U},
and where G2

∼= G1 − U − {v}. (Theorem 1)

Figure 2 illustrates CS3 and CS4.

Figure 2: A(G; p) ↔ (1− p)A(G− v; p) + p(1− p)dA(G− v −N(v); p)

CS5 A(G; p) becomes (1− p)A(G− u; p) + (1− p)A(G− v; p)− (1− p)2A(G− u− v; p)
for some uv ∈ E(G). (Theorem 2)

CS6 Let N1 ⊆ V (G3) and N2 ⊆ V (G3). Then (1− p)A(G1; p) + (1− p)A(G2; p)− (1−
p)2A(G3; p) becomes A(G; p) for some uv ∈ E(G) where the following conditions
are satisfied:

(1) G1(V1, E1) is isomorphic to the graph with V ′
1 = V (G3)∪{u} and E ′

1 = E(G3)∪
{ua : a ∈ N1},

(2) G2(V2, E2) is isomorphic to the graph with V ′
2 = V (G3)∪{v} and E ′

2 = E(G3)∪
{vb : b ∈ N2},

(3) G(V,E) is isomorphic to the graph with V ′ = V (G3) ∪ {u} ∪ {v} and E ′ =
E(G3) ∪ {ua : a ∈ N1} ∪ {vb : b ∈ N2}.

(Theorem 2)

Figure 3 illustrates CS5 and CS6.

CS7 A(G; p) becomes A(G \ e; p)− p2(1− p)dA(G− u− v −N(u)−N(v); p) for some
uv ∈ E(G) and d = |(N(u) \ {v}) ∪ (N(v) \ {u})|. (Theorem 5)
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Figure 3: A(G; p) ↔ (1− p)A(G− u; p) + (1− p)A(G− v; p)− (1− p)2A(G− u− v; p)

CS8 A(G1; p)− p2(1− p)dA(G2; p) becomes A(G; p) where
G(V,E) is isomorphic to the graph with V = V (G2) ∪ {u} ∪ {v} and E = E(G2) ∪
{ua : a ∈ N1} ∪ {vb : b ∈ N2} when N1 ⊆ V (G2), N2 ⊆ V (G2) and d = |N1 ∪N2|.
(Theorem 5)

Figure 4 illustrates CS7 and CS8.

Figure 4: A(G; p) ↔ A(G \ e; p)− p2(1− p)dA(G− u− v −N(u)−N(v); p)

CS9 A(G; p) becomes A(G1; p)A(G2; p) whereG1, G2 are two disjoint graphs andG1∪G2

is isomorphic to G. (Proposition 3)

CS10 A(G1; p)A(G2; p) becomes A(G; p) where G1, G2 are two disjoint graphs and G
is isomorphic to G1 ∪G2. (Proposition 3)

Figure 5 illustrates CS9 and CS10.

Figure 5: A(G; p) ↔ A(G1; p)A(G2; p)

CS11 Algebraic step.

There is some room for variety in the choice of our certificate steps. Some of the given
steps could be dropped, since they could be proved (at some cost, in terms of extra steps)
using others. The steps we have chosen correspond to the simplest recurrence relations
that can be given for the stability polynomial.
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These certificate steps can be used to explain s-factorisations and stability equiv-
alences. A certificate is a sequence of expressions P0, P1, . . . , Pi, such that, for every
j, 1 6 j 6 i, Pj in the sequence is obtained from Pj−1 by applying one of the certificate
steps of stability polynomials. A certificate of stability equivalence for graph G and H has
P0 = A(G; p) and Pi = A(H; p). A certificate of stability factorisation has P0 = A(G; p)
and Pi = A(G1; p)A(G2; p). The certificate steps which are obtained from the properties
of the stability polynomial are given in CS1, . . . ,CS11.

We consider how the length of the certificates depends on the order of the correspond-
ing graphs.

5 Upper bound for certificate length

In this section we will discuss the lengths of certificates for stability equivalences and s-
factorisations. We use a naive approach to find an upper bound on length of certificates.
In practice we found much shorter certificates. To show two graphs are stability equivalent
we must transform expression A(G; p) to expression A(H; p) using certificate steps. We
do this in two phases. First we transform the stability polynomial of G to an expression
in null graphs. Then we transform this expression into the stability polynomial of H.

To show A(G; p) has factorisation A(H1; p)A(H2; p) we must transform expression
A(G; p) to expression A(H1; p)A(H2; p). We can also first transform the stability polyno-
mial of G into expression in null graphs and then transform this expression into product
of the stability polynomial of H1 and the stability polynomial of H2.

First of all, we use a naive approach to express the stability polynomial of graph G in
terms of null graphs and find an upper bound for the number of certificate steps required
to do so. For any graph G, if there exists a vertex v ∈ V (G) with degree > 1, we apply
certificate step CS3 on v and transform A(G; p) to (1−p)A(G−v; p)+p(1−p)deg vA(G−
v−N(v); p). If graphs G− v and G− v−N(v) are not null graphs, we recursively apply
CS3 on these graphs until all graphs in the expression are null graphs.

Let tn be the maximum number of certificate steps required to express the stability
polynomial of any graph on n vertices in terms of null graphs. This is the same as the
number of applications of Theorem 1 required to compute the polynomial recursively.
Observe that t1 = 0 and t2 = 1.

To get a simple upper bound for tn, observe that a single application of CS3 produces a
graph of n−1 vertices, which requires tn−1 further steps, and a graph of n−1−deg v 6 n−2
vertices (where v is the vertex at which CS3 is used on G, which we choose so that
deg v > 1), which requires 6 tn−2 further steps (unless G is a null graph, but in that
case we are done already). So tn 6 1 + tn−1 + tn−2. Putting sn := tn + 1, we have
sn 6 sn−1 + sn−2. Hence sn is bounded above by a Fibonacci sequence. It follows that
tn = O(ϕn), where ϕ = (1 +

√
5)/2 ≃ 1.618 is the golden ratio.

A little more care gives a stronger upper bound.

Lemma 6. tn = O(ψn) where ψ ≃ 1.380 is the positive root of x4 − x3 − 1 = 0.
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Proof. (sketch)
We suppose that, throughout the computation, we always use CS9 whenever we have

a disconnected graph, and CS3 whenever the graph is connected.
If we encounter a graph of maximum degree 6 2, then it is easily dealt with. It is

routine to show that the computation for such a graph requires only a linear number of
certificate steps.

If the maximum degree is > 3, we choose a vertex v of degree > 3 and apply CS3 there.
This gives tn 6 1 + tn−1 + tn−4. With sn = tn + 1 as before, we have sn 6 sn−1 + sn−4.
Using standard theory of recurrence relations, we obtain sn = O(ψn), where ψ is the
positive root of the characteristic equation of the recurrence, x4 − x3 − 1 = 0.

The first few values of tn are given in Table 4.
We use tn to give an upper bound on the lengths of certificates of stability equivalence.

Theorem 7. The maximum length en of a certificate of stability equivalence for graphs
of order 6 n satisfies en 6 2tn + 2n− 1 and en = O(ψn).

Proof. Suppose A(G; p) = A(H; p), we can transform G to a sum of null graphs in 6 tn
applications of CS3, then use 6 n − 1 applications of CS1 to transform to EG(p), a
polynomial in p. By applying an algebraic step CS11, EG(p) can be transform to a
polynomial EH(p) in p, which can be transformed back to H within tn + n − 1 steps.
Total certificate length is 6 2tn +2n− 1. From Lemma 6 it follows that en = O(ψn).

Theorem 8. Let n, n1, n2 be the orders of graph G,H1, H2, respectively. The maximum
length fN of a certificate of s-factorisation A(G; p) = A(H1; p)A(H2; p) satisfies fN 6

3tN + 3N − 2 where N = max{n, n1, n2} and fN = O(ψN).

Proof. Similarly to the previous proof, we can transform G to null graphs, use 6 n − 1
applications of CS3, do algebra (this time, the algebra will produce an expression which
is a product of two distinct parts), then transform one part of the resulting expression to
H1 and the other to H2. This latter transformation is the reverse of the steps needed to
compute each of A(H1; p) and A(H2; p). Putting it all together, we have

fN 6 tn+n−1+1+ tn1
+n1−1+ tn2

+n2−1 6 3tN +3N −2. The result follows.

We use N here, rather than any one of n, n1, n2, because in principle the factorsHi may
have more vertices than G (even though their stability polynomials have lower degrees
than that of G). From (7) we can get m = m1 +m2, where m,m1,m2 is the number of
edges of graph G,H1, H2, respectively. Thus m− 1 > mi > ni − 1. So N 6

(

n

2

)

.
We give the values of our upper bounds for n 6 9 (since this is the range covered by

our computations) in Table 4. The values of tn for n 6 4 are exact. We also give exact
values of en and fN where we have determined them. The first three values of en are zero
because there are no non-isomorphic stability-equivalent graphs for n 6 3. The entry
e4 = 2 comes from a certificate we give later, for A(C4; p) = A(Q4; p) (Theorem 7). The
first five values of fN are zero because there are no s-factorisations for N 6 5.
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n = 1 2 3 4 5 6 7 8 9

tn 6 0 1 1 2 3 5 7 10 14
en = 0 0 0 2
en 6 11 15 21 27 35 45
fN = 0 0 0 0 0
fN 6 31 40 52 67

Table 4: Maximum certificate length for graphs of order n

6 Certificate length and complexity

The problem of computing the stability polynomial of a graph is #P-hard, since counting
independent sets in a graph is #P-complete. Consider now the following problems.

STABILITY EQUIVALENCE
Input: Graphs G and H.
Question: Is A(G; p) = A(H; p)?

STABILITY FACTORISATION
Input: Graph G.
Question: Do there exist graphs H1 and H2, neither of which is a null graph or isomor-
phic to G, such that A(G; p) = A(H1; p)A(H2; p)?

STABILITY EQUIVALENCE can be solved with the aid of an oracle for #P, since
the oracle can be used to compute A(G; p) and A(H; p) and then compare them. Hence
STABILITY EQUIVALENCE belongs to P#P, which is the class of decision problems
solvable in polynomial time with the aid of a #P oracle.

For STABILITY FACTORISATION, a #P-oracle yields A(G; p). On the face of it,
we are then stuck unless we know H1 and H2. If these are given to us, then we can
use the #P-oracle to compute A(H1; p) and A(H2; p) and hence verify that A(G; p) =
A(H1; p)A(H2; p). So STABILITY FACTORISATION belongs to NP#P, the class of
decision problems which can be solved nondeterministically in polynomial time with the
aid of a #P-oracle.

The notion of certificates of s-equivalence and s-factorisation opens up a new line of
enquiry into the complexity of these problems.

In principle, certificates allow us to verify s-equivalence, or a claimed s-factorisation,
without computing the stability polynomials themselves. Verification only requires the
verification of each certificate step, which can be done in polynomial time for each step.

However, if the certificates are very long, then the amount of effort involved in verifying
a certificate may be comparable with the effort required to compute the stability polyno-
mials from scratch. We saw this in the previous section, when the certificates we used for
our upper bounds on certificate length mimicked the computations of the polynomials.
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Nonetheless, it may be that our upper bounds are unnecessarily loose, and that much
shorter certificates can be found. This may have implications for the complexity of our
two problems.

Theorem 9. (a) If the length of the shortest certificate of equivalence between two stability
equivalent graphs of at most n vertices is bounded by a polynomial in n, then STABILITY
EQUIVALENCE is in NP.
(b) If the length of the shortest certificate of factorisation for a stability factorisation of a
graph of n vertices is bounded by a polynomial in n, then STABILITY FACTORISATION
is in NP.

Proof. In each case, if certificate length is polynomially bounded, then the entire certificate
can be verified in polynomial time (using the above observation that each step can be
verified in polynomial time).

It is encouraging that the certificates we have found empirically (see later sections)
are short, although short certificates will tend to be easier to find!

However, it seems unlikely that the shortest certificates of stability equivalence are
o(n2/(log n)2), in general. This is because of the following result, whose proof is based on
a suggestion of Ian Wanless.

Theorem 10. If the number of different stability polynomials of graphs of order n is
6 2bn

2

, for some constant b < 1/2 and for sufficiently large n, then there exist pairs of
stability equivalent graphs on n vertices whose shortest certificate of stability equivalence
has length Ω(n2/(log n)2).

Proof. Suppose the number of different stability polynomials is 6 2bn
2

, for sufficiently
large n.

Suppose 0 < ε < 1
2
− b. The number of graphs on n vertices, up to isomorphism, is

at least 2(
1

2
−ε)n2

, for sufficiently large n (see, e.g., [7]). From now on, suppose n is large

enough for this to hold. So there must exist a set of > 2(
1

2
−ε−b)n2

stability equivalent
graphs on n vertices. Let G be any one of these graphs.

If every certificate of stability equivalence for graphs of order n has length 6 L, then
the size of the stability equivalence class of G is bounded above by the number of valid
sequences of L certificate steps starting with G.

Now, if a certificate starts with a single graph and has length 6 L, then each of its L
expressions (after G) can contain at most L graphs. This is because each certificate step
can increase the number of graphs by at most 1.

Consider the number of possible applications of a certificate step to an expression of
at most L graphs. Firstly, there is the choice of the graph at which the step is applied
(from 6 L possibilities), then possibly the choice of a vertex or two within the graph
(from 6 n2 possibilities), then possibly the choice of the second graph needed for certain
certificate steps (from 6 L−1 possibilities), and even a third graph for some steps (6 L−2
possibilities). So there are 6 c0n

2L3 choices altogether, for some constant c0.
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The number of possible certificates of stability equivalence, starting with G and of
length 6 L, is therefore 6 (c0n

2L3)L = 2c1·logn·logL·L (with c1 = 6 log2 c0).
This must be at least as great as the number of graphs in the stability equivalence

class of G. Therefore
2(

1

2
−ε−b)n2

6 2c1·log n·logL·L.

Hence

L logL > c2 ·
n2

log n
, (12)

where c2 = (1
2
− ε − b)/c1. Suppose L 6 c3n

2/((log n)2f(n)), for sufficiently large n,
constant c3 and appropriate choice of function f . Then (12) gives

n2

(log n)2f(n)
· (2 log n− 2 log log n− log f(n) + log c3) > c2 ·

n2

log n
,

from which we conclude that f(n) is bounded above by a suitable constant. (Here we use
c2 > 0, which requires b < 1

2
.) It follows that any upper bound on certificate length must

be Ω(n2/(log n)2).

The hypothesis of Theorem 10 seems likely to be true. The data in Table 2 suggests
that b < 0.15 and decreases as n increases beyond 5.

7 Stability equivalence

The computational results given in Section 3 show that many non-isomorphic graphs have
the same stability polynomial. In this section, short certificates for two infinite families
of stability equivalent graphs are presented.

Theorem 11. The stability polynomial A(Cn; p) = A(Qn; p) for n > 3.

Proof. The following is a certificate of equivalence to show A(Cn; p) = A(Qn; p):

A(Cn; p) = (1− p)A(Pn−1; p) + p(1− p)2A(Pn−3; p) (CS3)

= A(Qn; p). (CS4)

This certificate is illustrated in Figure 6.

Theorem 11 shows that for any n > 3, A(Cn; p) = A(Qn; p) has a certificate of length
2. The length of certificates for this infinite family of stability equivalences is much lower
than the exponential upper bound given in Section 5.

Theorem 12. For any uv ∈ E(G), if (N(v)\{u}) ⊆ (N(u)\{v}). Then

A(G; p) = A(G′; p)

where G′ is a graph with V (G′) = V (G) ∪ {w}, E(G′) = (E(G)\uv) ∪ {uw}
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Figure 6: A(Cn; p) = A(Qn; p)

Proof. The following is a certificate of the stability equivalence:

A(G; p) =(1− p)A(G− u; p) + p(1− p)|N(u)|A(G−N(u); p) (CS3)

=(1− p)A(G− u; p)A(K1; p) + p(1− p)|N(u)|A(G−N(u); p)A(K1; p) (CS2)

=(1− p)A({G− u} ∪K1; p)

+ p(1− p)|(N(u)\{v})∪{w}|A({G−N(u)} ∪K1; p) (CS10)

=A(G′; p). (CS4)

Figure 7 illustrates this certificate.

Theorem 12 shows that an infinite family of graphs have stability equivalences that
can be explained by certificates of length 4. The length of certificates for these stability
equivalences is much lower than the exponential upper bound given in Section 5 and is
independent of the order of the graph. Theorem 12 can be used to show the following two
infinite families of graphs are stability equivalent.

Corollary 13. For any n > 3,

A(Qn; p) =A(Yn+1; p) �

Corollary 14. For any n > 2,

A(Kn+1; p) = A(K∗
n; p)

Proof. Let {vi : 0 6 i 6 n− 1}∪{w} be the vertex set of Kn+1. Applying Theorem 12 on
all edges in {viw : 0 6 i 6 n−1} will provide certificates for this infinite family of stability
equivalences. Theorem 12 is used n times. Thus the length of certificates provided by
this proof is 4n. This length is linear, which is much shorter than the exponential upper
bound given in Section 5. This proof is illustrated in Figure 9.
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Figure 7: Edge breaking theorem

Figure 8: A(Qn; p) = A(Yn+1; p)

8 S-factorisations

In this section, we studied the s-factorisations provided by the computational results and
found short certificates for two infinite families of s-factorisations.

Theorem 15. For any n > 3, we have

A(Υn,2n; p) = A(Pn−1; p)A(Υn+1,n+1; p)

Proof. The following is a certificate of this s-factorisation:

A(Υn,2n; p) = (1− p)A(Υn,2n ∪ Pn−1; p) + p(1− p)2A(Pn−1 ∪ Pn−2; p) (CS3)

= (1− p)A(Υn,2n; p)A(Pn−1; p) + p(1− p)2A(Pn−1; p)A(Pn−2; p) (CS9)×2

= A(Pn−1; p)[(1− p)A(Υn,n; p) + p(1− p)2A(Pn−2; p)] (CS11)

= A(Pn−1; p)A(Υn+1,n+1; p). (CS4)

Figure 10 illustrates this certificate. The length of these certificates is 5, which is much
lower than the exponential upper bound given in Section 5.
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Figure 9: A(Kn+1; p) = A(K∗
n; p)

Theorem 16. (General symmetry theorem) Suppose G ∼= G′, u ∈ V (G), u′ is the image
of u in G′ under the isomorphism, N(u) is the neighbour set of u in G. Let N2 ⊆ V (G2),
G3 is a graph with vertex set V (G3) = V (G) ∪ V (G′) ∪ V (G2) and edge set E(G3) =
E(G) ∪ E(G′) ∪ E(G2) ∪ {uv, u′v : v ∈ N2} ∪ {uu′}. Then

A(G3; p) = A(G− u; p)A(G4; p)

where G4 is a graph with vertex set V (G4) = V (G2)∪ V (G′)∪ {w} and edge set E(G4) =
E(G2) ∪ E(G′) ∪ {wv, u′v : v ∈ N(u)}

Proof. The following is a certificate of this s-factorisation:

A(G3; p) =p(1− p)|N(u)∪N2∪{u′}|A((G− u−N(u)) ∪ (G′ − u′) ∪ (G2 −N2); p)

+ (1− p)A((G− u) ∪ (G3 −G); p) (CS3)

=p(1− p)|N(u)∪N2∪{u′}|A(G− u−N(u); p)A(G′ − u′; p)A(G2 −N2; p)

+ (1− p)A(G− u; p)A(G3 −G; p) (CS9)×2

=p(1− p)|N(u)∪N2∪{u′}|A(G− u−N(u); p)A(G2 −N2; p)]

+ A(G− u; p)[(1− p)A(G3 −G; p) (CS11)

=A(G− u; p)A(G4; p). (CS6)
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Figure 10: A(Υn,2n; p) = A(Pn−1; p)A(Υn+1,n+1; p)

The length of certificates provided by this proof is 5. This independent of the order of the
graph and is much lower than the exponential upper bound given in Section 5. Figure 11
illustrates this certificate.

Theorem 16 is a property of stability polynomial which can be used to decompose cer-
tain graphs with isomorphic subgraphs. We applied Theorem 12 on some more specialised
cases and found the following interesting corollaries.

Corollary 17. (Symmetry corollary) If G ∼= G′, u ∈ V (G) and u′ is the image of u in
G′ under the isomorphism, N(u) is the neighbour set of u in G. Let G2 be a graph with
vertex set V (G2) = V (G) ∪ V (G′) and edge set E(G2) = E(G) ∪ E(G′) ∪ {uu′}. Then

A(G2; p) = A(G− u; p)A(Gu+; p)

where Gu+ is a graph with vertex set V (Gu+) = V (G) ∪ {w} and edge set E(Gu+) =
E(G) ∪ {wu} ∪ {wv : v ∈ N(u)}.

Figure 12 illustrates this corollary.
The length of certificates provided by Corollary 17 is 5 steps.

Corollary 18. For any graph G, there exists a graph H such that H has an s-factorisation
with G as a factor.
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Figure 11: General symmetry theorem

Figure 12: Symmetry corollary

This result is analogous to one due to Morgan and Farr for chromatic factorisation
[12].

Corollary 19. For any n > 2,

A(Kn∼n; p) = A(Kn−1; p)A(Kn+1; p)
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Figure 13 illustrates this corollary.

Figure 13: A(Kn∼n; p) = A(Kn−1; p)A(Kn+1; p) when n = 4

The length of certificates provided by Corollary 19 is 5.

Corollary 20. For any n > 2,

A(P2n; p) = A(Pn−1; p)A(Cn+1; p).

Proof. Let G be a Pn and G′ ∼= G, V (G) = {v0, v1, . . . , vn}, E(G) = {v0v2} ∪ {vivi+1 :
0 6 i 6 n − 2} G′ ∼= G and v′i is the image of vi in G under the isomorphism. G2 =
(G ∪ G′) + {v0v′0}, G2 is a P2n. G4 is a Qn with vertex set V (G4) = V (G′) ∪ {w}
and edge set E(G4) = E(G′) ∪ {wv, u′v : v ∈ NG(v

′
0)}. By Theorem 16, A(G2; p) =

A(G− v0; p)A(G4; p). Thus

A(P2n; p) = A(Pn−1; p)A(Qn+1; p) (13)

By Corollary 13 and Theorem 11 A(Qn+1; p) = A(Yn+2; p) = A(Cn+1; p). Applying this
to (13) gives

A(P2n; p) = A(Pn−1; p)A(Cn+1; p).

The length of these certificates is 5 + 2 = 7. Figure 14 illustrates this corollary.

Figure 14: A(P2n; p) = A(Pn−1; p)A(Cn+1; p)
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9 Certificate schemas of s-factorisations

The certificates for s-factorisations presented in Section 8 show that two different families
of s-factorisations can be explained by the same sequence of certificate steps. We group
these certificates of s-factorisations into two certificate schemas as follows:

A(G; p) =(1− p)A(H1; p) + p(1− p)dA(H2; p) (CS3)

=(1− p)A(H3; p)A(H4; p) + p(1− p)dA(H3; p)A(H5; p) (CS9)×2

=A(H3; p)((1− p)A(H4; p) + p(1− p)dA(H5; p)) (CS11)

=A(H3; p)A(H6; p) (CS4)

Schema 1

The length of certificates constructed by Schema 1 is 5 steps. This schema can be used
to build the certificates in Theorems 15 and 16 and Corollaries 17 and 19. This Schema
gives short certificates for s-factorisations for stability polynomials of all graphs of order
6 8.

A(G; p) =(1− p)A(H1; p) + (1− p)A(H2; p)− (1− p)2A(H3; p) (CS5)

=(1− p)A(H4; p)A(H5; p) + (1− p)A(H4; p)A(H6; p)

− (1− p)2A(H4; p)A(H7; p) (CS9)×3

=A(H4; p)((1− p)A(H5; p) + (1− p)A(H6; p)

− (1− p)2A(H7; p)) (CS11)

=A(H4; p)A(H8; p) (CS6)

Schema 2

The length of certificates constructed by Schema 2 is 6. This schema can be used to build
the certificates of Theorems 15 and 16 and Corollaries 17 and 19.

10 Conclusions and further work

This paper initiates an algebraic study for the stability polynomial, focusing on the fun-
damental algebraic properties of equality and factorisation. We gave upper bounds for
lengths of certificates for stability equivalence and s-factorisations. There remains the
challenge of determining better upper bounds, especially ones that do better than just, in
effect, computing the polynomials. If a polynomial upper bound on certificate length can
be found, then both those computational problems belong to NP. Determining whether
this is the case remains an open problem.

In this research we found short certificates for all s-factorisations of graphs of order
6 and one s-factorisation of graphs of order 7. This suggests the task of finding short
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certificates for s-factorisations of graphs of some higher orders. An open question that
arises from this research is: what are the shortest certificates for infinite families of s-
factorisations and stability equivalence? We found some short certificates but it is not
known if these certificates are the shortest. Finding shortest certificates for infinite families
of s-factorisations and stability equivalence could be challenging.
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