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Abstract

Using a Zq-generalization of a theorem of Ky Fan, we extend to Kneser hyper-
graphs a theorem of Simonyi and Tardos that ensures the existence of multicolored
complete bipartite graphs in any proper coloring of a Kneser graph. It allows to
derive a lower bound for the local chromatic number of Kneser hypergraphs (us-
ing a natural definition of what can be the local chromatic number of a uniform
hypergraph).
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1 Introduction

1.1 Motivations and results

A hypergraph is a pair H = (V (H), E(H)), where V (H) is a finite set and E(H) a family
of subsets of V (H). The set V (H) is called the vertex set and the set E(H) is called
the edge set. A graph is a hypergraph each edge of which is of cardinality two. A q-
uniform hypergraph is a hypergraph each edge of which is of cardinality q. The notions
of graphs and 2-uniform hypergraphs therefore coincide. If a hypergraph has its vertex
set partitioned into subsets V1, . . . , Vq so that each edge intersects each Vi at exactly one
vertex, then it is called a q-uniform q-partite hypergraph. The sets V1, . . . , Vq are called
the parts of the hypergraph. When q = 2, such a hypergraph is a graph and said to be
bipartite. A q-uniform q-partite hypergraph is said to be complete if all possible edges
exist.
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A coloring of a hypergraph is a map c : V (H)→ [t] for some positive integer t. A col-
oring is said to be proper if there is no monochromatic edge, i.e. no edge e with |c(e)| = 1.
The chromatic number of such a hypergraph, denoted χ(H), is the minimal value of t for
which a proper coloring exists. Given X ⊆ V (H), the hypergraph with vertex set X and
with edge set {e ∈ E(H) : e ⊆ X} is the subhypergraph of H induced by X and is denoted
H[X].

Given a hypergraph H = (V (H), E(H)), we define the Kneser graph KG2(H) by

V (KG2(H)) = E(H)
E(KG2(H)) = {{e, f} : e, f ∈ E(H), e ∩ f = ∅}.

The “usual” Kneser graphs, which have been extensively studied – see [20, 21] among
many references, some of them being given elsewhere in the present paper – are the
special cases H = ([n],

(
[n]
k

)
) for some positive integers n and k with n > 2k. We denote

them KG2(n, k). The main result for “usual” Kneser graphs is Lovász’s theorem [11].

Theorem (Lovász theorem). Given n and k two positive integers with n > 2k, we have
χ(KG2(n, k)) = n− 2k + 2.

The 2-colorability defect cd2(H) of a hypergraphH has been introduced by Dol’nikov [3]
in 1988 for a generalization of Lovász’s theorem. It is defined as the minimum number of
vertices that must be removed from H so that the hypergraph induced by the remaining
vertices is of chromatic number at most 2:

cd2(H) = min{|Y | : Y ⊆ V (H), χ(H[V (H) \ Y ]) 6 2}.

Theorem (Dol’nikov theorem). Let H be a hypergraph and assume that ∅ is not an edge
of H. Then χ(KG2(H)) > cd2(H).

It is a generalization of Lovász theorem since cd2([n],
(
[n]
k

)
) = n− 2k+ 2 and since the

inequality χ(KG2(n, k)) 6 n− 2k + 2 is the easy one.
The following theorem proposed by Simonyi and Tardos in 2007 [19] generalizes

Dol’nikov’s theorem. The special case for “usual” Kneser graphs is due to Ky Fan [7].

Theorem (Simonyi-Tardos theorem). Let H be a hypergraph and assume that ∅ is not
an edge of H. Let r = cd2(H). Then any proper coloring of KG2(H) with colors 1, . . . , t
(t arbitrary) must contain a completely multicolored complete bipartite graph Kdr/2e,br/2c
such that the r different colors occur alternating on the two parts of the bipartite graph
with respect to their natural order.

In 1976, Erdős [4] initiated the study of Kneser hypergraphs KGq(H) defined for a
hypergraph H = (V (H), E(H)) and an integer q > 2 by

V (KGq(H)) = E(H)
E(KGq(H)) = {{e1, . . . , eq} : e1, . . . , eq ∈ E(H), ei ∩ ej = ∅ for all i, j with i 6= j}.
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A Kneser hypergraph is thus the generalization of Kneser graphs obtained when the 2-
uniformity is replaced by the q-uniformity for an integer q > 2. There are also “usual”
Kneser hypergraphs, which are obtained with the same hypergraph H as for “usual”
Kneser graphs, i.e. H = ([n],

(
[n]
k

)
). They are denoted KGq(n, k). The main result for

them is the following generalization of Lovász’s theorem conjectured by Erdős and proved
by Alon, Frankl, and Lovász [2].

Theorem (Alon-Frankl-Lovász theorem). Given n, k, and q three positive integers with

n > qk, we have χ(KGq(n, k)) =
⌈
n−q(k−1)

q−1

⌉
.

There exists also a q-colorability defect cdq(H), introduced by Kř́ıž, defined as the
minimum number of vertices that must be removed fromH so that the hypergraph induced
by the remaining vertices is of chromatic number at most q:

cdq(H) = min{|Y | : Y ⊆ V (H), χ(H[V (H) \ Y ]) 6 q}.

The following theorem, due to Kř́ıž [9, 10], generalizes Dol’nikov’s theorem. It also gener-
alizes the Alon-Frankl-Lovász theorem since cdq([n],

(
[n]
k

)
) = n− q(k− 1) and since again

the inequality χ(KGq(n, k)) 6
⌈
n−q(k−1)

q−1

⌉
is the easy one.

Theorem (Kř́ıž theorem). Let H be a hypergraph and assume that ∅ is not an edge of H.
Then

χ(KGq(H)) >

⌈
cdq(H)

q − 1

⌉
for any integer q > 2.

Our main result is the following extension of Simonyi-Tardos’s theorem to Kneser
hypergraphs.

Theorem 1. Let H be a hypergraph and assume that ∅ is not an edge of H. Let p be a
prime number. Then any proper coloring c of KGp(H) with colors 1, . . . , t (t arbitrary)
must contain a complete p-uniform p-partite hypergraph with parts U1, . . . , Up satisfying
the following properties.

• It has cdp(H) vertices.

• The values of |Uj| for j = 1, . . . , p differ by at most one.

• For any j, the vertices of Uj get distinct colors.

We get that each Uj is of cardinality bcdp(H)/pc or dcdp(H)/pe.
Note that Theorem 1 implies directly Kř́ıž’s theorem when q is a prime number p: each

color may appear at most p − 1 times within the vertices and there are cdp(H) vertices.
There is a standard derivation of Kř́ıž’s theorem for any q from the prime case, see [22, 23].
Theorem 1 is a generalization of Simonyi-Tardos’s theorem except for a slight loss: when
p = 2, we do not recover the alternation of the colors between the two parts.

Whether Theorem 1 is true for non-prime p is an open question.
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2 Local chromatic number and Kneser hypergraphs

In a graph G = (V,E), the closed neighborhood of a vertex u, denoted N [u], is the
set {u} ∪ {v : uv ∈ E}. The local chromatic number of a graph G = (V,E), denoted
χ`(G), is the maximum number of colors appearing in the closed neighborhood of a vertex
minimized over all proper colorings:

χ`(G) = min
c

max
v∈V
|c(N [v])|,

where the minimum is taken over all proper colorings c of G. This number has been defined
in 1986 by Erdős, Füredi, Hajnal, Komjáth, Rödl, and Seress [5]. For Kneser graphs, we
have the following theorem, which is a consequence of the Simonyi-Tardos theorem: any
vertex of the part with br/2c vertices in the completely multicolored complete bipartite
subgraph has at least dr/2e+ 1 colors in its closed neighborhhod (where r = cd2(H)).

Theorem (Simonyi-Tardos theorem for local chromatic number). Let H be a hypergraph
and assume that ∅ is not an edge of H. If cd2(H) > 2, then

χ`(KG2(H)) >

⌈
cd2(H)

2

⌉
+ 1.

Note that we can also see this theorem as a direct consequence of Theorem 1 in [18]
(with the help of Theorem 1 in [13]).

We use the following natural definition for the local chromatic number χ`(H) of a
uniform hypergraph H = (V,E). For a subset X of V , we denote by N (X) the set of
vertices v such that v is the sole vertex outside X for some edge in E:

N (X) = {v : ∃e ∈ E s.t. e \X = {v}}.

We define furthermore N [X] := X ∪ N (X). Note that if the hypergraph is a graph,
N [{v}] = N [v] for any vertex v. The definition of the local chromatic number of a
hypergraph is then:

χ`(H) = min
c

max
e∈E, v∈e

|c(N [e \ {v}])|,

where the minimum is taken over all proper colorings c of H. When the hypergraph H is
a graph, we get the usual notion of local chromatic number for graphs.

The following theorem is a consequence of Theorem 1 and generalizes the Simonyi-
Tardos theorem for local chromatic number to Kneser hypergraphs.

Theorem 2. Let H be a hypergraph and assume that ∅ is not an edge of H. Then

χ`(KGp(H)) > min

(⌈
cdp(H)

p

⌉
+ 1,

⌈
cdp(H)

p− 1

⌉)
for any prime number p.
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Proof. Denote cdp(H) by r. Let c be any proper coloring of KGp(H). Consider the
complete p-uniform p-partite hypergraph G in KGp(H) whose existence is ensured by
Theorem 1. Choose Uj of cardinality dr/pe.

If dr/(p−1)e > dr/pe, then there is a vertex v of G not in Uj whose color is distinct of
all colors used in Uj. Choose any edge e of G containing v and let u be the unique vertex
of e ∩ Uj. We have then |c(N [e \ {u}])| > |Uj|+ 1 = dr/pe+ 1.

Otherwise, dr/(p−1)e = dr/pe, and for any edge e, we have |c(N [e\{u}])| > dr/pe =
dr/(p− 1)e, with u being again the unique vertex of e ∩ Uj.

As for Theorem 1, we do not know whether this theorem remains true for non-prime
p.

3 Combinatorial topology and proof of the main re-

sult

3.1 Tools of combinatorial topology

3.1.1 Basic definitions

We use the cyclic and muliplicative group Zq = {ωj : j = 1, . . . , q} of the qth roots
of unity. We emphasize that 0 is not considered as an element of Zq. For a vector
X = (x1, . . . , xn) ∈ (Zq ∪ {0})n, we define Xj to be the set {i ∈ [n] : xi = ωj} and |X| to
be the quantity |{i ∈ [n] : xi 6= 0}|.

We assume basic knowledges in algebraic topology, see the book by Munkres for in-
stance for an introduction to this topic [17]. A simplicial complex is said to be pure if all
maximal simplices for inclusion have the same dimension. For K a simplicial complex, we
denote by C(K) its chain complex. We always assume that the coefficients are taken in Z.

3.1.2 Special simplicial complexes

For a simplicial complex K, its first barycentric subdivision is denoted by sd(K). It is the
simplicial complex whose vertices are the nonempty simplices of K and whose simplices
are the collections of simplices of K that are pairwise comparable for ⊆ (these collections
are usually called chains in the poset terminology, with a different meaning as the one
used above in “chain complexes”).

As a simplicial complex, Zq is seen as being 0-dimensional and with q vertices. Z∗dq is
the join of d copies of Zq. It is a pure simplicial complex of dimension d − 1. A vertex
v taken in the µth copy of Zq in Z∗dq is also written (ε, µ) where ε ∈ Zq and µ ∈ [d].
Sometimes, ε is called the sign of the vertex, and µ its absolute value. This latter quantity
is denoted |v|.

The simplicial complex sd(Z∗dq ) plays a special role. We have

V
(
sd(Z∗dq )

)
' (Zq ∪ {0})d \ {(0, . . . , 0)} :
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a simplex σ ∈ Z∗dq corresponds to the vector X = (x1, . . . , xd) ∈ (Zq ∪ {0})d with xµ = ε
for all (ε, µ) ∈ σ and xµ = 0 otherwise.

We denote by σq−1q−2 the simplicial complex obtained from a (q−1)-dimensional simplex
and its faces by deleting the maximal face. It is hence a (q−2)-dimensional pseudomanifold
homeomorphic to the (q − 2)-sphere. We also identify its vertices with Zq. A vertex of

the simplicial complex
(
σq−1q−2

)∗d
is again denoted by (ε, µ) where ε ∈ Zq and µ ∈ [d]. For

ε ∈ Zq and a simplex τ of
(
σp−1p−2

)∗d
, we denote by τ ε the set of all vertices of τ having ε

as sign, i.e. τ ε := {(ω, µ) ∈ τ : ω = ε}. Note that if q is a prime number, Zq acts freely
on σq−1q−2.

3.1.3 Barycentric subdivision operator

Let K be a simplicial complex. There is a natural chain map sd# : C(K) → C(sd(K))
which, when evaluated on a d-simplex σ ∈ K, returns the sum of all d-simplices in sd(K)
contained in σ, with the induced orientation. “Contained” is understood according to
the geometric interpretation of the barycentric subdivision. If K is a free Zq-simplicial
complex, sd# is a Zq-equivariant map.

3.1.4 The Zq-Fan lemma

The following lemma plays a central role in the proof of Theorem 1. It is proved (im-
plicitely and in a more general version) in [8, 14].

Lemma 3 (Zq-Fan lemma). Let q > 2 be a positive integer. Let λ# : C
(
sd(Z∗nq )

)
→

C
(
Z∗mq

)
be a Zq-equivariant chain map. Then there is an (n− 1)-dimensional simplex ρ

in the support of λ#(ρ′), for some ρ′ ∈ sd(Z∗nq ), of the form {(ε1, µ1), (ε2, µ2), . . . , (εn, µn)},
with µi < µi+1 and εi 6= εi+1 for i = 1, . . . , n.

This ρ′ is an alternating simplex.

Proof. The proof is exactly the proof of Theorem 5.4 (p.415) of [8]. The complex X in the
statement of this Theorem 5.4 is our complex sd(Z∗nq ), the dimension r is n− 1, and the
generalized r-sphere (xi) is any generalized (n−1)-sphere of sd(Z∗nq ) with x0 reduced to a
single point. The chain map h`• is induced by our chain map λ#, instead of being induced
by the chain map `# of [8] (itself induced by the labeling `). It does not change the proof
since h`• only uses the fact that `# is a Zq-equivariant chain map. In the statement of
Theorem 5.4 of [8], αi is always a lower bound on the number of “alternating patterns”
(i.e. simplices ρ′ as in the statement of the lemma) in `#(xi), even for odd i since the
map fi in Theorem 5.4 of [8] is zero on non-alternating elements. Since α0 = 1, we get
that αi 6= 0 for all 0 6 i 6 n− 1.

In particular, for q = 2, it gives the Ky Fan theorem [6] used for instance in [7, 15, 18]
to derive properties of Kneser graphs.
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3.2 Proof of the main result

Proof of Theorem 1. We first sketch some steps in the proof. We assume given a proper
coloring c of KGp(H). With the help of the coloring c, we build a Zp-equivariant chain
map ψ# : C(sd(Z∗np ))→ C(Z∗mp ), where m = n− cdp(H) + t(p−1). We apply Lemma 3 to
get the existence of some alternating simplex ρ′ in sd(Z∗np ). Using properties of ψ# (espe-
cially the fact that it is a composition of maps in which simplicial maps are involved), we
show that this alternating simplex provides a complete p-uniform p-partite hypergraph in
H with the required properties.

Let r = cdp(H). Following the ideas of [12, 22], we define

f : (Zp ∪ {0})n \ {(0, . . . , 0)} → Zp × [m]

with m = n − r + t(p − 1). We choose a total ordering � on the subsets of [n]. This
ordering is only used to get a clean definition of f .

If X ∈ (Zp ∪ {0})n \ {(0, . . . , 0)} is such that |X| 6 n− r, then f(X) is defined to be
(ε, |X|) with ε being the first nonzero component in X.

If X ∈ (Zp ∪ {0})n \ {(0, . . . , 0)} is such that |X| > n − r + 1, by definition of the
colorability defect, at least one of the Xj’s with j ∈ [p] contains an edge of H. Choose
j ∈ [p] such that there is S ⊆ Xj with S ∈ E(H). In case several S are possible,
choose the maximal one according to the total ordering �. Its defines F (X) := S and
f(X) := (ωj, n− r + c(F (X))).

Note that f induces a Zp-equivariant simplicial map f : sd(Z∗np ) → L ∗ M, where

L := Z
∗(n−r)
p and M :=

(
σp−1p−2

)∗t
.

Let Wa be the set of simplices τ ∈ M such that |τ ε| = 0 or |τ ε| = a for all ε ∈ Zp.
Let W =

⋃m
a=1Wa. Choose an arbitrary equivariant map s : W → Zp. Such a map can

be easily built by choosing one representative in each orbit (Zp acts freely on each Wa).
We build also an equivariant map s0 : σp−1p−2 → Zp, again by choosing one representative
in each orbit of the action of Zp. We define now a simplicial map g : sd(L ∗M)) → Z∗mp
as follows.

Take a vertex in sd(L ∗M). It is of the form σ ∪ τ 6= ∅ where σ ∈ L and τ ∈ M.

If τ 6= ∅. Let α := minε∈Zp |τ ε|.

• If α = 0, define τ̄ := {ε ∈ Zp : τ ε = ∅} and g(σ ∪ τ) = (s0(τ̄), n− r + |τ |) (we have
indeed τ̄ ∈ σp−1p−2).

• If α > 0, define τ̄ :=
⋃
ε: |τε|=α τ

ε and g(σ ∪ τ) := (s(τ̄), n− r + |τ |).
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ω1 ω2 . . . ωp

Figure 1: An example of a simplex τ ∈ M.

The definition of τ̄ is illustrated on Figures 1 and 2.

If τ = ∅. Choose (ε, µ) in σ with maximal µ. Define g(σ ∪ τ) := (ε, µ). Note that L is
such that there is only one ε for which the maximum is attained.

We check now that g is a simplicial map. Assume for a contradiction that there are
σ ⊆ σ′, τ ⊆ τ ′ such that g(σ ∪ τ) = (ε, µ) and g(σ′ ∪ τ ′) = (ε′, µ) with ε 6= ε′. If τ = ∅,
then µ 6 n − r and τ ′ = ∅. We should then have ε = ε′, which is impossible. If τ 6= ∅,
then |τ | = |τ ′|, and thus τ = τ ′. We should again have ε = ε′ which is impossible as well.

Note that g is increasing: for σ ⊆ σ′ and τ ⊆ τ ′, we have |g(σ ∪ τ)| 6 |g(σ′ ∪ τ ′)|.

We get our map ψ# by defining: ψ# = g# ◦ sd# ◦f#. It is a Zp-equivariant chain map
from C(sd(Z∗np )) to C(Z∗mp ).

This chain map ψ# satisfies the condition of Lemma 3. Hence, there exists ρ ∈ Z∗mp
of the form ρ = {(ε1, µ1), . . . , (εn, µn)} with µi < µi+1 and εi 6= εi+1 for i = 1, . . . , n − 1
such that ρ is in the support of ψ#(ρ′) for some ρ′ ∈ sd(Z∗np ).

We exhibit now some properties of ρ and ρ′.
Since g is a simplicial map, we know that there is a permutation π and a sequence

σπ(1) ∪ τπ(1) ⊆ · · · ⊆ σπ(n) ∪ τπ(n) of simplices of L ∗M such that g(σi ∪ τi) = (εi, µi) with
µi < µi+1 and εi 6= εi+1 for i = 1, . . . , n − 1. To ease the following discussion, we define
τ0 := ∅.
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ω1 ω2 . . . ωp

Figure 2: The simplex τ̄ which leads to the definition of g.

Since g is increasing, we get that π(i) = i for all i. Using the fact that f is simplicial,
we get that |σn ∪ τn| = n, and then that |σi ∪ τi| = i. Since |σn| 6 n− r, we have τn 6= ∅.
Note that τi = τi+1 implies that τi = ∅ (otherwise µi would be equal to µi+1). Therefore,
defining z to be the largest index such that τz is empty, we have z < n and a sequence
τz+1 ( τz+2 ( · · · ( τn. Finally, noting that σi+1 ∪ τi+1 has only one more element than
σi ∪ τi for i = 1, . . . , n− 1, we get that |τz+`| = ` for ` = 0, . . . , n− z.

Consider now the sequence (ω1, ν1), . . . , (ωn−z, νn−z), where (ω`, ν`) is the unique vertex
of τz+`\τz+`−1 for ` = 1, . . . , n−z. The sign ω`+1 is necessarily such that τ

ω`+1

z+` has minimum
cardinality among the τ εz+`, otherwise the set of ε for which |τ εz+`+1| is minimum would be
the same as for |τ εz+`|, and, according to the definition of the maps s and s0, we would
have ε`+1 = ε`.

We clearly have
∣∣|τ εz+1| − |τ ε

′
z+1|
∣∣ 6 1 for all ε, ε′ since |τz+1| = 1. Now assume that for

k > z + 1 we have
∣∣|τ εk| − |τ ε′k |∣∣ 6 1 for all ε, ε′. Since the element added to τk to get τk+1

is added to a τ εk with minimum cardinality, we have
∣∣|τ εk+1| − |τ ε

′

k+1|
∣∣ 6 1 for all ε, ε′. By

induction we have in particular∣∣∣|τ εn| − |τ ε′n |∣∣∣ 6 1 for all ε, ε′. (1)

We can now conclude. Using the fact that f is simplicial, we get that ρ′ = {X1, . . . , Xn}
where the Xi are signed vectors with |Xi| = i and X1 ⊆ · · · ⊆ Xn. Moreover, we have
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f({Xz+1, . . . , Xn}) = τn. Each Xi provides a vertex F (Xi) of KGp(H) for i = z+1, . . . , n.
For each j, define Uj to be the set of such vertices F (Xi) such that the sign of f(Xi) is
ωj. The Uj are subsets of vertices of KGp(H). For two distinct j and j′, if F (Xi) ∈ Uj
and F (Xi′) ∈ U ′j, we have F (Xi) ∩ F (Xi′) = ∅. Thus, the Uj induce in KGp(H) a
complete p-partite p-uniform hypergraph with n− z vertices. Equation (1) indicates that
the cardinalities of the Uj differ by at most one. Since the f(Xi) are all distinct, each Uj
has all its vertices of distinct colors.

It remains to prove that z = n − r (actually, z 6 n − r would be enough). First,
we have µi > i for all i = 1, . . . , n and µz+1 = n − r + 1, thus z 6 n − r. Second,
|f(Xz+1)| > n− r+ 1, which implies |Xz+1| > n− r+ 1, i.e. z > n− r. We get z = n− r,
as required.

4 Alternation number

4.1 Definition

Alishahi and Hajiabolhassan [1], going on with ideas introduced in [16], defined the q-
alternation number altq(H) of a hypergraph H. Using this parameter, we can improve
upon some theorems involving the q-colorability defect. The q-alternation number is
defined as follows.

Let q and n be positive integers. An alterning sequence is a sequence s1, s2, . . . , sn of
elements of Zq such that si 6= si+1 for all i = 1, . . . , n−1. For a vector X = (x1, . . . , xn) ∈
(Zq ∪ {0})n and a permutation π ∈ Sn, we denote altπ(X) the maximum length of an
alternating subsequence of the sequence xπ(1), . . . , xπ(n). Note that by definition this
subsequence has no zero element.

Example. Let n = 9, q = 3, and X = (ω2, ω2, 0, 0, ω1, ω3, 0, ω3, ω2), we have altid(X) = 4.
If π is a permutation acting only on the first four positions, then altid(X) = altπ(X). If
π exchanges the last two elements of X, we have altπ(X) = 5.

Let H = (V,E) be a hypergraph with n vertices. We identify V and [n]. The q-
alternation number altq(H) of a hypergraph H with n vertices is defined as:

altq(H) = min
π∈Sn

max{altπ(X) : X ∈ (Zq ∪ {0})n with E(H[Xj]) = ∅ for j = 1, . . . , q}.
(2)

Note that this number does not depend on the way V and [n] have been identified.

4.2 Improving the results with the alternation number

Alishahi and Hajiabolhassan improved the Kř́ıž theorem by the following theorem.

Theorem (Alishahi-Hajiabolhassan theorem). Let H be a hypergraph and assume that ∅
is not an edge of H. Then

χ(KGq(H)) >

⌈
|V (H)| − altq(H)

q − 1

⌉
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for any integer q > 2.

It is an improvement since we have

|V (H)| − altq(H) > cdq(H)

as it can be easily checked. This inequality is often strict, see [1].
Theorem 1 and Theorem 2 can be similarly improved with the alternation number.

Let π be the permutation on which the minimum is attained in Equation (2). We replace
r = cdp(H) by r = |V (H)| − altp(H) in both proofs of Theorem 1 and Theorem 2, and
we replace |X| in the definition of f by altπ(X) in the proof of Theorem 1. There are no
other changes and we get the following theorems.

Theorem 4. Let H be a hypergraph and assume that ∅ is not an edge of H. Let p be a
prime number. Then any proper coloring c of KGp(H) with colors 1, . . . , t (t arbitrary)
must contain a complete p-uniform p-partite hypergraph with parts U1, . . . , Up satisfying
the following properties.

• It has |V (H)| − altp(H) vertices.

• The values of |Uj| for j = 1, . . . , p differ by at most one.

• For any j, the vertices of Uj get distinct colors.

Theorem 5. Let H be a hypergraph and assume that ∅ is not an edge of H. Then

χ`(KGp(H)) > min

(⌈
|V (H)| − altp(H)

p

⌉
+ 1,

⌈
|V (H)| − altp(H)

p− 1

⌉)
for any prime number p.

The special case of Theorem 4 when p = 2 is proved in [1] in a slightly more general
form.

4.3 Complexity

It remains unclear whether the alternation number, or a good upper bound of it, can be
computed efficiently. However, we can note that given a hypergraph H, computing the
alternation number for a fixed permutation is an NP-hard problem.

Proposition 6. Given a hypergraph H, a permutation π, and a number q, computing

max{altπ(X) : X ∈ (Zq ∪ {0})n with E(H[Xj]) = ∅ for j = 1, . . . , q}

is NP-hard.
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Proof. The proof consists in proving that the problem of finding a maximum independent
set in a graph can be polynomially reduced to our problem for q = 2, π = id, and H being
some special graph.

Let G be a graph. Define G′ to be a copy of G and consider the join H of G and G′.
The join of two graphs is the disjoint union of the two graphs plus all edges vw′ with v a
vertex of G and w′ a vertex of G′. We number the vertices of G arbitrarily with a bijection
ρ : V → [|V |]. It gives the following numbering for the vertices of H. In H, a vertex v
receives number 2ρ(v) − 1 and its copy v′ receives the number 2ρ(v). Let n = 2|V |. As
usual, we denote the maximum cardinality of an independent set of G by α(G).

Let I ⊆ V be a independent set of G. Define Y = (y1, . . . , yn) ∈ (Z2∪{0})n as follows:

y2ρ(v)−1 = +1 and y2ρ(v) = −1 for all v ∈ I, and yi = 0 for the other indices i.

By definition of the numbering, we have altid(Y ) = 2|I| and thus

max{altid(X) : X ∈ (Z2 ∪ {0})n with E(H[Xj]) = ∅ for j = 1, 2} > 2α(G)

Conversely, any X = (x1, . . . , xn) ∈ (Z2 ∪ {0})n with E(H[Xj]) = ∅ for j = 1, 2 gives
an independent set I in G and another I ′ in G′: take a longest alternating subsequence
in X and define the set I as the set of vertices v such that x2ρ(v)−1 6= 0 and the set I ′

as the set of vertices v such that x2ρ(v) 6= 0. We have altid(X) = |I| + |I ′| because two
components of X with distinct index parities cannot be of same sign: each vertex of G is
the neighbor of each vertex of G′. Thus

max{altid(X) : X ∈ (Z2 ∪ {0})n with E(H[Xj]) = ∅ for j = 1, 2} 6 2α(G).

The same proof gives also that computing the two-colorability defect cd2(H) of any
hypergraph H is an NP-hard problem.
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[13] J. Matoušek and G. Ziegler, Topological lower bounds for the chromatic number: A
hierarchy, Jahresber. Deutsch. Math.-Verein. 106 (2004), 71–90.

[14] F. Meunier, A Zq-Fan theorem, Tech. report, Laboratoire Leibniz-IMAG, Grenoble,
2005.

[15] F. Meunier, A topological lower bound for the circular chromatic number of Schrijver
graphs, Journal of graph theory 49 (2005), 257–261.

[16] F. Meunier, The chromatic number of almost-stable Kneser hypergraphs, Journal of
Combinatorial Theory, Series A 118 (2011), 1820–1828.

[17] J. R. Munkres, Elements of algebraic topology, Perseus Book Publishing, 1984.

[18] G. Simonyi and G. Tardos, Local chromatic number, Ky Fan’s theorem, and circular
colorings, Combinatorica 26 (2006), 587–626.

[19] G. Simonyi and G. Tardos, Colorful subgraphs of Kneser-like graphs, European Jour-
nal of Combinatorics 28 (2007), 2188–2200.

[20] S. Stahl, n-tuple colorings and associated graphs, Journal of Combinatorial Theory,
Series B 20 (1976), 185–203.

[21] M. Valencia-Pabon and J. Vrecia, On the diameter of Kneser graphs, Discrete Math-
ematics 305 (2005), 383–385.

[22] G. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, Invent.
Math. 147 (2002), 671–691.

[23] G. Ziegler, Erratum: Generalized Kneser coloring theorems with combinatorial proofs,
Invent. Math. 163 (2006), 227–228.

the electronic journal of combinatorics 21(1) (2014), #P1.8 13


