Colorful subhypergraphs in Kneser hypergraphs

Frédéric Meunier

Université Paris Est CERMICS (ENPC) F-77455 Marne-la-Vallée, France

frederic.meunier@enpc.fr

Submitted: Jul 11, 2013; Accepted: Dec 25, 2013; Published: Jan 12, 2014 Mathematics Subject Classifications: 05C65

Abstract

Using a Z_q -generalization of a theorem of Ky Fan, we extend to Kneser hypergraphs a theorem of Simonyi and Tardos that ensures the existence of multicolored complete bipartite graphs in any proper coloring of a Kneser graph. It allows to derive a lower bound for the local chromatic number of Kneser hypergraphs (using a natural definition of what can be the local chromatic number of a uniform hypergraph).

Keywords: colorful complete *p*-partite hypergraph; combinatorial topology; Kneser hypergraphs; local chromatic number.

1 Introduction

1.1 Motivations and results

A hypergraph is a pair $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$, where $V(\mathcal{H})$ is a finite set and $E(\mathcal{H})$ a family of subsets of $V(\mathcal{H})$. The set $V(\mathcal{H})$ is called the vertex set and the set $E(\mathcal{H})$ is called the edge set. A graph is a hypergraph each edge of which is of cardinality two. A quiform hypergraph is a hypergraph each edge of which is of cardinality q. The notions of graphs and 2-uniform hypergraphs therefore coincide. If a hypergraph has its vertex set partitioned into subsets V_1, \ldots, V_q so that each edge intersects each V_i at exactly one vertex, then it is called a q-uniform q-partite hypergraph. The sets V_1, \ldots, V_q are called the parts of the hypergraph. When q = 2, such a hypergraph is a graph and said to be bipartite. A q-uniform q-partite hypergraph is said to be complete if all possible edges exist.

A coloring of a hypergraph is a map $c:V(\mathcal{H})\to [t]$ for some positive integer t. A coloring is said to be proper if there is no monochromatic edge, i.e. no edge e with |c(e)|=1. The chromatic number of such a hypergraph, denoted $\chi(\mathcal{H})$, is the minimal value of t for which a proper coloring exists. Given $X\subseteq V(\mathcal{H})$, the hypergraph with vertex set X and with edge set $\{e\in E(\mathcal{H}): e\subseteq X\}$ is the subhypergraph of \mathcal{H} induced by X and is denoted $\mathcal{H}[X]$.

Given a hypergraph $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$, we define the *Kneser graph* $KG^2(\mathcal{H})$ by

$$\begin{array}{lcl} V(\operatorname{KG}^2(\mathcal{H})) & = & E(\mathcal{H}) \\ E(\operatorname{KG}^2(\mathcal{H})) & = & \{\{e,f\}: e,f \in E(\mathcal{H}), \, e \cap f = \emptyset\}. \end{array}$$

The "usual" Kneser graphs, which have been extensively studied – see [20, 21] among many references, some of them being given elsewhere in the present paper – are the special cases $\mathcal{H} = ([n], \binom{[n]}{k})$ for some positive integers n and k with $n \ge 2k$. We denote them $KG^2(n,k)$. The main result for "usual" Kneser graphs is Lovász's theorem [11].

Theorem (Lovász theorem). Given n and k two positive integers with $n \ge 2k$, we have $\chi(KG^2(n,k)) = n - 2k + 2$.

The 2-colorability defect $cd^2(\mathcal{H})$ of a hypergraph \mathcal{H} has been introduced by Dol'nikov [3] in 1988 for a generalization of Lovász's theorem. It is defined as the minimum number of vertices that must be removed from \mathcal{H} so that the hypergraph induced by the remaining vertices is of chromatic number at most 2:

$$\operatorname{cd}^{2}(\mathcal{H}) = \min\{|Y| : Y \subseteq V(\mathcal{H}), \chi(\mathcal{H}[V(\mathcal{H}) \setminus Y]) \leqslant 2\}.$$

Theorem (Dol'nikov theorem). Let \mathcal{H} be a hypergraph and assume that \emptyset is not an edge of \mathcal{H} . Then $\chi(KG^2(\mathcal{H})) \ge cd^2(\mathcal{H})$.

It is a generalization of Lovász theorem since $\operatorname{cd}^2([n], \binom{[n]}{k}) = n - 2k + 2$ and since the inequality $\chi(\operatorname{KG}^2(n,k)) \leq n - 2k + 2$ is the easy one.

The following theorem proposed by Simonyi and Tardos in 2007 [19] generalizes Dol'nikov's theorem. The special case for "usual" Kneser graphs is due to Ky Fan [7].

Theorem (Simonyi-Tardos theorem). Let \mathcal{H} be a hypergraph and assume that \emptyset is not an edge of \mathcal{H} . Let $r = \operatorname{cd}^2(\mathcal{H})$. Then any proper coloring of $\operatorname{KG}^2(\mathcal{H})$ with colors $1, \ldots, t$ (t arbitrary) must contain a completely multicolored complete bipartite graph $K_{\lceil r/2 \rceil, \lceil r/2 \rceil}$ such that the r different colors occur alternating on the two parts of the bipartite graph with respect to their natural order.

In 1976, Erdős [4] initiated the study of Kneser hypergraphs $KG^q(\mathcal{H})$ defined for a hypergraph $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$ and an integer $q \ge 2$ by

$$V(KG^{q}(\mathcal{H})) = E(\mathcal{H})$$

$$E(KG^{q}(\mathcal{H})) = \{\{e_{1}, \dots, e_{q}\} : e_{1}, \dots, e_{q} \in E(\mathcal{H}), e_{i} \cap e_{j} = \emptyset \text{ for all } i, j \text{ with } i \neq j\}.$$

A Kneser hypergraph is thus the generalization of Kneser graphs obtained when the 2-uniformity is replaced by the q-uniformity for an integer $q \ge 2$. There are also "usual" Kneser hypergraphs, which are obtained with the same hypergraph \mathcal{H} as for "usual" Kneser graphs, i.e. $\mathcal{H} = ([n], \binom{[n]}{k})$. They are denoted KG $^q(n, k)$. The main result for them is the following generalization of Lovász's theorem conjectured by Erdős and proved by Alon, Frankl, and Lovász [2].

Theorem (Alon-Frankl-Lovász theorem). Given n, k, and q three positive integers with $n \ge qk$, we have $\chi(\mathrm{KG}^q(n,k)) = \left\lceil \frac{n-q(k-1)}{q-1} \right\rceil$.

There exists also a q-colorability defect $\operatorname{cd}^q(\mathcal{H})$, introduced by Kříž, defined as the minimum number of vertices that must be removed from \mathcal{H} so that the hypergraph induced by the remaining vertices is of chromatic number at most q:

$$\operatorname{cd}^{q}(\mathcal{H}) = \min\{|Y| : Y \subseteq V(\mathcal{H}), \chi(\mathcal{H}[V(\mathcal{H}) \setminus Y]) \leqslant q\}.$$

The following theorem, due to Kříž [9, 10], generalizes Dol'nikov's theorem. It also generalizes the Alon-Frankl-Lovász theorem since $\operatorname{cd}^q([n],\binom{[n]}{k})=n-q(k-1)$ and since again the inequality $\chi(\operatorname{KG}^q(n,k))\leqslant \left\lceil\frac{n-q(k-1)}{q-1}\right\rceil$ is the easy one.

Theorem (Kříž theorem). Let \mathcal{H} be a hypergraph and assume that \emptyset is not an edge of \mathcal{H} . Then

$$\chi(\mathrm{KG}^q(\mathcal{H})) \geqslant \left\lceil \frac{\mathrm{cd}^q(\mathcal{H})}{q-1} \right\rceil$$

for any integer $q \ge 2$.

Our main result is the following extension of Simonyi-Tardos's theorem to Kneser hypergraphs.

Theorem 1. Let \mathcal{H} be a hypergraph and assume that \emptyset is not an edge of \mathcal{H} . Let p be a prime number. Then any proper coloring c of $KG^p(\mathcal{H})$ with colors $1, \ldots, t$ (t arbitrary) must contain a complete p-uniform p-partite hypergraph with parts U_1, \ldots, U_p satisfying the following properties.

- It has $cd^p(\mathcal{H})$ vertices.
- The values of $|U_j|$ for j = 1, ..., p differ by at most one.
- For any j, the vertices of U_i get distinct colors.

We get that each U_j is of cardinality $\lfloor \operatorname{cd}^p(\mathcal{H})/p \rfloor$ or $\lceil \operatorname{cd}^p(\mathcal{H})/p \rceil$.

Note that Theorem 1 implies directly Kříž's theorem when q is a prime number p: each color may appear at most p-1 times within the vertices and there are $\operatorname{cd}^p(\mathcal{H})$ vertices. There is a standard derivation of Kříž's theorem for any q from the prime case, see [22, 23]. Theorem 1 is a generalization of Simonyi-Tardos's theorem except for a slight loss: when p=2, we do not recover the alternation of the colors between the two parts.

Whether Theorem 1 is true for non-prime p is an open question.

2 Local chromatic number and Kneser hypergraphs

In a graph G = (V, E), the closed neighborhood of a vertex u, denoted N[u], is the set $\{u\} \cup \{v : uv \in E\}$. The local chromatic number of a graph G = (V, E), denoted $\chi_{\ell}(G)$, is the maximum number of colors appearing in the closed neighborhood of a vertex minimized over all proper colorings:

$$\chi_{\ell}(G) = \min_{c} \max_{v \in V} |c(N[v])|,$$

where the minimum is taken over all proper colorings c of G. This number has been defined in 1986 by Erdős, Füredi, Hajnal, Komjáth, Rödl, and Seress [5]. For Kneser graphs, we have the following theorem, which is a consequence of the Simonyi-Tardos theorem: any vertex of the part with $\lfloor r/2 \rfloor$ vertices in the completely multicolored complete bipartite subgraph has at least $\lceil r/2 \rceil + 1$ colors in its closed neighborhhod (where $r = \operatorname{cd}^2(\mathcal{H})$).

Theorem (Simonyi-Tardos theorem for local chromatic number). Let \mathcal{H} be a hypergraph and assume that \emptyset is not an edge of \mathcal{H} . If $\operatorname{cd}^2(\mathcal{H}) \geq 2$, then

$$\chi_{\ell}(\mathrm{KG}^2(\mathcal{H})) \geqslant \left\lceil \frac{\mathrm{cd}^2(\mathcal{H})}{2} \right\rceil + 1.$$

Note that we can also see this theorem as a direct consequence of Theorem 1 in [18] (with the help of Theorem 1 in [13]).

We use the following natural definition for the local chromatic number $\chi_{\ell}(\mathcal{H})$ of a uniform hypergraph $\mathcal{H} = (V, E)$. For a subset X of V, we denote by $\mathcal{N}(X)$ the set of vertices v such that v is the sole vertex outside X for some edge in E:

$$\mathcal{N}(X) = \{v : \exists e \in E \text{ s.t. } e \setminus X = \{v\}\}.$$

We define furthermore $\mathcal{N}[X] := X \cup \mathcal{N}(X)$. Note that if the hypergraph is a graph, $\mathcal{N}[\{v\}] = N[v]$ for any vertex v. The definition of the local chromatic number of a hypergraph is then:

$$\chi_{\ell}(\mathcal{H}) = \min_{c} \max_{e \in E, v \in e} |c(\mathcal{N}[e \setminus \{v\}])|,$$

where the minimum is taken over all proper colorings c of \mathcal{H} . When the hypergraph \mathcal{H} is a graph, we get the usual notion of local chromatic number for graphs.

The following theorem is a consequence of Theorem 1 and generalizes the Simonyi-Tardos theorem for local chromatic number to Kneser hypergraphs.

Theorem 2. Let \mathcal{H} be a hypergraph and assume that \emptyset is not an edge of \mathcal{H} . Then

$$\chi_{\ell}(\mathrm{KG}^p(\mathcal{H})) \geqslant \min\left(\left\lceil \frac{\mathrm{cd}^p(\mathcal{H})}{p} \right\rceil + 1, \left\lceil \frac{\mathrm{cd}^p(\mathcal{H})}{p-1} \right\rceil\right)$$

for any prime number p.

Proof. Denote $\operatorname{cd}^p(\mathcal{H})$ by r. Let c be any proper coloring of $\operatorname{KG}^p(\mathcal{H})$. Consider the complete p-uniform p-partite hypergraph \mathcal{G} in $\operatorname{KG}^p(\mathcal{H})$ whose existence is ensured by Theorem 1. Choose U_i of cardinality $\lceil r/p \rceil$.

If $\lceil r/(p-1) \rceil > \lceil r/p \rceil$, then there is a vertex v of \mathcal{G} not in U_j whose color is distinct of all colors used in U_j . Choose any edge e of \mathcal{G} containing v and let u be the unique vertex of $e \cap U_j$. We have then $|c(\mathcal{N}[e \setminus \{u\}])| \ge |U_j| + 1 = \lceil r/p \rceil + 1$.

Otherwise, $\lceil r/(p-1) \rceil = \lceil r/p \rceil$, and for any edge e, we have $|c(\mathcal{N}[e \setminus \{u\}])| \geqslant \lceil r/p \rceil = \lceil r/(p-1) \rceil$, with u being again the unique vertex of $e \cap U_j$.

As for Theorem 1, we do not know whether this theorem remains true for non-prime p.

3 Combinatorial topology and proof of the main result

3.1 Tools of combinatorial topology

3.1.1 Basic definitions

We use the cyclic and muliplicative group $Z_q = \{\omega^j : j = 1, ..., q\}$ of the qth roots of unity. We emphasize that 0 is not considered as an element of Z_q . For a vector $X = (x_1, ..., x_n) \in (Z_q \cup \{0\})^n$, we define X^j to be the set $\{i \in [n] : x_i = \omega^j\}$ and |X| to be the quantity $|\{i \in [n] : x_i \neq 0\}|$.

We assume basic knowledges in algebraic topology, see the book by Munkres for instance for an introduction to this topic [17]. A simplicial complex is said to be *pure* if all maximal simplices for inclusion have the same dimension. For K a simplicial complex, we denote by $\mathcal{C}(\mathsf{K})$ its chain complex. We always assume that the coefficients are taken in \mathbb{Z} .

3.1.2 Special simplicial complexes

For a simplicial complex K, its first barycentric subdivision is denoted by $\mathrm{sd}(K)$. It is the simplicial complex whose vertices are the nonempty simplices of K and whose simplices are the collections of simplices of K that are pairwise comparable for \subseteq (these collections are usually called *chains* in the poset terminology, with a different meaning as the one used above in "chain complexes").

As a simplicial complex, Z_q is seen as being 0-dimensional and with q vertices. Z_q^{*d} is the join of d copies of Z_q . It is a pure simplicial complex of dimension d-1. A vertex v taken in the μ th copy of Z_q in Z_q^{*d} is also written (ϵ, μ) where $\epsilon \in Z_q$ and $\mu \in [d]$. Sometimes, ϵ is called the sign of the vertex, and μ its $absolute \ value$. This latter quantity is denoted |v|.

The simplicial complex $\operatorname{sd}(Z_q^{*d})$ plays a special role. We have

$$V\left(\operatorname{sd}(Z_q^{*d})\right) \simeq \left(Z_q \cup \{0\}\right)^d \setminus \{(0,\ldots,0)\}:$$

a simplex $\sigma \in Z_q^{*d}$ corresponds to the vector $X = (x_1, \dots, x_d) \in (Z_q \cup \{0\})^d$ with $x_\mu = \epsilon$ for all $(\epsilon, \mu) \in \sigma$ and $x_\mu = 0$ otherwise.

We denote by σ_{q-2}^{q-1} the simplicial complex obtained from a (q-1)-dimensional simplex and its faces by deleting the maximal face. It is hence a (q-2)-dimensional pseudomanifold homeomorphic to the (q-2)-sphere. We also identify its vertices with Z_q . A vertex of the simplicial complex $(\sigma_{q-2}^{q-1})^{*d}$ is again denoted by (ϵ, μ) where $\epsilon \in Z_q$ and $\mu \in [d]$. For $\epsilon \in Z_q$ and a simplex τ of $(\sigma_{p-2}^{p-1})^{*d}$, we denote by τ^{ϵ} the set of all vertices of τ having ϵ as sign, i.e. $\tau^{\epsilon} := \{(\omega, \mu) \in \tau : \omega = \epsilon\}$. Note that if q is a prime number, Z_q acts freely on σ_{q-2}^{q-1} .

3.1.3 Barycentric subdivision operator

Let K be a simplicial complex. There is a natural chain map $\operatorname{sd}_\#: \mathcal{C}(\mathsf{K}) \to \mathcal{C}(\operatorname{sd}(\mathsf{K}))$ which, when evaluated on a d-simplex $\sigma \in \mathsf{K}$, returns the sum of all d-simplices in $\operatorname{sd}(\mathsf{K})$ contained in σ , with the induced orientation. "Contained" is understood according to the geometric interpretation of the barycentric subdivision. If K is a free Z_q -simplicial complex, $\operatorname{sd}_\#$ is a Z_q -equivariant map.

3.1.4 The Z_q -Fan lemma

The following lemma plays a central role in the proof of Theorem 1. It is proved (implicitly and in a more general version) in [8, 14].

Lemma 3 (Z_q -Fan lemma). Let $q \ge 2$ be a positive integer. Let $\lambda_\# : \mathcal{C}\left(\operatorname{sd}(Z_q^{*n})\right) \to \mathcal{C}\left(Z_q^{*m}\right)$ be a Z_q -equivariant chain map. Then there is an (n-1)-dimensional simplex ρ in the support of $\lambda_\#(\rho')$, for some $\rho' \in \operatorname{sd}(Z_q^{*n})$, of the form $\{(\epsilon_1, \mu_1), (\epsilon_2, \mu_2), \ldots, (\epsilon_n, \mu_n)\}$, with $\mu_i < \mu_{i+1}$ and $\epsilon_i \ne \epsilon_{i+1}$ for $i = 1, \ldots, n$.

This ρ' is an alternating simplex.

Proof. The proof is exactly the proof of Theorem 5.4 (p.415) of [8]. The complex X in the statement of this Theorem 5.4 is our complex $\operatorname{sd}(Z_q^{*n})$, the dimension r is n-1, and the generalized r-sphere (x_i) is any generalized (n-1)-sphere of $\operatorname{sd}(Z_q^{*n})$ with x_0 reduced to a single point. The chain map h_{\bullet}^{ℓ} is induced by our chain map $\lambda_{\#}$, instead of being induced by the chain map $\ell_{\#}$ of [8] (itself induced by the labeling ℓ). It does not change the proof since h_{\bullet}^{ℓ} only uses the fact that $\ell_{\#}$ is a Z_q -equivariant chain map. In the statement of Theorem 5.4 of [8], α_i is always a lower bound on the number of "alternating patterns" (i.e. simplices ρ' as in the statement of the lemma) in $\ell_{\#}(x_i)$, even for odd i since the map f_i in Theorem 5.4 of [8] is zero on non-alternating elements. Since $\alpha_0 = 1$, we get that $\alpha_i \neq 0$ for all $0 \leq i \leq n-1$.

In particular, for q = 2, it gives the Ky Fan theorem [6] used for instance in [7, 15, 18] to derive properties of Kneser graphs.

3.2 Proof of the main result

Proof of Theorem 1. We first sketch some steps in the proof. We assume given a proper coloring c of $KG^p(\mathcal{H})$. With the help of the coloring c, we build a Z_p -equivariant chain map $\psi_\# : \mathcal{C}(\mathrm{sd}(Z_p^{*n})) \to \mathcal{C}(Z_p^{*m})$, where $m = n - \mathrm{cd}^p(\mathcal{H}) + t(p-1)$. We apply Lemma 3 to get the existence of some alternating simplex ρ' in $\mathrm{sd}(Z_p^{*n})$. Using properties of $\psi_\#$ (especially the fact that it is a composition of maps in which simplicial maps are involved), we show that this alternating simplex provides a complete p-uniform p-partite hypergraph in \mathcal{H} with the required properties.

Let $r = \operatorname{cd}^p(\mathcal{H})$. Following the ideas of [12, 22], we define

$$f: (Z_p \cup \{0\})^n \setminus \{(0, \dots, 0)\} \to Z_p \times [m]$$

with m = n - r + t(p - 1). We choose a total ordering \leq on the subsets of [n]. This ordering is only used to get a clean definition of f.

If $X \in (Z_p \cup \{0\})^n \setminus \{(0, ..., 0)\}$ is such that $|X| \leq n - r$, then f(X) is defined to be $(\epsilon, |X|)$ with ϵ being the first nonzero component in X.

If $X \in (Z_p \cup \{0\})^n \setminus \{(0, ..., 0)\}$ is such that $|X| \ge n - r + 1$, by definition of the colorability defect, at least one of the X^j 's with $j \in [p]$ contains an edge of \mathcal{H} . Choose $j \in [p]$ such that there is $S \subseteq X^j$ with $S \in E(\mathcal{H})$. In case several S are possible, choose the maximal one according to the total ordering \preceq . Its defines F(X) := S and $f(X) := (\omega^j, n - r + c(F(X)))$.

Note that f induces a Z_p -equivariant simplicial map $f: \operatorname{sd}(Z_p^{*n}) \to \mathsf{L} * \mathsf{M}$, where $\mathsf{L} := Z_p^{*(n-r)}$ and $\mathsf{M} := \left(\sigma_{p-2}^{p-1}\right)^{*t}$.

Let W_a be the set of simplices $\tau \in \mathsf{M}$ such that $|\tau^\epsilon| = 0$ or $|\tau^\epsilon| = a$ for all $\epsilon \in Z_p$. Let $W = \bigcup_{a=1}^m W_a$. Choose an arbitrary equivariant map $s: W \to Z_p$. Such a map can be easily built by choosing one representative in each orbit $(Z_p$ acts freely on each W_a). We build also an equivariant map $s_0: \sigma_{p-2}^{p-1} \to Z_p$, again by choosing one representative in each orbit of the action of Z_p . We define now a simplicial map $g: \mathrm{sd}(\mathsf{L} * \mathsf{M})) \to Z_p^{*m}$ as follows.

Take a vertex in $\operatorname{sd}(L * M)$. It is of the form $\sigma \cup \tau \neq \emptyset$ where $\sigma \in L$ and $\tau \in M$.

If $\tau \neq \emptyset$. Let $\alpha := \min_{\epsilon \in \mathbb{Z}_p} |\tau^{\epsilon}|$.

- If $\alpha = 0$, define $\bar{\tau} := \{ \epsilon \in \mathbb{Z}_p : \tau^{\epsilon} = \emptyset \}$ and $g(\sigma \cup \tau) = (s_0(\bar{\tau}), n r + |\tau|)$ (we have indeed $\bar{\tau} \in \sigma_{p-2}^{p-1}$).
- If $\alpha > 0$, define $\bar{\tau} := \bigcup_{\epsilon: |\tau^{\epsilon}| = \alpha} \tau^{\epsilon}$ and $g(\sigma \cup \tau) := (s(\bar{\tau}), n r + |\tau|)$.

Figure 1: An example of a simplex $\tau \in M$.

The definition of $\bar{\tau}$ is illustrated on Figures 1 and 2.

If $\tau = \emptyset$. Choose (ϵ, μ) in σ with maximal μ . Define $g(\sigma \cup \tau) := (\epsilon, \mu)$. Note that L is such that there is only one ϵ for which the maximum is attained.

We check now that g is a simplicial map. Assume for a contradiction that there are $\sigma \subseteq \sigma'$, $\tau \subseteq \tau'$ such that $g(\sigma \cup \tau) = (\epsilon, \mu)$ and $g(\sigma' \cup \tau') = (\epsilon', \mu)$ with $\epsilon \neq \epsilon'$. If $\tau = \emptyset$, then $\mu \leqslant n - r$ and $\tau' = \emptyset$. We should then have $\epsilon = \epsilon'$, which is impossible. If $\tau \neq \emptyset$, then $|\tau| = |\tau'|$, and thus $\tau = \tau'$. We should again have $\epsilon = \epsilon'$ which is impossible as well. Note that g is increasing: for $\sigma \subseteq \sigma'$ and $\tau \subseteq \tau'$, we have $|g(\sigma \cup \tau)| \leqslant |g(\sigma' \cup \tau')|$.

We get our map $\psi_{\#}$ by defining: $\psi_{\#} = g_{\#} \circ \operatorname{sd}_{\#} \circ f_{\#}$. It is a Z_p -equivariant chain map from $\mathcal{C}(\operatorname{sd}(Z_p^{*n}))$ to $\mathcal{C}(Z_p^{*m})$.

This chain map $\psi_{\#}$ satisfies the condition of Lemma 3. Hence, there exists $\rho \in Z_p^{*m}$ of the form $\rho = \{(\epsilon_1, \mu_1), \dots, (\epsilon_n, \mu_n)\}$ with $\mu_i < \mu_{i+1}$ and $\epsilon_i \neq \epsilon_{i+1}$ for $i = 1, \dots, n-1$ such that ρ is in the support of $\psi_{\#}(\rho')$ for some $\rho' \in \operatorname{sd}(Z_p^{*n})$.

We exhibit now some properties of ρ and ρ' .

Since g is a simplicial map, we know that there is a permutation π and a sequence $\sigma_{\pi(1)} \cup \tau_{\pi(1)} \subseteq \cdots \subseteq \sigma_{\pi(n)} \cup \tau_{\pi(n)}$ of simplices of L * M such that $g(\sigma_i \cup \tau_i) = (\epsilon_i, \mu_i)$ with $\mu_i < \mu_{i+1}$ and $\epsilon_i \neq \epsilon_{i+1}$ for $i = 1, \ldots, n-1$. To ease the following discussion, we define $\tau_0 := \emptyset$.

Figure 2: The simplex $\bar{\tau}$ which leads to the definition of g.

Since g is increasing, we get that $\pi(i) = i$ for all i. Using the fact that f is simplicial, we get that $|\sigma_n \cup \tau_n| = n$, and then that $|\sigma_i \cup \tau_i| = i$. Since $|\sigma_n| \leqslant n - r$, we have $\tau_n \neq \emptyset$. Note that $\tau_i = \tau_{i+1}$ implies that $\tau_i = \emptyset$ (otherwise μ_i would be equal to μ_{i+1}). Therefore, defining z to be the largest index such that τ_z is empty, we have z < n and a sequence $\tau_{z+1} \subsetneq \tau_{z+2} \subsetneq \cdots \subsetneq \tau_n$. Finally, noting that $\sigma_{i+1} \cup \tau_{i+1}$ has only one more element than $\sigma_i \cup \tau_i$ for $i = 1, \ldots, n-1$, we get that $|\tau_{z+\ell}| = \ell$ for $\ell = 0, \ldots, n-z$.

Consider now the sequence $(\omega_1, \nu_1), \ldots, (\omega_{n-z}, \nu_{n-z})$, where (ω_ℓ, ν_ℓ) is the unique vertex of $\tau_{z+\ell} \setminus \tau_{z+\ell-1}$ for $\ell = 1, \ldots, n-z$. The sign $\omega_{\ell+1}$ is necessarily such that $\tau_{z+\ell}^{\omega_{\ell+1}}$ has minimum cardinality among the $\tau_{z+\ell}^{\epsilon}$, otherwise the set of ϵ for which $|\tau_{z+\ell+1}^{\epsilon}|$ is minimum would be the same as for $|\tau_{z+\ell}^{\epsilon}|$, and, according to the definition of the maps s and s_0 , we would have $\epsilon_{\ell+1} = \epsilon_{\ell}$.

We clearly have $||\tau_{z+1}^{\epsilon}| - |\tau_{z+1}^{\epsilon'}|| \leq 1$ for all ϵ, ϵ' since $|\tau_{z+1}| = 1$. Now assume that for $k \geq z+1$ we have $||\tau_k^{\epsilon}| - |\tau_k^{\epsilon'}|| \leq 1$ for all ϵ, ϵ' . Since the element added to τ_k to get τ_{k+1} is added to a τ_k^{ϵ} with minimum cardinality, we have $||\tau_{k+1}^{\epsilon}| - |\tau_{k+1}^{\epsilon'}|| \leq 1$ for all ϵ, ϵ' . By induction we have in particular

$$\left| |\tau_n^{\epsilon}| - |\tau_n^{\epsilon'}| \right| \leqslant 1 \quad \text{for all } \epsilon, \epsilon'.$$
 (1)

We can now conclude. Using the fact that f is simplicial, we get that $\rho' = \{X_1, \ldots, X_n\}$ where the X_i are signed vectors with $|X_i| = i$ and $X_1 \subseteq \cdots \subseteq X_n$. Moreover, we have

 $f(\{X_{z+1},\ldots,X_n\}) = \tau_n$. Each X_i provides a vertex $F(X_i)$ of $\mathrm{KG}^p(\mathcal{H})$ for $i=z+1,\ldots,n$. For each j, define U_j to be the set of such vertices $F(X_i)$ such that the sign of $f(X_i)$ is ω^j . The U_j are subsets of vertices of $\mathrm{KG}^p(\mathcal{H})$. For two distinct j and j', if $F(X_i) \in U_j$ and $F(X_{i'}) \in U'_j$, we have $F(X_i) \cap F(X_{i'}) = \emptyset$. Thus, the U_j induce in $\mathrm{KG}^p(\mathcal{H})$ a complete p-partite p-uniform hypergraph with n-z vertices. Equation (1) indicates that the cardinalities of the U_j differ by at most one. Since the $f(X_i)$ are all distinct, each U_j has all its vertices of distinct colors.

It remains to prove that z = n - r (actually, $z \le n - r$ would be enough). First, we have $\mu_i \ge i$ for all $i = 1, \ldots, n$ and $\mu_{z+1} = n - r + 1$, thus $z \le n - r$. Second, $|f(X_{z+1})| \ge n - r + 1$, which implies $|X_{z+1}| \ge n - r + 1$, i.e. $z \ge n - r$. We get z = n - r, as required.

4 Alternation number

4.1 Definition

Alishahi and Hajiabolhassan [1], going on with ideas introduced in [16], defined the q-alternation number alt^q(\mathcal{H}) of a hypergraph \mathcal{H} . Using this parameter, we can improve upon some theorems involving the q-colorability defect. The q-alternation number is defined as follows.

Let q and n be positive integers. An alterning sequence is a sequence s_1, s_2, \ldots, s_n of elements of Z_q such that $s_i \neq s_{i+1}$ for all $i = 1, \ldots, n-1$. For a vector $X = (x_1, \ldots, x_n) \in (Z_q \cup \{0\})^n$ and a permutation $\pi \in \mathcal{S}_n$, we denote $\operatorname{alt}_{\pi}(X)$ the maximum length of an alternating subsequence of the sequence $x_{\pi(1)}, \ldots, x_{\pi(n)}$. Note that by definition this subsequence has no zero element.

Example. Let n = 9, q = 3, and $X = (\omega^2, \omega^2, 0, 0, \omega^1, \omega^3, 0, \omega^3, \omega^2)$, we have $\operatorname{alt}_{\operatorname{id}}(X) = 4$. If π is a permutation acting only on the first four positions, then $\operatorname{alt}_{\operatorname{id}}(X) = \operatorname{alt}_{\pi}(X)$. If π exchanges the last two elements of X, we have $\operatorname{alt}_{\pi}(X) = 5$.

Let $\mathcal{H} = (V, E)$ be a hypergraph with n vertices. We identify V and [n]. The q-alternation number $\operatorname{alt}^q(\mathcal{H})$ of a hypergraph \mathcal{H} with n vertices is defined as:

$$\operatorname{alt}^{q}(\mathcal{H}) = \min_{\pi \in \mathcal{S}_{n}} \max \{ \operatorname{alt}_{\pi}(X) : X \in (Z_{q} \cup \{0\})^{n} \text{ with } E(\mathcal{H}[X^{j}]) = \emptyset \text{ for } j = 1, \dots, q \}.$$
(2)

Note that this number does not depend on the way V and [n] have been identified.

4.2 Improving the results with the alternation number

Alishahi and Hajiabolhassan improved the Kříž theorem by the following theorem.

Theorem (Alishahi-Hajiabolhassan theorem). Let \mathcal{H} be a hypergraph and assume that \emptyset is not an edge of \mathcal{H} . Then

$$\chi(\mathrm{KG}^q(\mathcal{H})) \geqslant \left\lceil \frac{|V(\mathcal{H})| - \mathrm{alt}^q(\mathcal{H})}{q - 1} \right\rceil$$

for any integer $q \geqslant 2$.

It is an improvement since we have

$$|V(\mathcal{H})| - \operatorname{alt}^q(\mathcal{H}) \geqslant \operatorname{cd}^q(\mathcal{H})$$

as it can be easily checked. This inequality is often strict, see [1].

Theorem 1 and Theorem 2 can be similarly improved with the alternation number. Let π be the permutation on which the minimum is attained in Equation (2). We replace $r = \operatorname{cd}^p(\mathcal{H})$ by $r = |V(\mathcal{H})| - \operatorname{alt}^p(\mathcal{H})$ in both proofs of Theorem 1 and Theorem 2, and we replace |X| in the definition of f by $\operatorname{alt}_{\pi}(X)$ in the proof of Theorem 1. There are no other changes and we get the following theorems.

Theorem 4. Let \mathcal{H} be a hypergraph and assume that \emptyset is not an edge of \mathcal{H} . Let p be a prime number. Then any proper coloring c of $KG^p(\mathcal{H})$ with colors $1, \ldots, t$ (t arbitrary) must contain a complete p-uniform p-partite hypergraph with parts U_1, \ldots, U_p satisfying the following properties.

- It has $|V(\mathcal{H})| \operatorname{alt}^p(\mathcal{H})$ vertices.
- The values of $|U_j|$ for j = 1, ..., p differ by at most one.
- For any j, the vertices of U_i get distinct colors.

Theorem 5. Let \mathcal{H} be a hypergraph and assume that \emptyset is not an edge of \mathcal{H} . Then

$$\chi_{\ell}(\mathrm{KG}^{p}(\mathcal{H})) \geqslant \min\left(\left\lceil \frac{|V(\mathcal{H})| - \mathrm{alt}^{p}(\mathcal{H})}{p}\right\rceil + 1, \left\lceil \frac{|V(\mathcal{H})| - \mathrm{alt}^{p}(\mathcal{H})}{p - 1}\right\rceil\right)$$

for any prime number p.

The special case of Theorem 4 when p=2 is proved in [1] in a slightly more general form.

4.3 Complexity

It remains unclear whether the alternation number, or a good upper bound of it, can be computed efficiently. However, we can note that given a hypergraph \mathcal{H} , computing the alternation number for a fixed permutation is an NP-hard problem.

Proposition 6. Given a hypergraph \mathcal{H} , a permutation π , and a number q, computing

$$\max\{\operatorname{alt}_{\pi}(X): X \in (Z_q \cup \{0\})^n \text{ with } E(\mathcal{H}[X^j]) = \emptyset \text{ for } j = 1, \dots, q\}$$

is NP-hard.

Proof. The proof consists in proving that the problem of finding a maximum independent set in a graph can be polynomially reduced to our problem for q = 2, $\pi = id$, and \mathcal{H} being some special graph.

Let G be a graph. Define G' to be a copy of G and consider the join \mathcal{H} of G and G'. The join of two graphs is the disjoint union of the two graphs plus all edges vw' with v a vertex of G and w' a vertex of G'. We number the vertices of G arbitrarily with a bijection $\rho: V \to [|V|]$. It gives the following numbering for the vertices of \mathcal{H} . In \mathcal{H} , a vertex v receives number $2\rho(v) - 1$ and its copy v' receives the number $2\rho(v)$. Let n = 2|V|. As usual, we denote the maximum cardinality of an independent set of G by $\alpha(G)$.

Let $I \subseteq V$ be a independent set of G. Define $Y = (y_1, \ldots, y_n) \in (Z_2 \cup \{0\})^n$ as follows:

$$y_{2\rho(v)-1}=+1$$
 and $y_{2\rho(v)}=-1$ for all $v\in I$, and $y_i=0$ for the other indices i .

By definition of the numbering, we have $alt_{id}(Y) = 2|I|$ and thus

$$\max\{\operatorname{alt}_{\operatorname{id}}(X): X \in (Z_2 \cup \{0\})^n \text{ with } E(\mathcal{H}[X^j]) = \emptyset \text{ for } j = 1, 2\} \geqslant 2\alpha(G)$$

Conversely, any $X = (x_1, \ldots, x_n) \in (Z_2 \cup \{0\})^n$ with $E(\mathcal{H}[X^j]) = \emptyset$ for j = 1, 2 gives an independent set I in G and another I' in G': take a longest alternating subsequence in X and define the set I as the set of vertices v such that $x_{2\rho(v)-1} \neq 0$ and the set I' as the set of vertices v such that $x_{2\rho(v)} \neq 0$. We have $\operatorname{alt}_{\operatorname{id}}(X) = |I| + |I'|$ because two components of X with distinct index parities cannot be of same sign: each vertex of G is the neighbor of each vertex of G'. Thus

$$\max\{\operatorname{alt}_{\operatorname{id}}(X): X \in (Z_2 \cup \{0\})^n \text{ with } E(\mathcal{H}[X^j]) = \emptyset \text{ for } j = 1, 2\} \leqslant 2\alpha(G).$$

The same proof gives also that computing the two-colorability defect $cd^2(\mathcal{H})$ of any hypergraph \mathcal{H} is an NP-hard problem.

References

- [1] M. Alishahi and H. Hajiabolhassan, On chromatic number of Kneser hypergraphs, preprint.
- [2] N. Alon, P. Frankl, and L. Lovász, *The chromatic number of Kneser hypergraphs*, Transactions Amer. Math. Soc. **298** (1986), 359–370.
- [3] V. L. Dol'nikov, A certain combinatorial inequality, Siberian Math. J. 29 (1988), 375–397.
- [4] P. Erdős, *Problems and results in combinatorial analysis*, Colloquio Internazionale sulle Teorie Combinatorie (Rome 1973), Vol. II, No. 17 in Atti dei Convegni Lincei, 1976, pp. 3–17.
- [5] P. Erdős, Z. Füredi, A. Hajnal, P. Komjáth, V. Rödl, and Á. Seress, *Coloring graphs with locally few colors*, Discrete Mathematics **59** (1986), 21–34.

- [6] K. Fan, A generalization of Tucker's combinatorial lemma with topological applications, Annals Math., II Ser. **56** (1952), 431–437.
- [7] K. Fan, Evenly distributed subset of Sⁿ and a combinatorial application, Pacific J. Math. 98 (1982), 323–325.
- [8] B. Hanke, R. Sanyal, C. Schultz, and G. Ziegler, Combinatorial Stokes formulas via minimal resolutions, Journal of Combinatorial Theory, Series A 116 (2009), 404–420.
- [9] I. Kříž, Equivariant cohomology and lower bounds for chromatic numbers, Transactions Amer. Math. Soc. **33** (1992), 567–577.
- [10] I. Kříž, A correction to "Equivariant cohomology and lower bounds for chromatic numbers", Transactions Amer. Math. Soc. **352** (2000), 1951–1952.
- [11] L. Lovász, *Kneser's conjecture, chromatic number and homotopy*, Journal of Combinatorial Theory, Series A **25** (1978), 319–324.
- [12] J. Matoušek, A combinatorial proof of Kneser's conjecture, Combinatorica **24** (2004), 163–170.
- [13] J. Matoušek and G. Ziegler, Topological lower bounds for the chromatic number: A hierarchy, Jahresber. Deutsch. Math.-Verein. 106 (2004), 71–90.
- [14] F. Meunier, $A \mathbb{Z}_q$ -Fan theorem, Tech. report, Laboratoire Leibniz-IMAG, Grenoble, 2005.
- [15] F. Meunier, A topological lower bound for the circular chromatic number of Schrijver graphs, Journal of graph theory 49 (2005), 257–261.
- [16] F. Meunier, The chromatic number of almost-stable Kneser hypergraphs, Journal of Combinatorial Theory, Series A 118 (2011), 1820–1828.
- [17] J. R. Munkres, Elements of algebraic topology, Perseus Book Publishing, 1984.
- [18] G. Simonyi and G. Tardos, Local chromatic number, Ky Fan's theorem, and circular colorings, Combinatorica **26** (2006), 587–626.
- [19] G. Simonyi and G. Tardos, Colorful subgraphs of Kneser-like graphs, European Journal of Combinatorics 28 (2007), 2188–2200.
- [20] S. Stahl, n-tuple colorings and associated graphs, Journal of Combinatorial Theory, Series B **20** (1976), 185–203.
- [21] M. Valencia-Pabon and J. Vrecia, On the diameter of Kneser graphs, Discrete Mathematics **305** (2005), 383–385.
- [22] G. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, Invent. Math. 147 (2002), 671–691.
- [23] G. Ziegler, Erratum: Generalized Kneser coloring theorems with combinatorial proofs, Invent. Math. 163 (2006), 227–228.