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Abstract

Using a Zg-generalization of a theorem of Ky Fan, we extend to Kneser hyper-
graphs a theorem of Simonyi and Tardos that ensures the existence of multicolored
complete bipartite graphs in any proper coloring of a Kneser graph. It allows to
derive a lower bound for the local chromatic number of Kneser hypergraphs (us-
ing a natural definition of what can be the local chromatic number of a uniform

hypergraph).
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1 Introduction

1.1 Motivations and results

A hypergraph is a pair H = (V(H), E(H)), where V(H) is a finite set and E(H) a family
of subsets of V(H). The set V(H) is called the vertex set and the set E(H) is called
the edge set. A graph is a hypergraph each edge of which is of cardinality two. A g¢-
uniform hypergraph is a hypergraph each edge of which is of cardinality ¢. The notions
of graphs and 2-uniform hypergraphs therefore coincide. If a hypergraph has its vertex
set partitioned into subsets Vi,...,V, so that each edge intersects each V; at exactly one
vertex, then it is called a g-uniform g-partite hypergraph. The sets Vi, ..., V, are called
the parts of the hypergraph. When ¢ = 2, such a hypergraph is a graph and said to be
bipartite. A g-uniform g¢-partite hypergraph is said to be complete if all possible edges
exist.
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A coloring of a hypergraph is a map ¢ : V(H) — [t] for some positive integer t. A col-
oring is said to be proper if there is no monochromatic edge, i.e. no edge e with |c(e)| = 1.
The chromatic number of such a hypergraph, denoted x(#), is the minimal value of ¢ for
which a proper coloring exists. Given X C V(#), the hypergraph with vertex set X and
with edge set {e € E(H) : e C X} is the subhypergraph of H induced by X and is denoted
H[X].

Given a hypergraph H = (V(H), E(H)), we define the Kneser graph KG*(H) by

V(KG*(H)) = E(H)
EKC*(H)) = {{e,fY:e,f € E(H),enf =0}

The “usual” Kneser graphs, which have been extensively studied — see [20, 21] among
many references, some of them being given elsewhere in the present paper — are the
special cases H = ([n], ([Z])) for some positive integers n and k with n > 2k. We denote
them KG?(n, k). The main result for “usual” Kneser graphs is Lovész’s theorem [11].

Theorem (Lovész theorem). Given n and k two positive integers with n > 2k, we have
x(KG2(n,k)) =n — 2k + 2.

The 2-colorability defect cd®(#H) of a hypergraph H has been introduced by Dol nikov [3]
in 1988 for a generalization of Lovész’s theorem. It is defined as the minimum number of
vertices that must be removed from H so that the hypergraph induced by the remaining
vertices is of chromatic number at most 2:

cd®(H) = min{[Y]: ¥ C V(H), x(H[V(H) \ Y]) < 2}.

Theorem (Dol'nikov theorem). Let H be a hypergraph and assume that () is not an edge
of H. Then x(KG*(H)) > cd*(H).

It is a generalization of Lovasz theorem since cd?([n], ([Z})) = n — 2k + 2 and since the
inequality x(KG?(n, k)) < n — 2k + 2 is the easy one.

The following theorem proposed by Simonyi and Tardos in 2007 [19] generalizes
Dol’'nikov’s theorem. The special case for “usual” Kneser graphs is due to Ky Fan [7].

Theorem (Simonyi-Tardos theorem). Let H be a hypergraph and assume that () is not
an edge of H. Let r = cd*(H). Then any proper coloring of KG*(H) with colors 1,. ..t
(t arbitrary) must contain a completely multicolored complete bipartite graph K, /o) /2]
such that the r different colors occur alternating on the two parts of the bipartite graph
with respect to their natural order.

In 1976, Erd6s [4] initiated the study of Kneser hypergraphs KGY(H) defined for a
hypergraph H = (V(H), E(H)) and an integer ¢ > 2 by

V(KGY(H)) = E(H)
E(KGY(H)) = {{e1,...,eqt:e1,...,eq€ E(H), e;Ne; =0 for all ¢, j with ¢ # j}.
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A Kneser hypergraph is thus the generalization of Kneser graphs obtained when the 2-
uniformity is replaced by the g-uniformity for an integer ¢ > 2. There are also “usual”
Kneser hypergraphs, which are obtained with the same hypergraph H as for “usual”
Kneser graphs, i.e. ‘H = ([n], ([Z])) They are denoted KGY(n, k). The main result for
them is the following generalization of Lovasz’s theorem conjectured by Erdds and proved

by Alon, Frankl, and Lovéasz [2].

Theorem (Alon-Frankl-Lovédsz theorem). Given n, k, and q three positive integers with
n > gk, we have x(KG%(n, k)) = {mw .

q—1

There exists also a g-colorability defect cd?(#), introduced by Kiiz, defined as the
minimum number of vertices that must be removed from H so that the hypergraph induced
by the remaining vertices is of chromatic number at most ¢:

cd?(H) = min{|[Y]: Y C V(H), x(H[V(H)\ Y]) < ¢}

The following theorem, due to Kiiz [9, 10], generalizes Dol’nikov’s theorem. It also gener-

alizes the Alon-Frankl-Lovész theorem since cd?([n], ([Z})) =n —q(k — 1) and since again

the inequality x(KGY(n, k)) < [%—‘ is the easy one.
Theorem (Kiiz theorem). Let H be a hypergraph and assume that () is not an edge of H.

Then
cd!(H)
qg—1

(K () > |
for any integer q > 2.

Our main result is the following extension of Simonyi-Tardos’s theorem to Kneser
hypergraphs.

Theorem 1. Let H be a hypergraph and assume that () is not an edge of H. Let p be a
prime number. Then any proper coloring ¢ of KGP(H) with colors 1,...,t (t arbitrary)
must contain a complete p-uniform p-partite hypergraph with parts Uy, ..., U, satisfying
the following properties.

o [t has cd’(H) vertices.
o The values of |U,| for j =1,...,p differ by at most one.

o For any j, the vertices of U; get distinct colors.

We get that each Uj is of cardinality |cd”(H)/p| or [ed?(H)/p].

Note that Theorem 1 implies directly Kiiz’s theorem when ¢ is a prime number p: each
color may appear at most p — 1 times within the vertices and there are cd”(#) vertices.
There is a standard derivation of Kiiz’s theorem for any ¢ from the prime case, see [22, 23].
Theorem 1 is a generalization of Simonyi-Tardos’s theorem except for a slight loss: when
p = 2, we do not recover the alternation of the colors between the two parts.

Whether Theorem 1 is true for non-prime p is an open question.
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2 Local chromatic number and Kneser hypergraphs

In a graph G = (V, E), the closed neighborhood of a vertex u, denoted Nlu|, is the
set {u} U{v: wv € E}. The local chromatic number of a graph G = (V, E), denoted
X¢(G), is the maximum number of colors appearing in the closed neighborhood of a vertex
minimized over all proper colorings:

xe(G) = minmax|e(N[o])],
where the minimum is taken over all proper colorings ¢ of G. This number has been defined
in 1986 by Erdés, Fiiredi, Hajnal, Komjéth, Rodl, and Seress [5]. For Kneser graphs, we
have the following theorem, which is a consequence of the Simonyi-Tardos theorem: any
vertex of the part with [r/2] vertices in the completely multicolored complete bipartite
subgraph has at least [r/2] + 1 colors in its closed neighborhhod (where r = cd*(H)).

Theorem (Simonyi-Tardos theorem for local chromatic number). Let H be a hypergraph
and assume that () is not an edge of H. If cd*(H) > 2, then

W(KG2(H)) > [Cdz"’ﬂ i

Note that we can also see this theorem as a direct consequence of Theorem 1 in [18]
(with the help of Theorem 1 in [13]).

We use the following natural definition for the local chromatic number x,(#) of a
uniform hypergraph H = (V, E). For a subset X of V, we denote by N(X) the set of
vertices v such that v is the sole vertex outside X for some edge in F:

N(X)={v:Jee Est. e\ X ={v}}.

We define furthermore N[X] := X UN(X). Note that if the hypergraph is a graph,
N[{v}] = N[v] for any vertex v. The definition of the local chromatic number of a
hypergraph is then:

Xe(H) = min max [c(Ne\ {v}])],

c ecFE vee

where the minimum is taken over all proper colorings ¢ of H. When the hypergraph H is
a graph, we get the usual notion of local chromatic number for graphs.

The following theorem is a consequence of Theorem 1 and generalizes the Simonyi-
Tardos theorem for local chromatic number to Kneser hypergraphs.

Theorem 2. Let H be a hypergraph and assume that () is not an edge of H. Then

x(KG?(H)) > min chp<ﬂ 1, de(H)D

P p—1

for any prime number p.
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Proof. Denote cd?(H) by r. Let ¢ be any proper coloring of KG”(H). Consider the
complete p-uniform p-partite hypergraph G in KGP(H) whose existence is ensured by
Theorem 1. Choose U; of cardinality [r/p].

If [r/(p—1)] > [r/p], then there is a vertex v of G not in U; whose color is distinct of
all colors used in U;. Choose any edge e of G containing v and let u be the unique vertex
of eNU;. We have then |c(Ne \ {u}])| = |U;| + 1= [r/p] + L.

Otherwise, [r/(p—1)] = [r/p], and for any edge e, we have |c(N[e\ {u}])| = [r/p] =
[7/(p —1)], with u being again the unique vertex of e N U;. ]

As for Theorem 1, we do not know whether this theorem remains true for non-prime

3 Combinatorial topology and proof of the main re-
sult

3.1 Tools of combinatorial topology
3.1.1 Basic definitions

We use the cyclic and muliplicative group Z, = {w’ : j = 1,...,q} of the gth roots
of unity. We emphasize that 0 is not considered as an element of Z,. For a vector
X = (x1,...,2,) € (Z,U{0})", we define X7 to be the set {i € [n] : 2; = w’/} and |X] to
be the quantity [{i € [n] : z; # 0}].

We assume basic knowledges in algebraic topology, see the book by Munkres for in-
stance for an introduction to this topic [17]. A simplicial complex is said to be pure if all
maximal simplices for inclusion have the same dimension. For K a simplicial complex, we
denote by C(K) its chain complex. We always assume that the coefficients are taken in Z.

3.1.2 Special simplicial complexes

For a simplicial complex K|, its first barycentric subdivision is denoted by sd(K). It is the
simplicial complex whose vertices are the nonempty simplices of K and whose simplices
are the collections of simplices of K that are pairwise comparable for C (these collections
are usually called chains in the poset terminology, with a different meaning as the one
used above in “chain complexes”).

As a simplicial complex, Z, is seen as being 0-dimensional and with ¢ vertices. Z;d is
the join of d copies of Z,. It is a pure simplicial complex of dimension d — 1. A vertex
v taken in the puth copy of Z, in Z;* is also written (e, ;1) where € € Z, and p € [d].
Sometimes, € is called the sign of the vertex, and p its absolute value. This latter quantity
is denoted |v].

The simplicial complex sd(Z;d) plays a special role. We have

V (sd(Z;%) =~ (Z,u{0})*\ {(0,...,0)} :
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a simplex o € Z;‘d corresponds to the vector X = (z1,...,24) € (Z, U {O})d with z, = €
for all (e, 1) € 0 and z, = 0 otherwise.

We denote by O’Z:; the simplicial complex obtained from a (¢ — 1)-dimensional simplex
and its faces by deleting the maximal face. It is hence a (¢—2)-dimensional pseudomanifold
homeomorphic to the (¢ — 2)-sphere. We also identify its vertices with Z,. A vertex of

the simplicial complex (JZ:%)*d is again denoted by (e, 1) where € € Z, and p € [d]. For

. —1\ *d . .

€ € Z, and a simplex 7 of (ag_% , we denote by 7¢ the set of all vertices of 7 having e

as sign, i.e. 7 := {(w,u) € 7: w = €}. Note that if ¢ is a prime number, Z, acts freely
q—1
on ol ;.
q—2

3.1.3 Barycentric subdivision operator

Let K be a simplicial complex. There is a natural chain map sdy : C(K) — C(sd(K))
which, when evaluated on a d-simplex o € K, returns the sum of all d-simplices in sd(K)
contained in o, with the induced orientation. “Contained” is understood according to
the geometric interpretation of the barycentric subdivision. If K is a free Z,-simplicial
complex, sdy is a Z,-equivariant map.

3.1.4 The Z,-Fan lemma

The following lemma plays a central role in the proof of Theorem 1. It is proved (im-
plicitely and in a more general version) in [8, 14].

Lemma 3 (Z,-Fan lemma). Let ¢ > 2 be a positive integer. Let Ay : C (sd(Z;™)) —
C (Z;m) be a Zy-equivariant chain map. Then there is an (n — 1)-dimensional simplex p

in the support of Ay (p'), for some p" € sd(Z;"), of the form {(e1, p1), (€2, p12); - - -, (€ns fin) },
with p; < piv1 and €; # €41 fori=1,...,n.

This p' is an alternating simplex.

Proof. The proof is exactly the proof of Theorem 5.4 (p.415) of [8]. The complex X in the
statement of this Theorem 5.4 is our complex sd(Z;"), the dimension 7 is n — 1, and the
generalized r-sphere (z;) is any generalized (n — 1)-sphere of sd(Z;") with zy reduced to a
single point. The chain map h is induced by our chain map Ay, instead of being induced
by the chain map ¢4 of [8] (itself induced by the labeling £). It does not change the proof
since h! only uses the fact that ly is a Zg-equivariant chain map. In the statement of
Theorem 5.4 of [8], a; is always a lower bound on the number of “alternating patterns”
(i.e. simplices p’ as in the statement of the lemma) in ¢4 (z;), even for odd ¢ since the
map f; in Theorem 5.4 of [8] is zero on non-alternating elements. Since g = 1, we get
that a; 0 forall 0 <7< n—1. O

In particular, for ¢ = 2, it gives the Ky Fan theorem [6] used for instance in [7, 15, 18]
to derive properties of Kneser graphs.
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3.2 Proof of the main result

Proof of Theorem 1. We first sketch some steps in the proof. We assume given a proper
coloring ¢ of KGP(#H). With the help of the coloring ¢, we build a Z,-equivariant chain
map Py : C(sd(Z;")) — C(Z;™), where m = n—cd”(H) +t(p—1). We apply Lemma 3 to
get the existence of some alternating simplex p’ in sd(Z;"). Using properties of ¢ (espe-
cially the fact that it is a composition of maps in which simplicial maps are involved), we
show that this alternating simplex provides a complete p-uniform p-partite hypergraph in
‘H with the required properties.

Let r = cd”(#H). Following the ideas of [12, 22], we define

f:(Zp u{01)"\A{(0,...,0)} = Z, x [m]

with m = n —r +t(p — 1). We choose a total ordering < on the subsets of [n]. This
ordering is only used to get a clean definition of f.

If X € (Z,U{0})"\{(0,...,0)} is such that |X| < n—r, then f(X) is defined to be
(€,]|X]) with e being the first nonzero component in X.

If X € (Z,u{0})"\ {(0,...,0)} is such that |X| > n —r + 1, by definition of the
colorability defect, at least one of the X7’s with j € [p] contains an edge of H. Choose
j € [p] such that there is S C X’ with S € E(H). In case several S are possible,
choose the maximal one according to the total ordering <. Its defines F/(X) := S and

f(X) = (w,n—1r+c(F(X))).

Note that f induces a Z,-equivariant simplicial map f : sd(Z;”) — L x M, where
L:=2"") and M := (ap_l)*t.

p—2
Let W, be the set of simplices 7 € M such that |[7¢] = 0 or |7¢| = a for all € € Z,.
Let W = .-, W,. Choose an arbitrary equivariant map s : W — Z,. Such a map can
be easily built by choosing one representative in each orbit (Z, acts freely on each W,).
We build also an equivariant map sg : crg:% — Zp, again by choosing one representative
in each orbit of the action of Z,. We define now a simplicial map g : sd(L * M)) — Z>™
as follows.

Take a vertex in sd(L x M). It is of the form o U7 # () where o € L and 7 € M.

If 7 # 0. Let a := minz, |79

o If =0, define7:={ce€ Z,: =0} and g(c UT) = (so(T),n — r + |7]) (we have

: _ —1
indeed 7 € 0, ).

o If @ >0, define 7 :=J_, rejma T and g(cUT) := (s(7),n —r+|7|).
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Figure 1: An example of a simplex 7 € M.

The definition of 7 is illustrated on Figures 1 and 2.

If 7 = (. Choose (e, ) in o with maximal p. Define g(o UT) := (¢, ). Note that L is
such that there is only one € for which the maximum is attained.

We check now that ¢ is a simplicial map. Assume for a contradiction that there are
o C o', 7 C 7 such that g(c UT) = (¢, ) and g(o’ U7') = (¢', ) with e # €. If 7 = 0,
then © < n —r and 77 = (. We should then have ¢ = ¢, which is impossible. If 7 # (),
then |7| = |7/|, and thus 7 = 7. We should again have ¢ = ¢ which is impossible as well.

Note that g is increasing: for ¢ C ¢’ and 7 C 7/, we have |g(c U T)| < |g(c’ U T')|.

We get our map ¢ by defining: ¢y = gu osdy ofx. It is a Z,-equivariant chain map
from C(sd(Z;")) to C(Z;™).

This chain map 1y satisfies the condition of Lemma 3. Hence, there exists p € Z;™
of the form p = {(ey, p1), ..., (€n, ptn)} With p; < piyq and €; # €49 fori =1,... ,n—1
such that p is in the support of ¢4 (p’) for some p" € sd(Z;").

We exhibit now some properties of p and p'.

Since g is a simplicial map, we know that there is a permutation 7 and a sequence
0r(1) U Tty € -+ C Or(n) U Tr(n) of simplices of L x M such that g(o; U ;) = (€, it;) with
Wi < piv1 and € # €44 for i = 1,...,n — 1. To ease the following discussion, we define
To - — @
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Figure 2: The simplex 7 which leads to the definition of g.

Since ¢ is increasing, we get that 7(i¢) = ¢ for all 7. Using the fact that f is simplicial,
we get that |0, UT,| = n, and then that |o; U7;| = i. Since |o,| < n —r, we have 7, # 0.
Note that 7; = 7,41 implies that 7, = 0 (otherwise p; would be equal to p;11). Therefore,
defining z to be the largest index such that 7, is empty, we have z < n and a sequence
To41 S Toyo © -+ C 7,. Finally, noting that ;41 U 7,41 has only one more element than
o;Ur fori=1,...,n—1, we get that |1,.¢| =¢for £ =0,....,n— 2.

Consider now the sequence (wy, 1), ..., (Wn—z, Vn—»), Where (wy, 1) is the unique vertex
of 7o o \Toye—1 for £ = 1,...,n—z. The sign wy is necessarily such that 7.° ;" has minimum
cardinality among the 75 ,, otherwise the set of € for which |7¢, . ,| is minimum would be
the same as for |7,,[, and, according to the definition of the maps s and so, we would
have €/41 = €.

We clearly have ||7,,| — |75,,|| <1 for all € since |7.41| = 1. Now assume that for
k> z+ 1 we have ||7f| — |75 || <1 for all ¢,¢. Since the element added to 7, to get 7411
is added to a 7f with minimum cardinality, we have ||7¢, | — |7£,|| < 1 for all €,¢". By
induction we have in particular

‘|T;| - |szl| <1 foralleé. (1)

We can now conclude. Using the fact that f is simplicial, we get that p' = {X,..., X,,}
where the X; are signed vectors with | X;| =i and X; C --- C X,,. Moreover, we have
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f{X.41,. .., Xn}) = 7n. Each X; provides a vertex F(X;) of KGP(H) fori=z2+1,...,n.
For each j, define U, to be the set of such vertices F'(X;) such that the sign of f(X;) is
w!. The U; are subsets of vertices of KGP(#H). For two distinct j and j', if F(X;) € U;
and F(Xy) € Uj, we have F(X;) N F(Xy) = (. Thus, the U; induce in KGP(H) a
complete p-partite p-uniform hypergraph with n — z vertices. Equation (1) indicates that
the cardinalities of the U; differ by at most one. Since the f(X;) are all distinct, each U;
has all its vertices of distinct colors.

It remains to prove that z = n — r (actually, z < n — r would be enough). First,

we have pu; > ¢ forall v = 1,...,n and p,,qy = n—r + 1, thus z < n — r. Second,
|f(X.4+1)| = n—r+1, which implies | X, 1| >n—r+1,ie. z2>2n—r. Weget z=n—r,
as required. O

4 Alternation number

4.1 Definition

Alishahi and Hajiabolhassan [1], going on with ideas introduced in [16], defined the g¢-
alternation number alt?(H) of a hypergraph H. Using this parameter, we can improve
upon some theorems involving the g¢-colorability defect. The g¢-alternation number is
defined as follows.

Let ¢ and n be positive integers. An alterning sequence is a sequence si, S, ..., S, of
elements of Z, such that s; # s;41 foralli = 1,...,n—1. For a vector X = (z1,...,2,) €
(Z, U{0})" and a permutation m € S,, we denote alt,(X) the maximum length of an
alternating subsequence of the sequence x.(1),...,Zrn). Note that by definition this
subsequence has no zero element.

Example. Let n =9, ¢ = 3, and X = (w? w? 0,0,w!, w3 0, w? w?), we have alt;q(X) = 4.
If 7 is a permutation acting only on the first four positions, then altiq(X) = alt,(X). If
7 exchanges the last two elements of X, we have alt,(X) = 5.

Let H = (V, E) be a hypergraph with n vertices. We identify V' and [n|. The ¢-
alternation number alt?(H) of a hypergraph H with n vertices is defined as:

alt!(H) = Trrrégn max{alt,(X) : X € (Z,U{0})" with E(H[X/])=0forj=1,...,q}.
(2)

Note that this number does not depend on the way V' and [n] have been identified.

4.2 Improving the results with the alternation number

Alishahi and Hajiabolhassan improved the Kiiz theorem by the following theorem.

Theorem (Alishahi-Hajiabolhassan theorem). Let H be a hypergraph and assume that
1s not an edge of H. Then

Y(KGY(H)) > "|V(H)| - altq(”;’-[)_‘

qg—1
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for any integer q > 2.
It is an improvement since we have
[V(H)| — alt?(H) > cd?(H)

as it can be easily checked. This inequality is often strict, see [1].

Theorem 1 and Theorem 2 can be similarly improved with the alternation number.
Let 7 be the permutation on which the minimum is attained in Equation (2). We replace
r =cd’(H) by r = |V(H)| — alt?(H) in both proofs of Theorem 1 and Theorem 2, and
we replace | X | in the definition of f by alt;(X) in the proof of Theorem 1. There are no
other changes and we get the following theorems.

Theorem 4. Let H be a hypergraph and assume that () is not an edge of H. Let p be a
prime number. Then any proper coloring ¢ of KGP(H) with colors 1,...,t (t arbitrary)
must contain a complete p-uniform p-partite hypergraph with parts Uy, ..., U, satisfying
the following properties.

o [t has |V(H)| — alt’(H) vertices.
o The values of |U;| for j =1,...,p differ by at most one.
e For any j, the vertices of U; get distinct colors.

Theorem 5. Let H be a hypergraph and assume that () is not an edge of H. Then

Ve(KGP(H)) > min <[|V(H)| - alt”(H)W i1 PV(HH - alt”(’H)—D

D p—1

for any prime number p.
The special case of Theorem 4 when p = 2 is proved in [1] in a slightly more general

form.

4.3 Complexity

It remains unclear whether the alternation number, or a good upper bound of it, can be
computed efficiently. However, we can note that given a hypergraph H, computing the
alternation number for a fixed permutation is an NP-hard problem.

Proposition 6. Given a hypergraph H, a permutation 7, and a number q, computing
max{alt,(X): X € (Z,U{0})" with E(H[X?]) =0 for j =1,...,q}

1s NP-hard.
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Proof. The proof consists in proving that the problem of finding a maximum independent
set in a graph can be polynomially reduced to our problem for ¢ = 2, 7 = id, and H being
some special graph.

Let G be a graph. Define G’ to be a copy of G and consider the join H of G and G’.
The join of two graphs is the disjoint union of the two graphs plus all edges vw’ with v a
vertex of G and w’ a vertex of G'. We number the vertices of G arbitrarily with a bijection
p:V = [|V]]. It gives the following numbering for the vertices of H. In H, a vertex v
receives number 2p(v) — 1 and its copy v’ receives the number 2p(v). Let n = 2|V|. As
usual, we denote the maximum cardinality of an independent set of G by a(G).

Let I C V be a independent set of G. Define Y = (y1,...,yn) € (Z2U{0})" as follows:

Y2p(v)—1 = +1 and Yo,y = —1 for all v € I, and y; = 0 for the other indices <.
By definition of the numbering, we have altiq(Y) = 2|/| and thus
max{altiq(X) : X € (Z, U {0})" with E(H[X]) =0 for j = 1,2} > 2a(G)

Conversely, any X = (x1,...,1,) € (Z; U{0})" with E(H[X7]) = 0 for j = 1,2 gives
an independent set I in G and another I’ in G’: take a longest alternating subsequence
in X and define the set I as the set of vertices v such that x,)-1 # 0 and the set I’
as the set of vertices v such that xs,,) # 0. We have alt;q(X) = |I| + |I’| because two
components of X with distinct index parities cannot be of same sign: each vertex of G is
the neighbor of each vertex of G’. Thus

max{alt;q(X) : X € (Z,U{0})" with E(H[X]) =0 for j = 1,2} < 2a(G).
O

The same proof gives also that computing the two-colorability defect cd?(H) of any
hypergraph H is an NP-hard problem.
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