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Abstract

In 1951, Gabriel Dirac conjectured that every non-collinear set P of n points in
the plane contains a point incident to at least n

2 − c of the lines determined by P ,
for some constant c. The following weakened conjecture was proved by Beck and by
Szemerédi and Trotter: every non-collinear set P of n points in the plane contains a
point in at least n

c′ lines determined by P , for some constant c′. We prove this result
with c′ = 37. We also give the best known constant for Beck’s Theorem, proving
that every set of n points with at most ` collinear determines at least 1

98n(n − `)
lines.

1 Introduction

Let P be a finite set of points in the plane. A line that contains at least two points in P
is said to be determined by P . In 1951, Dirac [6] made the following conjecture, which
remains unresolved:

Conjecture 1 (Dirac’s Conjecture). Every non-collinear set P of n points in the plane
contains a point in at least n

2
− c1 of the lines determined by P , for some constant c1.

See reference [3] for examples showing that the n
2

bound would be tight. Note that if
P is non-collinear and contains n

2
or more collinear points, then Dirac’s Conjecture holds.

Thus we may assume that P does not contain n
2

collinear points, and n > 5. In 1961,
Erdős [7] proposed the following weakened conjecture.

Conjecture 2 (Weak Dirac Conjecture). Every non-collinear set P of n points contains
a point in at least n

c2
lines determined by P , for some constant c2.
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In 1983, the Weak Dirac Conjecture was proved independently by Beck [4] and Sze-
merédi and Trotter [19], in both cases with c2 unspecified. In this paper we carefully
combine and refine several known methods and results to give the best known value of c2.
See references [8, 9, 11, 13, 17] for more on Dirac’s Conjecture.

Theorem 3. Every non-collinear set P of n points contains a point in at least n
37

lines
determined by P .

Theorem 3 is a consequence of the following theorem. The points of P together with
the lines determined by P are called the arrangement of P .

Theorem 4. For every set P of n points in the plane with at most n
37

collinear points,

the arrangement of P has at least n2

37
point-line incidences.

Proof of Theorem 3 assuming Theorem 4. Let P be a set of n non-collinear points in the
plane. If P contains at least n

37
collinear points, then every other point is in at least n

37
lines

determined by P (one through each of the collinear points). Otherwise, by Theorem 4,
the arrangement of P has at least n2

37
incidences, and so some point is incident with at

least n
37

lines determined by P .

In his work on the Weak Dirac Conjecture, Beck proved the following theorem [4].

Theorem 5 (Beck’s Theorem). Every set P of n points with at most ` collinear determines
at least c3n(n− `) lines, for some constant c3.

In Section 3 we use the proof of Theorem 4 and some simple lemmas to show that
c3 > 1

98
. Similar methods and a bit more effort yield c3 > 1

93
(see [16] for details).

2 Proof of Theorem 4

The proof of Theorem 4 takes inspiration from the well known proof of Beck’s Theorem
[5] as a corollary of the Szemerédi–Trotter Theorem [19], and also from the simple proof
of the Szemerédi–Trotter Theorem due to Székely [18], which in turn is based on the
Crossing Lemma. It is well known that Beck’s proof can be used in conjunction with
Székely’s method to obtain a reasonably small constant for the Weak Dirac Conjecture.
Reference [16] includes a self-contained exposition of these methods and a short proof
with c2 = 215.

The crossing number of a graph G, denoted by cr(G), is the minimum number of
crossings in a drawing of G. The following lower bound on cr(G) was first proved by Ajtai
et al. [2] and Leighton [12] (with worse constants). A simple proof with better constants
than [2] and [12] can be found in [1]. The following version due to Pach et al. [15] is the
strongest to date.

Theorem 6 (Crossing Lemma). For every graph G with n vertices and m > 103
16
n edges,

cr(G) >
1024m3

31827n2
.
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G = G2 G3 G4 G5

Figure 1: The graphs G2, G3, G4, and G5 in the case of the 5× 5 grid.

In fact, we employ a slight strengthening of the Szemerédi–Trotter Theorem formulated
in terms of visibility graphs. The visibility graph G of a point set P has vertex set P ,
where vw ∈ E(G) whenever the line segment vw contains no other point in P (that is, v
and w are consecutive on a line determined by P ).

For i > 2, an i-line is a line containing exactly i points in P . Let si be the number
of i-lines. Let Gi be the spanning subgraph of the visibility graph of P consisting of all
edges in j-lines where j > i; see Figure 1 for an example. Note that since each i-line
contributes i− 1 edges, |E(Gi)| =

∑
j>i(j − 1)sj. Part (a) of the following version of the

Szemerédi–Trotter Theorem gives a bound on |E(Gi)|, while part (b) is the well known
version that bounds the number of j-lines for j > i.

Theorem 7 (Szemerédi–Trotter Theorem). Let α and β be positive constants such that
every graph H with n vertices and m > αn edges satisfies

cr(H) >
m3

βn2
.

Let P be a set of n points in the plane. Then

(a)
∑
j>i

(j − 1)sj 6 max

{
αn,

β n2

2(i− 1)2

}
,

and (b)
∑
j>i

sj 6 max

{
αn

i− 1
,

β n2

2(i− 1)3

}
.

Proof. Suppose
∑

j>i(j − 1)sj = |E(Gi)| > αn. Then by the assumed Crossing Lemma
applied to Gi,

cr(Gi) >
|E(Gi)|3

βn2
=

(
∑

j>i(j − 1)sj)
2|E(Gi)|

βn2
>

(i− 1)2(
∑

j>i sj)
2|E(Gi)|

βn2
.

On the other hand, since two lines cross at most once,

cr(Gi) 6

(∑
j>i sj
2

)
6

1

2

(∑
j>i

sj

)2
.

Combining these inequalities yields part (a). Part (b) follows directly from part (a).
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The proof of Theorem 4 also employs Hirzebruch’s Inequality [10].

Theorem 8 (Hirzebruch’s Inequality). Let P be a set of n points with at most n − 3
collinear. Then

s2 +
3

4
s3 > n+

∑
i>5

(2i− 9)si .

Theorem 9. Let α and β be positive constants such that every graph H with n vertices
and m > αn edges satisfies

cr(H) >
m3

βn2
.

Fix an integer c > 8 and a real ε ∈ (0, 1
α

). Let h := c(c−2)
5c−18 . Then for every set P of n

points in the plane with at most εn collinear points, the arrangement of P has at least δn2

point-line incidences, where

δ =
1

h+ 1

(
1− εα− β

2

(
(c− h− 2)(c+ 1)

c3
+
∑
i>c

i+ 1

i3

))
.

Theorem 4 follows from Theorems 6 and 9 by setting α = 103
16

, β = 31827
1024

, c = 71, and
δ = ε, in which case δ > 1

36.158
. The value of δ is readily calculated numerically since

∑
i>c

i+ 1

i3
=
∑
i>1

i+ 1

i3
−

c−1∑
i=1

i+ 1

i3
= ζ(2) + ζ(3)−

c−1∑
i=1

i+ 1

i3
= 2.847 . . .−

c−1∑
i=1

i+ 1

i3
,

where ζ is the Riemann zeta function. Note that, given ε ∈ (0, 1
α

), one may choose c large
enough so that δ > 0.

Proof of Theorem 9. Let J := {2, 3, . . . , bεnc}. Considering the visibility graph G of
P and its subgraphs Gi as defined previously, let k be the minimum integer such that
|E(Gk)| 6 αn. If there is no such k then let k := bεnc + 1. An integer i ∈ J is large if
i > k, and is small if i 6 c. An integer in J that is neither large nor small is medium.

An i-pair is a pair of points in an i-line. A small pair is an i-pair for some small
i. Define medium pairs and large pairs analogously, and let PS, PM and PL denote the
number of small, medium and large pairs respectively. An i-incidence is an incidence
between a point of P and an i-line. A small incidence is an i-incidence for some small
i. Define medium incidences analogously, and let IS and IM denote the number of small
and medium incidences respectively. Let I denote the total number of incidences. Thus,

I =
∑
i∈J

isi .

The proof proceeds by establishing an upper bound on the number of small pairs in
terms of the number of small incidences. Analogous bounds are proved for the number of
medium pairs, and the number of large pairs. Combining these results gives the desired
lower bound on the total number of incidences.
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For the bound on small pairs, Hirzebruch’s Inequality is useful. Since no n
2

points are
collinear and n > 5, there are no more than n−3 collinear points. Therefore, Hirzebruch’s
Inequality implies that hs2 + 3h

4
s3 − hn− h

∑
i>5(2i− 9)si > 0 since h > 0. Thus,

PS = s2 + 3s3 + 6s4 +
c∑
i=5

(
i

2

)
si

6 (h+ 1)s2 +

(
3h

4
+ 3

)
s3 + 6s4 +

c∑
i=5

(
i

2

)
si − hn− h

c∑
i=5

(2i− 9)si

6
h+ 1

2
· 2s2 +

h+ 4

4
· 3s3 +

3

2
· 4s4 +

c∑
i=5

(
i− 1

2
− 2h+

9h

i

)
isi − hn .

Setting X := max
{
h+1
2
, h+4

4
, 3
2
,max56i6c

(
i−1
2
− 2h+ 9h

i

)}
implies that

PS 6 XIS − hn . (1)

The above inequality is strongest when X is minimised by determining the optimal
value of h as follows. Let γ(h, i) := i−1

2
− 2h + 9h

i
. The second partial derivative of

γ(h, i) with respect to i is positive for i > 0, so γ(h, i) is maximised for i = 5 or i = c,
and the other values of i can be ignored. Thus X is bounded from below by five linear
functions of h. Notice that for fixed c, h+1

2
increases with h, while γ(h, c) decreases with

h. Therefore X is at least the value of these functions at their intersection point, which
occurs at h = c(c−2)

5c−18 . Note that this h increases with c for c > 8, so h > 24
11

. It is then

easy to check that X = h+1
2

satisfies the other three constraints.
To bound the number of medium pairs, consider a medium i ∈ J . Since i is not large,∑
j>i(j − 1)sj > αn. Hence, using parts (a) and (b) of the Szemerédi–Trotter Theorem,∑

j>i

jsj =
∑
j>i

(j − 1)sj +
∑
j>i

sj 6
βn2

2(i− 1)2
+

βn2

2(i− 1)3
=

βn2i

2(i− 1)3
. (2)

Given the factor X in the bound on the number of small pairs in (1), it helps to
introduce the same factor in the bound on the number of medium pairs. It will be
convenient to define Y := c− 1− 2X.

PM −XIM =

(
k−1∑
i=c+1

(
i

2

)
si

)
−X

(
k−1∑
i=c+1

isi

)

=
1

2

k−1∑
i=c+1

(i− 1− 2X) isi

=
1

2

k−1∑
i=c+1

(i− c+ Y ) isi

=
1

2

(
k−1∑
i=c+1

k−1∑
j=i

jsj

)
+
Y

2

(
k−1∑
i=c+1

isi

)
.
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Applying (2) yields

PM −XIM 6
β n2

4

(
Y
c+ 1

c3
+
∑
i>c

i+ 1

i3

)
. (3)

It remains to bound the number of large pairs:

PL =

bεnc∑
i=k

(
i

2

)
si 6

εn

2

∑
i>k

(i− 1)si =
εn

2
|E(Gk)| 6

εα n2

2
. (4)

Combining (1), (3) and (4),(
n

2

)
=

1

2
(n2 − n) 6 PS + PM + PL

6 XIS − hn+XIM +
β n2

4

(
Y
c+ 1

c3
+
∑
i>c

i+ 1

i3

)
+
εα n2

2
.

Thus,

I > IS + IM >
1

2X

(
1− εα− β

2

(
Y
c+ 1

c3
+
∑
i>c

i+ 1

i3

))
n2 +

2h− 1

2X
n .

The result follows since h > 1.

It is worth noting that the methods used in the proof of Theorem 9 can be used
to obtain good lower bounds on the number of edges in a visibility graph. The main
difference is that edges are counted instead of incidences. For instance, we can prove the
following result.

Theorem 10. Let P be a set of n points in the plane with at most n
50

collinear. Then the

visibility graph of P has at least n2

50
edges.

For point sets with at most o(n) collinear points, the following is the best asymptotic
result we have obtained.

Theorem 11. Let P be a set of n points in the plane with at most ` collinear. Then the
visibility graph of P has at least n2

39
−O(`n) edges.
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3 A constant for Beck’s Theorem

Beck proved Theorem 5 as part of his work on Dirac’s Conjecture [4]. Theorem 9 from
the previous section and Lemmas 13 and 14 below can be used to give the best known
constant in Beck’s Theorem.

Theorem 12. Every set P of n points with at most ` collinear determines at least 1
98
n(n−

`) lines.

The following lemma, due to Kelly and Moser [11], is equivalent to Melchior’s Inequal-
ity [14], which states that s2 > 3 +

∑
i>4(i − 3)si. As before, I is the total number of

incidences in the arrangement of P . Let E be the total number of edges in the visibility
graph of P , and let L be the total number of lines in the arrangement of P .

Lemma 13 (Kelly–Moser). If P is not collinear, then 3L > 3 + I, and since I = E + L,
also 2L > 3 + E.

When there is a large number of collinear points, the following lemma becomes stronger
than Theorem 9.

Lemma 14. Let P be a set of n points in the plane such that some line contains exactly
` points in P . Then the visibility graph of P contains at least `(n− `) edges.

Proof. Let S be the set of ` collinear points in P . For each point v ∈ S and for each point
w ∈ P \ S, count the edge incident to w in the direction of v. Since S is collinear and w
is not in S, no edge is counted twice. Thus E > |S| · |P \ S| = `(n− `).

Proof of Theorem 12. Assume ` is the size of the largest collinear subset of P . If ` > n
49

then E > 1
49
n(n− `) by Lemma 14 and thus L > 1

98
n(n− `) by Lemma 13. On the other

hand, suppose ` 6 n
49

. Setting c = 67, α = 103
16

, β = 31827
1024

, and ε
2

= δ
3

in Theorem 9
gives ε > 1

49
and δ > 1

32.57
. So I > 1

32.57
n2 > 1

32.57
n(n − `) and thus L > 1

98
n(n − `) by

Lemma 13.

A more direct approach similar to the methods used in the proof of Theorem 9 can be
shown to improve Theorem 12 slightly to yield 1

93
n(n− `) lines. The details are omitted,

but can be found in [16].
Beck’s Theorem is often stated as a bound on the number of lines with few points.

In his original paper Beck [4] mentioned briefly in a footnote that Lemma 13 implies the
following.

Observation 15 (Beck). If P is not collinear, then at least half the lines determined by
P contain at most 3 points.

Proof. By Lemma 13,

3s2 + 3s3 + 3
∑
i>4

si >
∑
i>2

isi > 2s2 + 2s3 + 4
∑
i>4

si .
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Thus
2(s2 + s3) >

∑
i>2

si ,

as desired.

Corollary 16. Every set P of n points with at most ` collinear determines at least
1

196
n(n− `) lines each with at most 3 points.
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[4] József Beck. On the lattice property of the plane and some problems of Dirac,
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6:221–254, 1961. http://www.renyi.hu/~p_erdos/1961-22.pdf.
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